Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (14)

Search Parameters:
Keywords = square billet

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 3408 KiB  
Article
Friction Stress Analysis of Slag Film in Mold of Medium-Carbon Special Steel Square Billet
by Xingjuan Wang, Xulin Si, Liguang Zhu, Tianshuo Wei and Xuelong Zheng
Metals 2025, 15(7), 702; https://doi.org/10.3390/met15070702 - 24 Jun 2025
Viewed by 265
Abstract
Non-uniform friction and lubrication are the key factors affecting the surface quality of the casting billet. Based on the three-layer structure of the casting powder in the mold, the frictional stress in the mold was calculated and analyzed by using the relationship between [...] Read more.
Non-uniform friction and lubrication are the key factors affecting the surface quality of the casting billet. Based on the three-layer structure of the casting powder in the mold, the frictional stress in the mold was calculated and analyzed by using the relationship between the frictional stress and the thickness and viscosity of the liquid slag film, and the lubrication state between the cast billet and the mold was evaluated. Based on the actual production data of 40Mn2 steel and combined with the numerical simulation results of the solidification and shrinkage process of the molten steel in the mold by ANSYS 2022 R1 software, the frictional stress on the cast billet in the mold was calculated. It was found that within the range of 44~300 mm from the meniscus, the friction between the cast billet and the mold was mainly liquid friction, and the friction stress value increased from 0 to 145 KPa. Within 300–720 mm from the meniscus, the billet shell is in direct contact with the mold. The friction between the cast billet and the mold is mainly solid-state friction, and the friction stress value increases from 10.6 KPa to 26.6 KPa. It indicates that the excessive frictional stress inside the mold causes poor lubrication of the cast billet. By reducing the taper of the mold and optimizing the physical and chemical properties of the protective powder, within the range of 44~550 mm from the meniscus, the friction between the cast billet and the mold is mainly liquid friction, and the friction stress value varies within the range of 0–200 Pa. It reduces the frictional stress inside the mold, improves the lubrication between the billet shell and the mold, and completely solves the problem of mesh cracks on the surface of 40Mn2 steel cast billets. Full article
(This article belongs to the Special Issue Numerical Modelling of Metal-Forming Processes)
Show Figures

Figure 1

20 pages, 10924 KiB  
Article
Macroscopic Simulation Study on Inhomogeneity of Small Billet Continuous Casting Mold
by Zhijun Ding, Zisheng Li, Shaohui Han, Hanwen Kou, Xing Huang, Jiabao Liang, Yuekai Xue, Shuhuan Wang and Xin Yao
Processes 2025, 13(5), 1415; https://doi.org/10.3390/pr13051415 - 6 May 2025
Viewed by 346
Abstract
In the steel industry, small billets have become the main type of billet for steel production due to the efficiency of the continuous casting process. However, the segregation that occurs during solidification remains a significant issue affecting billet quality. This study conducted a [...] Read more.
In the steel industry, small billets have become the main type of billet for steel production due to the efficiency of the continuous casting process. However, the segregation that occurs during solidification remains a significant issue affecting billet quality. This study conducted a macroscopic segregation analysis on 172 mm × 172 mm small square billets and investigated the influence of various process parameters on the distribution of carbon within the cast billets. The results showed that an increase in superheat led to a 0.036% rise in the carbon difference and an increase in the central segregation value from 0.357% to 0.364%. Increasing the cooling intensity resulted in a 0.037% rise in the carbon difference and a decrease in the negative segregation value from 0.266% to 0.250%. Higher casting speeds caused the carbon difference to reach a minimum of 0.107% at a speed of 1.6 m·min−1, while the central segregation value reached its lowest point of 0.353% at a casting speed of 2.6 m·min−1. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

