Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,505)

Search Parameters:
Keywords = spray application

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 10020 KB  
Article
Chitosan/Carboxymethyl Cellulose Nanocomposites Prepared via Electrolyte Gelation–Spray Drying for Controlled Ampicillin Delivery and Enhanced Antibacterial Activity
by Anh Dzung Nguyen, Vinh Nghi Nguyen, Vu Hoa Tran, Huu Hung Dinh, Dinh Sy Nguyen, Thi Huyen Nguyen, Van Bon Nguyen and San Lang Wang
Polymers 2026, 18(3), 319; https://doi.org/10.3390/polym18030319 (registering DOI) - 24 Jan 2026
Abstract
This study reports the fabrication of chitosan/carboxymethyl cellulose (C/M) nanocomposites by electrolyte gelation–spray drying and the evaluation of their antibacterial performance as carriers for the antibiotic ampicillin. Chitosan (C), a cationic biopolymer derived from chitin, was combined with the anionic polysaccharide carboxymethyl cellulose [...] Read more.
This study reports the fabrication of chitosan/carboxymethyl cellulose (C/M) nanocomposites by electrolyte gelation–spray drying and the evaluation of their antibacterial performance as carriers for the antibiotic ampicillin. Chitosan (C), a cationic biopolymer derived from chitin, was combined with the anionic polysaccharide carboxymethyl cellulose (M) at different mass ratios to form stable nanocomposites via electrostatic interactions and then collected in a spray dryer. The resulting particles exhibited mean diameters ranging from 800 to 1500 nm and zeta potentials varying from +90 to −40 mV, depending on the C/M ratio. The optimal formulation (C/M = 2:1 ratio) achieved a high recovery yield (71.1%), lower PDI (0.52), and ampicillin encapsulation efficiency EE (82.4%). Fourier transform infrared spectroscopy (FTIR) confirmed the presence of hydrogen bonding and ionic interactions among C/M, and ampicillin within the nanocomposite matrix. The nanocomposites demonstrated controlled ampicillin release and pronounced antibacterial activity against Staphylococcus aureus, with minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values of 3.2 µg/mL and 5.3 µg/mL, respectively, which were lower than those of free ampicillin. These results indicate that the chitosan/carboxymethyl cellulose nanocomposites are promising, eco-friendly carriers for antibiotic delivery and antibacterial applications. Full article
(This article belongs to the Special Issue Valorization of Biopolymer from Renewable Biomass, 2nd Edition)
Show Figures

Graphical abstract

18 pages, 940 KB  
Review
Advancements, Challenges, and Future Perspectives of Soybean-Integrated Pest Management, Emphasizing the Adoption of Biological Control by the Major Global Producers
by Adeney de F. Bueno, William W. Hoback, Yelitza C. Colmenarez, Ivair Valmorbida, Weidson P. Sutil, Lian-Sheng Zang and Renato J. Horikoshi
Plants 2026, 15(3), 366; https://doi.org/10.3390/plants15030366 (registering DOI) - 24 Jan 2026
Abstract
Soybean, Glycine max (L.) Merrill, is usually grown on a large scale, with pest control based on chemical insecticides. However, the overuse of chemicals has led to several adverse effects requiring more sustainable approaches to pest control. Results from Integrated Pest Management (IPM) [...] Read more.
Soybean, Glycine max (L.) Merrill, is usually grown on a large scale, with pest control based on chemical insecticides. However, the overuse of chemicals has led to several adverse effects requiring more sustainable approaches to pest control. Results from Integrated Pest Management (IPM) employed on Brazilian soybean farms indicate that adopters of the technology have reduced insecticide use by approximately 50% relative to non-adopters, with yields comparable to or slightly higher than those of non-adopters. This reduction can be explained not only by the widespread use of Bt soybean cultivars across the country but also by the adoption of economic thresholds (ETs) in a whole Soybean-IPM package, which has reduced insecticide use. However, low refuge compliance has led to the first cases of pest resistance to Cry1Ac, thereby leading to the return of overreliance on chemical control and posing additional challenges for IPM practitioners. The recent global agenda for decarbonized agriculture might help to support the adoption of IPM since less chemical insecticides sprayed over the crops reduces CO2-equivalent emissions from its application. In addition, consumers’ demand for less pesticide use in food production has favored the increased use of bio-inputs in agriculture, helping mitigate overdependence of agriculture on chemical inputs to preserve yields. Despite the challenges of adopting IPM discussed in this review, the best way to protect soybean yield and preserve the environment remains as IPM, integrating plant resistance (including Bt cultivars), ETs, scouting procedures, selective insecticides, biological control, and other sustainable tools, which help sustain environmental quality in an ecological and economical manner. Soon, those tools will include RNAi, CRISPR-based control strategies, among other sustainable alternatives intensively researched around the world. Full article
(This article belongs to the Special Issue Integrated Pest Management of Field Crops)
Show Figures

