Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (23)

Search Parameters:
Keywords = spot-size converter

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 4448 KiB  
Article
Research on Envelope Profile of Lithium Niobate on Insulator Stepped-Mode Spot Size Converter
by Jianfeng Bao, Dengcai Yang, Zhiyu Chen, Jingyuan Zhang and Feng Yang
Micromachines 2025, 16(1), 109; https://doi.org/10.3390/mi16010109 - 19 Jan 2025
Viewed by 1277
Abstract
To enhance the end-face coupling efficiency of lithium niobate on insulator (LNOI) chips, in conjunction with current device fabrication processes, a stepped spot size converter (SSC) based on a special outer envelope profile has been proposed and investigated. This stepped SSC can reduce [...] Read more.
To enhance the end-face coupling efficiency of lithium niobate on insulator (LNOI) chips, in conjunction with current device fabrication processes, a stepped spot size converter (SSC) based on a special outer envelope profile has been proposed and investigated. This stepped SSC can reduce the coupling loss between the LNOI waveguide and a normal single-mode optical fiber. First, the output waveguide of a mode converter was proposed and simulated, in which the mode field had the biggest overlapping integral factor with a single-mode fiber (MDF ≈ 9.8 μm). Then, a stepped LNOI waveguide, the basic structure of the mode converter, with three kinds of outer envelope profile, was proposed and analyzed. Through analysis of the impacts of different envelope profiles on mode spot conversion efficiency, the relationship between envelope profile and propagation efficiency was obtained. Additionally, the rule of LNOI stair height variation tendency and the pattern of mode spot conversion efficiency for the multi-step mode spot converter in LNOI were obtained. Ultimately, a stepped SSC with a COS-shaped envelope curve was adopted. When this stepped SSC is coupled to single-mode fiber with a mode-field diameter of 9.8 μm, the coupling efficiency of the TE mode was 95.35% at the wavelength of 1550 nm. Full article
(This article belongs to the Special Issue Optoelectronic Fusion Technology)
Show Figures

Figure 1

13 pages, 10236 KiB  
Article
Silicon Nitride Spot-Size Converter with Coupling Loss < 1.5 dB for Both Polarizations at 1W Optical Input
by Enge Zhang, Yu Zhang, Lei Zhang and Xu Yang
Photonics 2025, 12(1), 5; https://doi.org/10.3390/photonics12010005 - 24 Dec 2024
Cited by 1 | Viewed by 1375
Abstract
Microwave photonics (MWP) applications often require a high optical input power (>100 mW) to achieve an optimal signal-to-noise ratio (SNR). However, conventional silicon spot-size converters (SSCs) are susceptible to high optical power due to the two-photon absorption (TPA) effect. To overcome this, we [...] Read more.
Microwave photonics (MWP) applications often require a high optical input power (>100 mW) to achieve an optimal signal-to-noise ratio (SNR). However, conventional silicon spot-size converters (SSCs) are susceptible to high optical power due to the two-photon absorption (TPA) effect. To overcome this, we introduce a silicon nitride (SiN) SSC fabricated on a silicon-on-insulator (SOI) substrate. When coupled to a tapered fiber with a 4.5 μm mode field diameter (MFD), the device exhibits low coupling losses of <0.9 dB for TE modes and <1.4 dB for TM modes at relatively low optical input power. Even at a 1W input power, the additional loss is minimal, at approximately 0.1 dB. The versatility of the SSC is further demonstrated by its ability to efficiently couple to fibers with MFDs of 2.5 μm and 6.5 μm, maintaining coupling losses below 1.5 dB for both polarizations over the entire C-band. This adaptability to different mode diameters makes the SiN SSC a promising candidate for future electro-optic chiplets that integrate heterogeneous materials such as III-V for gain and lithium niobate for modulation with the SiN-on-SOI for all other functions using advanced packaging techniques. Full article
(This article belongs to the Special Issue Recent Advancement in Microwave Photonics)
Show Figures