17 pages, 4496 KiB  
Article
Accelerated Method for Simulating the Solidification Microstructure of Continuous Casting Billets on GPUs
by Jingjing Wang, Xiaoyu Liu, Yuxin Li and Ruina Mao
Materials 2025, 18(9), 1955; https://doi.org/10.3390/ma18091955 - 25 Apr 2025
Viewed by 323
Abstract
Microstructure simulations of continuous casting billets are vital for understanding solidification mechanisms and optimizing process parameters. However, the commonly used CA (Cellular Automaton) model is limited by grid anisotropy, which affects the accuracy of dendrite morphology simulations. While the DCSA (Decentered Square Algorithm) [...] Read more.
Microstructure simulations of continuous casting billets are vital for understanding solidification mechanisms and optimizing process parameters. However, the commonly used CA (Cellular Automaton) model is limited by grid anisotropy, which affects the accuracy of dendrite morphology simulations. While the DCSA (Decentered Square Algorithm) reduces anisotropy, its high computational cost due to the use of fine grids and dynamic liquid/solid interface tracking hinders large-scale applications. To address this, we propose a high-performance CA-DCSA method on GPUs (Graphic Processing Units). The CA-DCSA algorithm is first refactored and implemented on a CPU–GPU heterogeneous architecture for efficient acceleration. Subsequently, key optimizations, including memory access management and warp divergence reduction, are proposed to enhance GPU utilization. Finally, simulated results are validated through industrial experiments, with relative errors of 2.5% (equiaxed crystal ratio) and 2.3% (average secondary dendrite arm spacing) in 65# steel, and 2.1% and 0.7% in 60# steel. The maximum temperature difference in 65# steel is 1.8 °C. Compared to the serial implementation, the GPU-accelerated method achieves a 1430× higher speed using two GPUs. This work has provided a powerful tool for detailed microstructure observation and process parameter optimization in continuous casting billets. Full article
Show Figures

Figure 1

19 pages, 5056 KiB  
Article
Homogenization Path Based on 250 mm × 280 mm Bloom under Mixed Light and Heavy Presses: Simulation and Industrial Studies
by Aiguo Dang, Mingyue Wang, Haida Wang, Xiaoming Feng and Wei Liu
Metals 2024, 14(5), 591; https://doi.org/10.3390/met14050591 - 17 May 2024
Cited by 1 | Viewed by 1148
Abstract
This study proposed a new method for homogenizing continuous casting blooms based on solidification simulation calculations and industrial tests. The text describes a theoretical analysis of the solidification route of a cast billet of high-carbon alloy steel (B300A) under different process conditions. It [...] Read more.
This study proposed a new method for homogenizing continuous casting blooms based on solidification simulation calculations and industrial tests. The text describes a theoretical analysis of the solidification route of a cast billet of high-carbon alloy steel (B300A) under different process conditions. It summarizes the changing law of different under-pressure process parameters and under-pressure efficiency. The text also presents a solution to the seriousness of center shrinkage defects in the continuous casting of a large square billet of high-carbon alloy steel with the synergistic control technology of mixed light and heavy mixing under pressure. The study indicates that the center carbon segregation index of a high carbon steel continuous casting billet is 1.05, with a carbon extreme difference of not more than 0.08% and a proportion of 98.4%. Additionally, the center shrinkage is not more than a 0.5 level with a proportion of 99.5%. Meanwhile, the internal quality of cast billets has been improved, allowing for the rolling of large-size bars with a low consolidation ratio. The pass rate for internal ultrasonic flaw detection using the GB/T4162A grade is now higher than 99.95%, significantly reducing process costs and improving production efficiency for continuous casting and rolling. Full article
Show Figures

Figure 1

14 pages, 5863 KiB  
Article
Simulation and Experimental Study on the Effect of Superheat on Solidification Microstructure Evolution of Billet in Continuous Casting
by Nan Tian, Guifang Zhang, Peng Yan, Pengchao Li, Zhenhua Feng and Xiaoliang Wang
Materials 2024, 17(3), 682; https://doi.org/10.3390/ma17030682 - 31 Jan 2024
Cited by 4 | Viewed by 2220
Abstract
The control of the solidification structure of a casting billet is directly correlated with the quality of steel. Variations in superheat can influence the transition from columnar crystals to equiaxed crystals during the solidification process, subsequently impacting the final solidification structure of the [...] Read more.
The control of the solidification structure of a casting billet is directly correlated with the quality of steel. Variations in superheat can influence the transition from columnar crystals to equiaxed crystals during the solidification process, subsequently impacting the final solidification structure of the billet. In this study, a model of microstructure evolution during billet solidification was established by combining simulation and experiment, and the dendrite growth microstructure evolution during billet solidification under different superheat was studied. The results show that when the superheat is 60 K, the complete solidification time of the casting billet from the end of the 50 mm section is 252 s, when the superheat is 40 K, the complete solidification time of the casting billet is 250 s, and when the superheat is 20 K, the complete solidification time of the casting billet is 245 s. When the superheat is 20 K, the proportion of the equiaxed crystal region is higher—the highest value is 53.35%—and the average grain radius is 0.84556 mm. The proportion of the equiaxed crystal region decreases with the increase of superheat. When the superheat is 60 K, the proportion of the equiaxed crystal region is the lowest—the lowest value is 46.27%—and the average grain radius is 1.07653 mm. Proper reduction of superheat can obviously reduce the size of equiaxed crystal, expand the area of equiaxed crystal and improve the quality of casting billet. Full article
Show Figures