Figure 1

36 pages, 2648 KB  
Review
Recent Progress in Probiotic Encapsulation: Techniques, Characterization and Food Industry Prospects
by Zixin Jin and Yi Wang
Foods 2026, 15(3), 431; https://doi.org/10.3390/foods15030431 (registering DOI) - 24 Jan 2026
Abstract
Although probiotics are widely used in the food industry due to their health-promoting effects, their application is often limited by low stability and poor viability under processing, storage, and gastrointestinal conditions. Encapsulation has emerged as a promising strategy to address these issues, offering [...] Read more.
Although probiotics are widely used in the food industry due to their health-promoting effects, their application is often limited by low stability and poor viability under processing, storage, and gastrointestinal conditions. Encapsulation has emerged as a promising strategy to address these issues, offering enhanced protection and controlled release of probiotic strains. This review summarizes recent advances in encapsulation techniques relevant to food applications, including spray drying, freeze drying, coacervation, and liposome formation, as well as novel approaches such as multilayer nanocoatings and dual-core systems. The use of natural biopolymers such as alginate, chitosan, and pectin, along with food-grade synthetic materials, has greatly improved the stability of probiotics in complex food matrices. Furthermore, emerging technologies such as cell-mediated coatings offer improved resistance to gastric acid and oxygen, enhancing probiotic survival through the gastrointestinal tract. These advances contribute to the development of functional foods with better health benefits. However, challenges remain regarding scalability, strain-specific encapsulation efficiency, and regulatory approval. Future research should focus on optimizing food-grade materials, exploring synergistic effects with bioactive compounds, and ensuring consistent performance across food systems. Full article
(This article belongs to the Section Food Biotechnology)
Show Figures