Figure 1

23 pages, 10727 KiB  
Article
Enabling Intelligence on the Edge: Leveraging Edge Impulse to Deploy Multiple Deep Learning Models on Edge Devices for Tomato Leaf Disease Detection
by Dennis Agyemanh Nana Gookyi, Fortunatus Aabangbio Wulnye, Michael Wilson, Paul Danquah, Samuel Akwasi Danso and Awudu Amadu Gariba
AgriEngineering 2024, 6(4), 3563-3585; https://doi.org/10.3390/agriengineering6040203 - 29 Sep 2024
Cited by 1 | Viewed by 2987
Abstract
Tomato diseases, including Leaf blight, Leaf curl, Septoria leaf spot, and Verticillium wilt, are responsible for up to 50% of annual yield loss, significantly impacting global tomato production, valued at approximately USD 87 billion. In Ghana, there is a yield gap of about [...] Read more.
Tomato diseases, including Leaf blight, Leaf curl, Septoria leaf spot, and Verticillium wilt, are responsible for up to 50% of annual yield loss, significantly impacting global tomato production, valued at approximately USD 87 billion. In Ghana, there is a yield gap of about 50% in tomato production, which requires drastic measures to increase the yield of tomatoes. Conventional diagnostic methods are labor-intensive and impractical for real-time application, highlighting the need for innovative solutions. This study addresses these issues in Ghana by utilizing Edge Impulse to deploy multiple deep-learning models on a single mobile device, facilitating the rapid and precise detection of tomato leaf diseases in the field. This work compiled and rigorously prepared a comprehensive Ghanaian dataset of tomato leaf images, applying advanced preprocessing and augmentation techniques to enhance robustness. Using TensorFlow, we designed and optimized efficient convolutional neural network (CNN) architectures, including MobileNet, Inception, ShuffleNet, Squeezenet, EfficientNet, and a custom Deep Neural Network (DNN). The models were converted to TensorFlow Lite format and quantized to int8, substantially reducing the model size and improving inference speed. Deployment files were generated, and the Edge Impulse platform was configured to enable multiple model deployments on a mobile device. Performance evaluations across edge hardware provided metrics such as inference speed, accuracy, and resource utilization, demonstrating reliable real-time detection. EfficientNet achieved a high training accuracy of 97.12% with a compact 4.60 MB model size, proving its efficacy for mobile device deployment. In contrast, the custom DNN model is optimized for microcontroller unit (MCU) deployment. This edge artificial intelligence (AI) technology integration into agricultural practices offers scalable, cost-effective, and accessible solutions for disease classification, enhancing crop management, and supporting sustainable farming practices. Full article
(This article belongs to the Special Issue Implementation of Artificial Intelligence in Agriculture)
Show Figures

Figure 1

11 pages, 3662 KiB  
Article
A 2 μm Wavelength Band Low-Loss Spot Size Converter Based on Trident Structure on the SOI Platform
by Zhutian Wang, Chenxi Xu, Zhiming Shi, Nan Ye, Hairun Guo, Fufei Pang and Yingxiong Song
Micromachines 2024, 15(4), 530; https://doi.org/10.3390/mi15040530 - 15 Apr 2024
Viewed by 1818
Abstract
A 2 μm wavelength band spot size converter (SSC) based on a trident structure is proposed, which is coupled to a lensed fiber with a mode field diameter of 5 μm. The cross-section of the first segment of the tapered waveguide structure in [...] Read more.
A 2 μm wavelength band spot size converter (SSC) based on a trident structure is proposed, which is coupled to a lensed fiber with a mode field diameter of 5 μm. The cross-section of the first segment of the tapered waveguide structure in the trident structure is designed as a right-angled trapezoidal shape, which can further improve the performance of the SSC. The coupling loss of the SSC is less than 0.9 dB in the wavelength range of 1.95~2.05 μm simulated by FDTD. According to the experimental results, the lowest coupling loss of the SSC is 1.425 dB/facet at 2 μm, which is close to the simulation result. The device is compatible with the CMOS process and can provide a good reference for the development of 2 μm wavelength band integrated photonics. Full article
(This article belongs to the Special Issue Silicon Photonic Devices and Integration)
Show Figures

Figure 1

20 pages, 2677 KiB  
Article
Analysis of Fine Fault Electrothermal Characteristics of Converter Transformer Reduced-Scale Model
by Xiu Zhou, Yan Luo, Lin Zhu, Jin Bai, Tian Tian, Bo Liu, Yuhua Xu and Wenliang Zhao
Energies 2024, 17(5), 1047; https://doi.org/10.3390/en17051047 - 22 Feb 2024
Viewed by 1147
Abstract
Converter transformer is the key equipment in UHVDC transmission. If a local overheating fault occurs, it will inevitably form a local hot spot on the core, winding or other structural parts. Among these faults, multipoint grounding and interlaminar short circuit faults account for [...] Read more.
Converter transformer is the key equipment in UHVDC transmission. If a local overheating fault occurs, it will inevitably form a local hot spot on the core, winding or other structural parts. Among these faults, multipoint grounding and interlaminar short circuit faults account for 30–50% of core accidents. The continuous overheating of 150–250 °C will cause ablation on the silicon steel sheet, which will destroy the insulation material and reduce the insulation performance. In severe cases, it will cause thermal expansion, resulting in local deformation or displacement of the core. Considering the scale of size and temperature parameters, the scale model of converter transformer is established based on the principle of constant magnetic flux density. By using the homogenization theory, the scaled model under multipoint grounding and interlaminar short circuit fault is simulated by electromagnetic heat. First, the single-phase four-column model of the core is established according to the scaled principle, and the core is refined. Secondly, taking the refined model as the research object, the magnetic thermal coupling simulation and analysis are carried out under multi-point grounding and interlaminar short circuit fault, and the magnetic density, eddy current loss and temperature distribution on each lamination are obtained. Finally, the correctness of the simulation is verified by the one-dimensional eddy current loss analytical equation, which provides a reference for the local overheating problem of converter transformers. Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Figure 1