Figure 1

22 pages, 8979 KiB  
Article
Effect of Texture on the Ductile–Brittle Transition Range and Fracture Mechanisms of the Ultrafine-Grained Two-Phase Ti-6Al-4V Titanium Alloy
by Iuliia M. Modina, Grigory S. Dyakonov, Alexander V. Polyakov, Andrey G. Stotskiy and Irina P. Semenova
Metals 2024, 14(1), 36; https://doi.org/10.3390/met14010036 - 28 Dec 2023
Cited by 3 | Viewed by 2086
Abstract
In this work, the technique of equal-channel angular pressing (ECAP) that enables producing bulk billets was used to form a UFG structure in Ti-6Al-4V alloy. A subsequent warm upsetting simulates die forging and the production of a part. We studied the evolution of [...] Read more.
In this work, the technique of equal-channel angular pressing (ECAP) that enables producing bulk billets was used to form a UFG structure in Ti-6Al-4V alloy. A subsequent warm upsetting simulates die forging and the production of a part. We studied the evolution of the UFG alloy’s crystallographic texture in the process of deformation during the production of a semi-product and/or a part, as well as its effect on the ductile–brittle transition region in the temperature range from −196 °C to 500 °C and the material’s fracture mechanisms. To test Charpy impact strength, standard samples of square cross-section with a V-shape notch were used (KCV). It was found that the impact toughness anisotropy is caused by textural effects and has a pronounced character at temperatures in the ductile–brittle transition range. Up to 100 °C the KCV values are close in the specimens processed by ECAP and ECAP+upsetting (along and perpendicularly to the upsetting axis—along the Z-axis and along the Y-axis, respectively), while a large difference is observed at test temperatures of 200 °C and higher. At a temperature of 500 °C, the impact toughness of the UFG Ti-6Al-4V alloy after ECAP reaches a level of that after ECAP+upsetting in the fracture direction along the Z-axis (1.60 and 1.77 MJ/m2, respectively). Additionally, an additional ECAP upsetting after ECAP decreases the ductile–brittle transition temperature of the UFG Ti-6Al-4V alloy, which increases the temperature margin of the toughness of the structural material and reduces the risk of the catastrophic failure of a product. The fractographic analysis of the fracture surface of the specimens after Charpy tests in a wide temperature range revealed the features of crack propagation depending on the type of the alloy’s microstructure and texture in the fracture direction. Full article
(This article belongs to the Section Metal Failure Analysis)
Show Figures

Figure 1

13 pages, 3173 KiB  
Article
A Least Squares Fitting Method for Uncertain Parameter Estimation in Solidification Model
by Yuhan Wang and Zhi Xie
Crystals 2023, 13(12), 1673; https://doi.org/10.3390/cryst13121673 - 11 Dec 2023
Cited by 1 | Viewed by 1349
Abstract
This study proposes an automated method for estimating the uncertain parameters of the solidification model in response to the inefficient and time-consuming problem of manually estimating multiple uncertain parameters of the solidification model. The method establishes an uncertain parameter estimation model based on [...] Read more.
This study proposes an automated method for estimating the uncertain parameters of the solidification model in response to the inefficient and time-consuming problem of manually estimating multiple uncertain parameters of the solidification model. The method establishes an uncertain parameter estimation model based on the relationship between the simulated images equiaxed crystal ratio and the uncertain parameters of the solidification model, fits the parameters of the model by the least squares method, and finally estimates the uncertain parameters in the solidification model using the parameters of the fitted model. In comparison with the traditional method of calculating uncertain parameters manually through empirical formulas, this method reduces the difficulty of tuning parameters and solves the problem of tuning multiple parameters simultaneously in the nonlinear solidification model. The experimental results show that the proposed method can accurately estimate the uncertain parameters of the solidification model, improve the efficiency and accuracy of the solidification model estimation parameters, and play a guiding role in simulating the solidification process of continuously casting billet to control the solidification structure. Full article
(This article belongs to the Topic Advanced Structural Crystals)
Show Figures