Graphical abstract

22 pages, 2056 KB  
Article
Machine Learning-Based Prediction and Interpretation of Collision Outcomes for Binary Seawater Droplets
by Yufeng Tang, Cuicui Che and Pengjiang Guo
Processes 2026, 14(3), 407; https://doi.org/10.3390/pr14030407 - 23 Jan 2026
Abstract
The collision dynamics of binary seawater droplets are pivotal in marine engineering applications, like spray desalination and engine cooling. While high-fidelity simulations can resolve these dynamics, they are computationally prohibitive for rapid design and analysis. This study introduces the first interpretable machine learning [...] Read more.
The collision dynamics of binary seawater droplets are pivotal in marine engineering applications, like spray desalination and engine cooling. While high-fidelity simulations can resolve these dynamics, they are computationally prohibitive for rapid design and analysis. This study introduces the first interpretable machine learning (ML) framework to predict and elucidate the collision outcomes of head-on binary seawater droplets. A high-fidelity numerical dataset, generated via Modified Coupled Level Set-VOF (M-CLSVOF) simulations across a broad Weber number (We) range, serves as the foundation for training multiple classifiers. Among the tested algorithms, the Random Forest model achieved superior performance with 96.2% accuracy. The model’s predictions precisely identified the critical Weber number for the transition from coalescence to reflexive separation at We ≈ 22.3 for seawater. Moving beyond black-box prediction, we employed SHapley Additive exPlanations (SHAP) to quantitatively deconstruct the model’s decision-making process. SHAP analysis confirmed the dominance of the Weber number (75% contribution) and revealed the context-dependent role of the Reynolds number (25% contribution) in modulating the collision outcome. Furthermore, a comparative analysis with freshwater droplets quantified a 6% elevation in the critical Weber number for seawater, attributed to salinity-induced modifications in fluid properties. Finally, a machine-learned regime map in the We-Ohnesorge space was constructed, delineating the coalescence and separation boundaries. This work establishes ML as a powerful, interpretable surrogate model that not only delivers rapid, accurate predictions but also extracts fundamental physical insights, offering a valuable paradigm for optimizing marine spray systems. Full article
(This article belongs to the Section Energy Systems)
32 pages, 2701 KB  
Review
A Comprehensive Review of Application Techniques for Thermal-Protective Elastomeric Ablative Coatings in Solid Rocket Motor Combustion Chambers
by Mohammed Meiirbekov, Marat Nurguzhin, Marat Ismailov, Marat Janikeyev, Zhannat Kadyrov, Myrzakhan Omarbayev, Assem Kuandyk, Nurmakhan Yesbolov, Meiir Nurzhanov, Sunkar Orazbek and Mukhammed Sadykov
Technologies 2026, 14(2), 77; https://doi.org/10.3390/technologies14020077 (registering DOI) - 23 Jan 2026
Abstract
Elastomeric ablative coatings are essential for protecting solid rocket motor (SRM) combustion chambers from extreme thermal and erosive environments, and their performance is governed by both material composition and processing strategy. This review examines the main elastomer systems used for SRM insulation, including [...] Read more.
Elastomeric ablative coatings are essential for protecting solid rocket motor (SRM) combustion chambers from extreme thermal and erosive environments, and their performance is governed by both material composition and processing strategy. This review examines the main elastomer systems used for SRM insulation, including ethylene propylene diene monomer (EPDM), nitrile butadiene rubber (NBR), hydroxyl-terminated polybutadiene (HTPB), polyurethane (PU), silicone-based compounds, and related hybrids, and discusses how their rheological behavior, cure kinetics, thermal stability, and ablation mechanisms affect manufacturability and in-service performance. A comprehensive assessment of coating technologies is presented, covering casting, molding, centrifugal forming, spraying, automated deposition, and emerging additive-manufacturing approaches for complex geometries. Emphasis is placed on processing parameters that control adhesion to metallic substrates, layer uniformity, defect formation, and thermomechanical integrity under high-heat-flux exposure. The review integrates current knowledge on how material choice, surface preparation, and application sequence collectively determine insulation efficiency under operational SRM conditions. Practical aspects such as scalability, compatibility with complex chamber architectures, and integration with quality-control tools are highlighted. By comparing the capabilities and limitations of different materials and technologies, the study identifies key development trends and outlines remaining challenges for improving the durability, structural robustness, and ablation resistance of next-generation elastomeric coatings for SRMs. Full article
(This article belongs to the Section Innovations in Materials Science and Materials Processing)
Show Figures

Figure 1

15 pages, 3507 KB  
Article
Online Monitoring of Aerodynamic Characteristics of Fruit Tree Leaves Based on Strain-Gage Sensors
by Yanlei Liu, Zhichong Wang, Xu Dong, Chenchen Gu, Fan Feng, Yue Zhong, Jian Song and Changyuan Zhai
Agronomy 2026, 16(3), 279; https://doi.org/10.3390/agronomy16030279 (registering DOI) - 23 Jan 2026
Viewed by 52
Abstract
Orchard wind-assisted spraying technology relies on auxiliary airflow to disturb the canopy and improve droplet deposition uniformity. However, there are few effective means of quantitatively assessing the dynamic response of fruit tree leaves to airflow or the changes in airflow patterns within the [...] Read more.
Orchard wind-assisted spraying technology relies on auxiliary airflow to disturb the canopy and improve droplet deposition uniformity. However, there are few effective means of quantitatively assessing the dynamic response of fruit tree leaves to airflow or the changes in airflow patterns within the canopy in real time. To address this, this study proposed an online monitoring method for the aerodynamic characteristics of fruit tree leaves using strain gauge sensors. The flexible strain gauge was affixed to the midribs of leaves from peach, pear and apple trees. Leaf deformations were captured with high-speed video recording (100 fps) alongside electrical signals in controlled wind fields. Bartlett low-pass filtering and Fourier transform were used to extract frequency-domain features spanning between 0 and 50 Hz. The AdaBoost decision tree model was used to evaluate classification performance across frequency bands. The results demonstrated high accuracy in identifying wind exposure (98%) for pear leaf and classifying the three leaf types (κ = 0.98) within the 4–6 Hz band. A comparison with the frame analysis of high-speed video recordings revealed a time error of 2 s in model predictions. This study confirms that strain gauge sensors combined with machine learning could efficiently monitor fruit tree leaf responses to external airflow in real time. It provides novel insights for optimizing wind-assisted spray parameters, reconstructing internal canopy wind field distributions and achieving precise pesticide application. Full article
(This article belongs to the Special Issue Advances in Precision Pesticide Spraying Technology and Equipment)
Show Figures

Figure 1

17 pages, 1722 KB  
Article
Exploring Biosurfactant Production from Halophilic Bacteria, Isolated from Burgas Salterns in Bulgaria
by Kaloyan Berberov, Ivanka Boyadzhieva, Boryana Yakimova, Hristina Petkova, Ivanka Stoineva, Lilyana Nacheva and Lyudmila Kabaivanova
Mar. Drugs 2026, 24(1), 53; https://doi.org/10.3390/md24010053 - 22 Jan 2026
Viewed by 32
Abstract
Biosurfactants produced by halophilic bacteria are gaining attention as eco-friendly and biocompatible alternatives to synthetic surfactants due to their high surface activity, stability under extreme conditions, and intrinsic antimicrobial properties. These amphiphilic biomolecules hold great promise for bioremediation, biomedical, and pharmaceutical applications. In [...] Read more.
Biosurfactants produced by halophilic bacteria are gaining attention as eco-friendly and biocompatible alternatives to synthetic surfactants due to their high surface activity, stability under extreme conditions, and intrinsic antimicrobial properties. These amphiphilic biomolecules hold great promise for bioremediation, biomedical, and pharmaceutical applications. In this study, moderately halophilic bacteria capable of biosurfactant production were isolated from saline mud collected at the Burgas solar salterns (Bulgaria). The halophilic microbiota was enriched in Bushnell–Haas (BH) medium containing 10% NaCl amended with different carbon sources. Primary screening in BH liquid medium evaluated the isolates’ ability to degrade n-hexadecane while at the same time producing biosurfactants. Thirty halophilic bacterial strains were isolated on BH agar plates supplemented with 2% n-hexadecane, 2% olive oil, or 2% glycerol. Four isolates—BS7OL, BS8OL, BS9GL, and BS10HD—with strong emulsifying activity (E24 = 56%) and reduced surface tension in the range of 27.3–45 mN/m were derived after 7 days of batch fermentation. Strain BS10HD was chosen as the most potent biosurfactant producer. Its phylogenetic affiliation was determined by 16S rRNA gene sequence analysis; according to the nucleotide sequence, it was assigned to Halomonas ventosae. The extract material was analysed by thin-layer chromatography (TLC) and Fourier transform infrared spectroscopy (FTIR). Upon spraying the TLC plate with ninhydrin reagent, the appearance of a pink spot indicated the presence of amine functional groups. FTIR analysis showed characteristic peaks for both lipid and peptide functional groups. Based on the observed physicochemical properties and analytical data, it can be suggested that the biosurfactant produced by Halomonas ventosae BS10HD is a lipopeptide compound. Full article
(This article belongs to the Special Issue Marine Extremophiles and Their Metabolites)
Show Figures

Graphical abstract

18 pages, 5019 KB  
Article
A High-Solid-Content and Low-Surface-Treatment Epoxy-Polysiloxane Ceramic Metal Coating for Metal Anti-Corrosion in Harsh Environments
by Xiufen Liao, Liang Fan, Qiumei Jiang, Maomi Zhao, Songqiang Huang, Junxiang Lai, Congtao Sun and Baorong Hou
Metals 2026, 16(1), 123; https://doi.org/10.3390/met16010123 - 21 Jan 2026
Viewed by 94
Abstract
Conventional anticorrosive coatings suffer from limitations of low solid content and rigorous surface pretreatment, posing environmental and cost challenges in field applications. In this study, a novel high-solid-content (>95%) epoxy-polysiloxane (Ep-PSA) ceramic metal coating was prepared that enables low-surface-treatment application. The originality lies [...] Read more.
Conventional anticorrosive coatings suffer from limitations of low solid content and rigorous surface pretreatment, posing environmental and cost challenges in field applications. In this study, a novel high-solid-content (>95%) epoxy-polysiloxane (Ep-PSA) ceramic metal coating was prepared that enables low-surface-treatment application. The originality lies in the synergistic combination of nano-sized ceramic powders, high-strength metallic powders, polysiloxane resin (PSA), and solvent-free epoxy resin (Ep), which polymerize through an organic–inorganic interpenetrating network to form a dense shielding layer. The as-prepared Ep-PSA coating system chemically bonds with indigenous metal substrate via Zn3(PO4)2 and resin functionalities during curing, forming a conversion layer that reduces surface preparation requirements. Differentiating from existing high-solid coatings, this approach achieves superior long-term barrier properties, evidenced by |Z|0.01Hz value of 9.64 × 108 Ω·cm2, after 6000 h salt spray exposure—four orders of magnitude higher than commercial 60% epoxy zinc-rich coatings (2.26 × 104 Ω·cm2, 3000 h salt spray exposure). The coating exhibits excellent adhesion (14.28 MPa) to standard sandblasted steel plates. This environmentally friendly, durable, and easily applicable composite coating demonstrates significant field application value for large-scale energy infrastructure. Full article
(This article belongs to the Special Issue Surface Treatments and Coating of Metallic Materials (2nd Edition))
Show Figures