Figure 1

14 pages, 10618 KiB  
Article
Numerical and Experimental Study on Carbon Segregation in Square Billet Continuous Casting with M-EMS
by Pengchao Li, Guifang Zhang, Peng Yan, Peipei Zhang, Nan Tian and Zhenhua Feng
Materials 2023, 16(16), 5531; https://doi.org/10.3390/ma16165531 - 9 Aug 2023
Cited by 4 | Viewed by 1727
Abstract
Electromagnetic stirring (M-EMS) has been extensively applied in continuous casting production to reduce the quality defects of casting billets. To investigate the effect of continuous casting electromagnetic stirring on billet segregation, a 3D multi-physics coupling model was established to simulate the internal heat, [...] Read more.
Electromagnetic stirring (M-EMS) has been extensively applied in continuous casting production to reduce the quality defects of casting billets. To investigate the effect of continuous casting electromagnetic stirring on billet segregation, a 3D multi-physics coupling model was established to simulate the internal heat, momentum, and solute transfer behavior, to identify the effect of M-EMS on the carbon segregation of a continuous casting square billet of 200 mm × 200 mm. The results show that M-EMS can move the high-temperature zone upward, which is favorable for the rapid solidification of the billet, and can promote the rotational flow of the molten steel in the horizontal direction. When the electromagnetic stirring current is varied in the range of 0–500 A, the degree of carbon segregation first decreases and then increases, with the best control of segregation at 300 A. In the frequency range of 3–5 Hz, the degree of carbon segregation degree increases with frequency. Meanwhile, the simulation and experimental results show that 3 Hz + 300 A is the best electromagnetic stirring parameter for improving the carbon segregation of casting billets with a size of 200 mm × 200 mm. So, a reasonable choice of the M-EMS parameters is crucial for the quality of the billet. Full article
(This article belongs to the Special Issue Recovery of Non-ferrous Metal from Metallurgical Residues)
Show Figures

Figure 1

23 pages, 6762 KiB  
Article
Evaluation of Minimum Preparation Sampling Strategies for Sugarcane Quality Prediction by vis-NIR Spectroscopy
by Lucas de Paula Corrêdo, Leonardo Felipe Maldaner, Helizani Couto Bazame and José Paulo Molin
Sensors 2021, 21(6), 2195; https://doi.org/10.3390/s21062195 - 21 Mar 2021
Cited by 11 | Viewed by 4571
Abstract
Proximal sensing for assessing sugarcane quality information during harvest can be affected by various factors, including the type of sample preparation. The objective of this study was to determine the best sugarcane sample type and analyze the spectral response for the prediction of [...] Read more.
Proximal sensing for assessing sugarcane quality information during harvest can be affected by various factors, including the type of sample preparation. The objective of this study was to determine the best sugarcane sample type and analyze the spectral response for the prediction of quality parameters of sugarcane from visible and near-infrared (vis-NIR) spectroscopy. The sampling and spectral data acquisition were performed during the analysis of samples by conventional methods in a sugar mill laboratory. Samples of billets were collected and four modes of scanning and sample preparation were evaluated: outer-surface (‘skin’) (SS), cross-sectional scanning (CSS), defibrated cane (DF), and raw juice (RJ) to analyze the parameters soluble solids content (Brix), saccharose (Pol), fibre, pol of cane and total recoverable sugars (TRS). Predictive models based on Partial Least Square Regression (PLSR) were built with the vis-NIR spectral measurements. There was no significant difference (p-value > 0.05) between the accuracy SS and CSS samples compared to DF and RJ samples for all prediction models. However, DF samples presented the best predictive performance values for the main sugarcane quality parameters, and required only minimal sample preparation. The results contribute to advancing the development of on-board quality monitoring in sugarcane, indicating better sampling strategies. Full article
(This article belongs to the Special Issue Using Vis-NIR Spectroscopy for Predicting Quality Compounds in Foods)
Show Figures