Figure 1

15 pages, 4315 KB  
Article
Deep Learning for Real-Time Detection of Brassicogethes aeneus in Oilseed Rape Using the YOLOv4 Architecture
by Ziemowit Malecha, Kajetan Ożarowski, Rafał Siemasz, Maciej Chorowski, Krzysztof Tomczuk, Bernadeta Strochalska and Anna Wondołowska-Grabowska
Appl. Sci. 2026, 16(2), 1075; https://doi.org/10.3390/app16021075 - 21 Jan 2026
Viewed by 71
Abstract
The growing global population and increasing food demand highlight the need for sustainable agricultural practices that balance productivity with environmental protection. Traditional blanket pesticide spraying leads to overuse of chemicals, environmental pollution, and biodiversity loss. This study aims to develop an innovative approach [...] Read more.
The growing global population and increasing food demand highlight the need for sustainable agricultural practices that balance productivity with environmental protection. Traditional blanket pesticide spraying leads to overuse of chemicals, environmental pollution, and biodiversity loss. This study aims to develop an innovative approach to precision pest management using mobile computing, computer vision, and deep learning techniques. A mobile measurement platform equipped with cameras and an onboard computer was designed to collect real-time field data and detect pest infestations. The system uses an advanced object detection algorithm based on the YOLOv4 architecture, trained on a custom dataset of rapeseed pest images. Modifications were made to enhance detection accuracy, especially for small objects. Field tests demonstrated the system’s ability to identify and count pests, such as the pollen beetle (Brassicogethes aeneus), in rapeseed crops. The collected data, combined with GPS information, generated pest density maps, which can guide site-specific pesticide applications. The results show that the proposed method achieved a mean average precision (mAP) of 83.7% on the test dataset. Field measurements conducted during the traversal of rapeseed fields enabled the creation of density maps illustrating the distribution of pollen beetles. Based on these maps, the potential for pesticide savings was demonstrated, and the migration dynamics of pollen beetle were discussed. Full article
Show Figures

Figure 1

25 pages, 2344 KB  
Article
Valorization of Dairy and Plant By-Products as Functional Ingredients in Kurt (Dried Fermented Milk Product): Effects on Nutritional, Physicochemical, and Sensory Properties
by Zhanar Kalibekkyzy, Shugyla Zhakupbekova, Maksim Rebezov, Almagul Nurgazezova, Gulnur Nurymkhan, Samat Kassymov, Sholpan Baytukenova, Akmaral Mateyeva, Aigul Maizhanova and Zarina Kapshakbayeva
Foods 2026, 15(2), 369; https://doi.org/10.3390/foods15020369 - 20 Jan 2026
Viewed by 242
Abstract
This study developed enriched kurt formulations using buttermilk protein sediment, spray-dried whey, soy protein concentrate, and flaxseed cake, and assessed their effects on composition, physicochemical parameters, microbiological stability, and sensory quality. Protein content increased from 46.2% in the control to 48.7–52.4% in experimental [...] Read more.
This study developed enriched kurt formulations using buttermilk protein sediment, spray-dried whey, soy protein concentrate, and flaxseed cake, and assessed their effects on composition, physicochemical parameters, microbiological stability, and sensory quality. Protein content increased from 46.2% in the control to 48.7–52.4% in experimental samples. Calcium levels rose from 750 mg/100 g to 856 mg/100 g in Experiment 1 and 880.7 mg/100 g in Experiment 3 (p < 0.05), demonstrating strong mineral enhancement. Moisture decreased from 13.61% in the control to 11.68–12.90% in enriched variants (p < 0.05), indicating more efficient dehydration and a denser structure. pH remained within 4.1–4.3 and water activity stayed below 0.60, supporting long-term microbial stability. Amino acid profiling showed higher levels of essential amino acids, particularly leucine and lysine, in samples containing buttermilk protein sediment and whey. Microbiological analysis confirmed low total viable counts values (9.0 × 102–1.2 × 103 CFU/g), consistent with the high acidity and low moisture of traditional kurt. Sensory evaluation revealed significant variation among formulations. The control and Experiment 2 received the highest taste and aroma scores (4.67 points), while Experiment 3 showed the lowest values (3.33 points; p < 0.05). Appearance scores decreased notably in darker samples, with Experiment 3 showing a reduction from 4.67 to 2.67 points (p < 0.05). Texture also differed across variants; Experiment 2 maintained acceptable hardness and cohesiveness (4.33 points), whereas Experiment 3 displayed increased crumbliness (3.0 points; p < 0.05). The findings demonstrate that functional enrichment of kurt is feasible when ingredient levels remain within an optimal range. The Experiment 2 formulation achieved improved nutritional value without compromising sensory quality, providing a promising basis for further technological development and commercial application. Full article
Show Figures

Figure 1

18 pages, 8088 KB  
Article
A Potentially Repairable Composite Coating for Significantly Enhancing Wear and Corrosion Resistance of Magnesium Alloy
by Yueyu Huang, Ruilin Zeng, Shequan Wang, Ninghua Long, Yingpeng Zhang, Qun Wang and Chidambaram Seshadri Ramachandran
Lubricants 2026, 14(1), 44; https://doi.org/10.3390/lubricants14010044 - 20 Jan 2026
Viewed by 191
Abstract
The AZ31 magnesium alloy is an attractive lightweight metallic material, but its low corrosion resistance and wear resistance significantly limit its widespread application in fields such as aerospace, the automotive industry, and mechanical engineering. Moreover, most coating systems currently cannot restore their original [...] Read more.
The AZ31 magnesium alloy is an attractive lightweight metallic material, but its low corrosion resistance and wear resistance significantly limit its widespread application in fields such as aerospace, the automotive industry, and mechanical engineering. Moreover, most coating systems currently cannot restore their original functions and dimensions after localized damage. Based on this, this study combined cold spray (CS), micro-arc oxidation (MAO), and magnetron sputtering (MS) to develop a high-performance and repairable composite modification strategy. First, a 5056 aluminum alloy coating was prepared on AZ31 via CS, followed by the growth of a hard alumina (Al2O3) coating via MAO and a diamond-like carbon (DLC) coating via MS on the 5056 aluminum alloy surface. The microstructure, phase composition, hardness, tribological properties, and electrochemical corrosion behavior of the coatings were evaluated using scanning electron microscopy/energy-dispersive X-ray spectroscopy (SEM/EDS), X-ray diffraction (XRD), Vickers hardness testing, ball-on-disk dry sliding wear testing, and potentiodynamic polarization testing in a 3.5% sodium chloride solution. The CS 5056 aluminum alloy coating reduced the corrosion current density of AZ31 from 4.098 × 10−5 A/cm2 to 2.714 × 10−6 A/cm2. The MAO alumina coating increased the hardness of AZ31 from 68.60 HV0.05 to 1614.00 HV0.05 and decreased the wear rate from 1.703 × 106 μm3/(N·m) to 2.038 × 103 μm3/(N·m). The DLC coating further reduced the average coefficient of friction of the alumina coating from 0.48 to 0.27, decreased the wear rate to 6.979 × 102 μm3/(N·m), and lowered the corrosion current density from 3.020 × 10−6 A/cm2 to 8.860 × 10−9 A/cm2. This indicates that the three-phase composite coating achieves synergistic improvements in the corrosion and wear resistance of AZ31 through complementary advantages. Additionally, the thick CS aluminum alloy underlayer provides potential repairability, enabling the restoration of function and dimensions after damage without compromising the magnesium substrate. Overall, the proposed 5056Al/Al2O3/DLC composite coating strategy offers a reliable protective approach for AZ31 components and is expected to further expand their application fields. Full article
Show Figures