Figure 1

21 pages, 11612 KiB  
Article
Hot Rolling Simulation System for Steel Based on Advanced Meshless Solution
by Umut Hanoglu and Božidar Šarler
Metals 2019, 9(7), 788; https://doi.org/10.3390/met9070788 - 16 Jul 2019
Cited by 29 | Viewed by 6445
Abstract
In this work, a rolling simulation system for the hot rolling of steel is elaborated. The system is capable of simulating rolling of slabs and blooms, as well as round or square billets, in different symmetric or asymmetric forms in continuous, reversing, or [...] Read more.
In this work, a rolling simulation system for the hot rolling of steel is elaborated. The system is capable of simulating rolling of slabs and blooms, as well as round or square billets, in different symmetric or asymmetric forms in continuous, reversing, or combined rolling. Groove geometries are user-defined and an arbitrary number of rolling stands and distances between them may be used. A slice model assumption is considered, which allows the problem to be efficiently coped with. The related large-deformation thermomechanical problem is solved by the novel meshless Local Radial Basis Function Collocation Method. A compression test is used to compare the simulation results with the Finite Element Method. A user-friendly rolling simulation application has been created for the industrial use based on C# and .NET framework. Results of the simulation, directly taken from the system, are shown for each type of the rolling mill configurations. Full article
(This article belongs to the Special Issue Researches and Simulations in Steel Rolling)
Show Figures

Figure 1

19 pages, 4144 KiB  
Article
Cast Structure in Alloy A286, an Iron-Nickel Based Superalloy
by Robin Frisk, Nils Å. I. Andersson and Bo Rogberg
Metals 2019, 9(6), 711; https://doi.org/10.3390/met9060711 - 24 Jun 2019
Cited by 17 | Viewed by 7545
Abstract
The structure and segregation of a continuously cast iron-nickel based superalloy were investigated. Cross-sectional samples were prepared from the central section of a 150 × 150 mm square billet. The microporosity was measured from the surface to the center and theoretical conditions for [...] Read more.
The structure and segregation of a continuously cast iron-nickel based superalloy were investigated. Cross-sectional samples were prepared from the central section of a 150 × 150 mm square billet. The microporosity was measured from the surface to the center and theoretical conditions for pore formation were investigated. A central porosity, up to 10 mm in width, was present in the center of the billet. The measured secondary arm spacing was correlated with a calculated cooling rate and a mathematical model was obtained. Spinel particles were found in the structure, which acted as inoculation points for primary austenite and promoted the formation of the central equiaxed zone. Titanium segregated severely in the interdendritic areas and an increase of Ti most likely lead to a significant decrease in the hot ductility. Precipitates were detected in an area fraction of approximately 0.55% across the billet, which were identified as Ti(CN), TiN, η-Ni3Ti, and a phosphide phase. Full article
Show Figures

Figure 1

16 pages, 5481 KiB  
Article
Effect of Final Electromagnetic Stirring Parameters on Central Cross-Sectional Carbon Concentration Distribution of High-Carbon Square Billet
by Yong Wan, Menghua Li, Liangjun Chen, Yichao Wu, Jie Li, Hongbo Pan and Wei Zhong
Metals 2019, 9(6), 665; https://doi.org/10.3390/met9060665 - 7 Jun 2019
Cited by 13 | Viewed by 3451
Abstract
The effect of final electromagnetic stirring parameters, with current intensity increasing from 300 A to 400 A and frequency increasing from 4 Hz to 12 Hz, on the electromagnetic forces and carbon concentration distribution of the central cross section of a 70 steel [...] Read more.
The effect of final electromagnetic stirring parameters, with current intensity increasing from 300 A to 400 A and frequency increasing from 4 Hz to 12 Hz, on the electromagnetic forces and carbon concentration distribution of the central cross section of a 70 steel square billet have been studied. Along the center line of the liquid core zone, current intensity of 400 A and frequency of 8 Hz achieve the maximum electromagnetic force at the position 48 mm away from the billet edge among the 10 groups of stirring parameters. Nevertheless, along diagonal of the liquid core zone, the electromagnetic force near the diagonal center is the greatest and the current intensity of 280 A and frequency of 12 Hz obtain the maximum electromagnetic force. The optimal final electromagnetic stirring (F-EMS) parameter to uniform the central cross-sectional carbon concentration and minimize the center carbon segregation of 70 steel billet was obtained with a current intensity of 280 A and frequency of 12 Hz. Under this stirring parameter, the area ratios of carbon concentrations of 0.66 wt%, 0.70 wt% and 0.74 wt% in the middle of the billet cross section reached 28.5%, 56.9% and 10.9%, respectively. Moreover, the carbon segregation indexes for all sampling points were in the range of 0.92–1.05. Full article
(This article belongs to the Special Issue Advances in Metal Casting Technology)
Show Figures