Figure 1

18 pages, 21578 KB  
Article
Screening Various Bacterial-Produced Double-Stranded RNAs for Managing Asian Soybean Rust Disease Caused by Phakopsora pachyrhizi
by Yenjit R. Thibodeaux, Sunira Marahatta, Dongfang Hu, Maria Izabel Costa de Novaes, Isabel Hau, Tong Wang and Zhi-Yuan Chen
Plants 2026, 15(2), 294; https://doi.org/10.3390/plants15020294 - 19 Jan 2026
Viewed by 323
Abstract
Asian soybean rust (ASR), caused by Phakopsora pachyrhizi (Syd.), poses a serious threat to global soybean production. The main approach to managing this disease has been through repeated fungicide applications which have reduced efficacy due to fungicide resistance. Recently, spray-induced gene silencing (SIGS) [...] Read more.
Asian soybean rust (ASR), caused by Phakopsora pachyrhizi (Syd.), poses a serious threat to global soybean production. The main approach to managing this disease has been through repeated fungicide applications which have reduced efficacy due to fungicide resistance. Recently, spray-induced gene silencing (SIGS) through exogenous application of double-stranded RNA (dsRNA) has emerged as a promising approach for plant disease management. In the present study, twelve different dsRNAs targeting genes important for P. pachyrhizi urediniospore germination, infection of the host plant or resistant to commonly used fungicides were produced in Escherichia coli on a large scale. Nine of these dsRNAs significantly reduced ASR severity (by 24.0% to 81.1%) and fungal biomass (50.5% to 83.1%) compared to the control when applied as a foliar spray in our growth chamber studies. Three of the most effective dsRNAs targeting an acyltransferase (ACE), cytochrome B (CYTB1) and a reductase (S12) also significantly reduced disease severity (78.2 to 82.3%) and fungal growth (79.8 to 85.4%) compared to the control in the greenhouse studies. Further investigation of the P. pachryrhizi urediniospore germination and hyphal growth in the presence of these dsRNAs in vitro revealed these dsRNAs reduced the spore germination rate from 72.1% to 0.0–26.6% at 4.5 h and hyphal growth from 254.0 µm to 2.7–40.5 µm at 9 h, with dsRNA targeting the S12 gene being the most effective. These results highlight the potential of SIGS using selected dsRNAs as a sustainable strategy for managing ASR through suppressing urediniospore germination and hyphal growth. Full article
(This article belongs to the Section Plant Protection and Biotic Interactions)
Show Figures

Figure 1

12 pages, 3279 KB  
Article
Regulation of Droplet Spreading Behavior by Superhydrophobic Meshes Under Fluid Penetration Phenomena
by Lijie Sun, Shuang Chen and Bo Li
Coatings 2026, 16(1), 126; https://doi.org/10.3390/coatings16010126 - 18 Jan 2026
Viewed by 93
Abstract
Droplet impact on porous mesh surfaces is a common phenomenon in fields such as thermal management systems, biomedical manufacturing, and precision agriculture. As a substrate with microstructures, the mesh surface allows liquid penetration upon droplet impact. The resulting loss of liquid mass significantly [...] Read more.
Droplet impact on porous mesh surfaces is a common phenomenon in fields such as thermal management systems, biomedical manufacturing, and precision agriculture. As a substrate with microstructures, the mesh surface allows liquid penetration upon droplet impact. The resulting loss of liquid mass significantly alters the impact dynamics of the residual droplet on the surface. This study experimentally compares the behavior of water droplets impacting superhydrophobic mesh surfaces with different pore sizes against that on smooth surfaces. It focuses on analyzing how liquid penetration affects parameters such as spreading time (ts), maximum spreading factor (βmax), contact time (tc), and droplet height (h). The results show that the substantial liquid loss induced by large-pore meshes directly leads to a marked decrease in spreading time and maximum spreading factor. Furthermore, the “pancake bouncing” phenomenon observed on the superhydrophobic mesh surfaces significantly shortens the contact time, providing a new perspective for minimizing the contact duration between droplets and solid surfaces. By establishing the correlation between pore size and droplet impact behavior, this study provides key structural design guidelines for applications such as advanced printing systems and efficient pesticide spraying, thereby achieving the goal of proactively regulating liquid dynamics through surface microstructure. Full article
(This article belongs to the Section Surface Characterization, Deposition and Modification)
Show Figures

Figure 1

27 pages, 7578 KB  
Article
Design and Experimental Testing of a Self-Propelled Overhead Rail Air-Assisted Sprayer for Greenhouse
by Zhidong Wu, Chuang Li, Wenxuan Zhang, Wusheng Song, Yubo Feng, Xinyu Li, Mingzhu Fu and Yuxiang Li
AgriEngineering 2026, 8(1), 32; https://doi.org/10.3390/agriengineering8010032 - 16 Jan 2026
Viewed by 190
Abstract
Greenhouse pesticide application often suffers from low droplet deposition uniformity and health risks to operators. A self-propelled overhead rail air-assisted sprayer has been designed. The mathematical model based on droplet movement and the DPM are used to analyze the equipment’s working principle. Deposition [...] Read more.
Greenhouse pesticide application often suffers from low droplet deposition uniformity and health risks to operators. A self-propelled overhead rail air-assisted sprayer has been designed. The mathematical model based on droplet movement and the DPM are used to analyze the equipment’s working principle. Deposition surfaces at 0.4, 0.5, 0.6, and 0.7 m were used to examine the effects of travel speed, external airflow, and spray angle on droplet deposition uniformity. Through one-way analysis of variance, all variables reached a significant level (p < 0.001). Simulation results identified the optimal operating parameters: travel speed of 0.3 m/s, external air-flow velocity of 0.3 m/s, and spray angle of 5°, resulting in droplet deposition densities of 719, 586, 700, and 839 droplets/cm2, with a coefficient of variation of 14.57%. The sediment variation coefficients of both the on-site test results and the simulation results were within 10%, which proved the reliability of the numerical simulation. In conclusion, the device proposed in this study effectively enables targeted fog spraying for multi-layer crops in greenhouses, significantly improving pesticide utilization, reducing application costs, and minimizing environmental pollution. It offers reliable technical support for greenhouse pest control operations. Full article
Show Figures

Figure 1

20 pages, 2354 KB  
Article
Combined Effects of Vegetable Oil-, Micronutrient-, and Activated Flavonoid-Based Biostimulants on Photosynthesis, Nematode Suppression, and Fruit Quality of Cucumber (Cucumis sativus L.)
by Georgia Ouzounidou, Niki-Sophia Antaraki, Antonios Anagnostou, George Daskas and Ioannis-Dimosthenis Adamakis
Plants 2026, 15(2), 274; https://doi.org/10.3390/plants15020274 - 16 Jan 2026
Viewed by 220
Abstract
The agricultural industry faces increasing environmental degradation due to the intensive use of conventional chemical fertilizers, leading to water pollution and alterations in soil composition. In addition, root-knot and cyst nematodes are major constraints to cucumber production, causing severe root damage and yield [...] Read more.
The agricultural industry faces increasing environmental degradation due to the intensive use of conventional chemical fertilizers, leading to water pollution and alterations in soil composition. In addition, root-knot and cyst nematodes are major constraints to cucumber production, causing severe root damage and yield losses worldwide, underscoring the need for sustainable alternatives to conventional fertilization and pest management. Under greenhouse conditions, a four-month cultivation trial evaluated vegetable oil-, micronutrient-, and activated flavonoid-based biostimulants, applying Key Eco Oil® (Miami, USA) via soil drench (every 15 days) combined with foliar sprays of CropBioLife® (Victoria, Australia) and KeyPlex 120® (Miami, USA) (every 7 days). Results showed reduced parasitic nematodes by 66% in soil and decreased gall formation by 41% in roots. Chlorophyll fluorescence and infrared gas analysis revealed higher oxygen-evolving complex efficiency (38%), increased PSII electron transport, improved the fluorescence decrease ratio, also known as the vitality index (Rfd), and higher CO2 assimilation compared to conventional treatments. Processed cucumbers showed higher sugar and nearly double ascorbic acid content, with improved flesh consistency and color. Therefore, the application of these bioactive products significantly reduced nematode infestation while enhancing plant growth and physiological performance, underscoring their potential as sustainable tools for crop cultivation and protection. These results provide evidence that sustainable bioactive biostimulants improve plant resilience, productivity, and nutritional quality, offering also an environmentally sound approach to pest management. Full article
(This article belongs to the Special Issue Plants 2025—from Seeds to Food Security)
Show Figures

Figure 1

Back to TopTop