Figure 1

21 pages, 2447 KiB  
Article
Mechanical Modelling of the Plastic Flow Machining Process
by Viet Q. Vu, Yan Beygelzimer, Roman Kulagin and Laszlo S. Toth
Materials 2018, 11(7), 1218; https://doi.org/10.3390/ma11071218 - 16 Jul 2018
Cited by 21 | Viewed by 3890
Abstract
A new severe plastic deformation process, plastic flow machining (PFM), was introduced recently to produce sheet materials with ultrafine and gradient structures from bulk samples in one single deformation step. During the PFM process, a part of a rectangular sample is transformed into [...] Read more.
A new severe plastic deformation process, plastic flow machining (PFM), was introduced recently to produce sheet materials with ultrafine and gradient structures from bulk samples in one single deformation step. During the PFM process, a part of a rectangular sample is transformed into a thin sheet or fin under high hydrostatic pressure. The obtained fin is heavily deformed and presents a strain gradient across its thickness. The present paper aims to provide better understanding about this new process via analytical modelling accompanied by finite element simulations. PFM experiments were carried out on square commercially pure aluminum (CP Al) billets. Under pressing, the material flowed from the horizontal channel into a narrow 90° oriented lateral channel to form a fin sheet product, and the remaining part of the sample continued to move along the horizontal channel. At the opposite end of the bulk sample, a back-pressure was applied to increase the hydrostatic pressure in the material. The experiments were set at different width sizes of the lateral channel under two conditions; with or without applying back-pressure. A factor called the lateral extrusion ratio was defined as the ratio between the volume of the produced fin and the incoming volume. This ratio characterizes the efficiency of the PFM process. The experimental results showed that this ratio was greater when back-pressure was applied and further, it increased with the rise of the lateral channel width size. Finite element simulations were conducted in the same boundary conditions as the experiments using DEFORM-2D/3D software, V11.0. Two analytical models were also established. The first one used the variational principle to predict the lateral extrusion ratio belonging to the minimum total plastic power. The second one employed an upper-bound approach on a kinematically admissible velocity field to describe the deformation gradient in the fin. The numerical simulations and the analytical modelling successfully predicted the experimental tendencies, including the deformation gradient across the fin thickness. Full article
(This article belongs to the Special Issue Design of Alloy Metals for Low-Mass Structures)
Show Figures

Graphical abstract

12 pages, 10157 KiB  
Article
Development of a CA-FVM Model with Weakened Mesh Anisotropy and Application to Fe–C Alloy
by Weiling Wang, Sen Luo and Miaoyong Zhu
Crystals 2016, 6(11), 147; https://doi.org/10.3390/cryst6110147 - 15 Nov 2016
Cited by 15 | Viewed by 4900
Abstract
In order to match the growth of the decentered square and the evolution of the interface cell in a two-dimensional cellular automaton-finite volume method (CA-FVM) model with decentered square algorithm, the present work first alters the determination of the half length of the [...] Read more.
In order to match the growth of the decentered square and the evolution of the interface cell in a two-dimensional cellular automaton-finite volume method (CA-FVM) model with decentered square algorithm, the present work first alters the determination of the half length of the square diagonal according to the preferential growth orientation, and then modifies the interface evolution considering the contribution of neighboring solid cells. Accordingly, the sharp interface (physical basis of the model), the growth orientation, and the growth consistence are reasonably guaranteed. The CA-FVM model presents some capabilities in predicting the free growth of equiaxed dendrites. With the increase of the cooling rate, the solidification structure gradually changes from cell to dendrite, and the solute segregation becomes more severe. Meanwhile, the predicted solute segregation under the intensive cooling condition is consistent with the calculation by Ueshima model at the initial solidification stage. The predicted competition behavior of columnar dendrites is qualitatively consistent with the observation in the continuously cast steel billet. The predicted dendrite arm spacings are close to the measurements. Full article
(This article belongs to the Special Issue Global Modeling in Crystal Growth)
Show Figures

Figure 1

Back to TopTop