21 pages, 5914 KiB  
Article
Molecular Mapping of Putative Genomic Regions Controlling Fruit and Seed Morphology of Watermelon
by Tiantian Yang, Sikandar Amanullah, Shenglong Li, Rui Cheng, Chen Zhang, Zhengxiang Zhao, Hongyu Liu, Feishi Luan and Xuezheng Wang
Int. J. Mol. Sci. 2023, 24(21), 15755; https://doi.org/10.3390/ijms242115755 - 30 Oct 2023
Cited by 5 | Viewed by 2123
Abstract
The genetic regulatory basis of qualitative and quantitative phenotypes of watermelon is being investigated in different types of molecular and genetic breeding studies around the world. In this study, biparental F2 mapping populations were developed over two experimental years, and the collected [...] Read more.
The genetic regulatory basis of qualitative and quantitative phenotypes of watermelon is being investigated in different types of molecular and genetic breeding studies around the world. In this study, biparental F2 mapping populations were developed over two experimental years, and the collected datasets of fruit and seed traits exhibited highly significant correlations. Whole-genome resequencing of comparative parental lines was performed and detected single nucleotide polymorphism (SNP) loci were converted into cleaved amplified polymorphic sequence (CAPS) markers. The screened polymorphic markers were genotyped in segregating populations and two genetic linkage maps were constructed, which covered a total of 2834.28 and 2721.45 centimorgan (cM) genetic lengths, respectively. A total of 22 quantitative trait loci (QTLs) for seven phenotypic traits were mapped; among them, five stable and major-effect QTLs (PC-8-1, SL-9-1, SWi-9-1, SSi-9-1, and SW-6-1) and four minor-effect QTLs (PC-2-1 and PC-2-2; PT-2-1 and PT-2-2; SL-6-1 and SSi-6-2; and SWi-6-1 and SWi-6-2) were observed with 3.77–38.98% PVE. The adjacent QTL markers showed a good fit marker-trait association, and a significant allele-specific contribution was also noticed for genetic inheritance of traits. Further, a total of four candidate genes (Cla97C09G179150, Cla97C09G179350, Cla97C09G180040, and Cla97C09G180100) were spotted in the stable colocalized QTLs of seed size linked traits (SL-9-1 and SWi-9-1) that showed non-synonymous type mutations. The gene expression trends indicated that the seed morphology had been formed in the early developmental stage and showed the genetic regulation of seed shape formation. Hence, we think that our identified QTLs and genes would provide powerful genetic insights for marker-assisted breeding aimed at improving the quality traits of watermelon. Full article
(This article belongs to the Special Issue Melon Breeding and Molecular Research)
Show Figures

Figure 1

23 pages, 10144 KiB  
Article
LBS Tag Cloud: A Centralized Tag Cloud for Visualization of Points of Interest in Location-Based Services
by Xiaoqiang Cheng, Zhongyu Liu, Huayi Wu and Haibo Xiao
ISPRS Int. J. Geo-Inf. 2023, 12(9), 360; https://doi.org/10.3390/ijgi12090360 - 1 Sep 2023
Cited by 1 | Viewed by 2994
Abstract
Taking location-based service (LBS) as the research scenario and aiming at the limitation of visualizing LBS points of interest (POI) in conventional web maps, this article proposes a visualization method of LBS-POI based on tag cloud, which is called “LBS tag cloud”. In [...] Read more.
Taking location-based service (LBS) as the research scenario and aiming at the limitation of visualizing LBS points of interest (POI) in conventional web maps, this article proposes a visualization method of LBS-POI based on tag cloud, which is called “LBS tag cloud”. In this method, the user location is taken as the layout center, and the name of the POI is converted into a text tag and then placed around the center. The tags’ size, color, and placement location are calculated based on other attributes of the POI. The calculation of placement location is at the core of the LBS tag cloud. Firstly, the tag’s initial placement position and layout priority are calculated based on polar coordinates, and the tags are placed in the initial placement position in the order of layout priority. Then, based on the force-directed model, a repulsive force is applied to the tag from the layout center to make it move to a position without overlapping with other tags. During the move, the quadtree partition of the text glyph is used to optimize the detection of overlaps between tags. Taking scenic spots as an example, the experimental results show that the LBS tag cloud can present the attributes and distribution of POIs completely and intuitively and can effectively represent the relationship between the POIs and user location, which is a new visualization form suitable for spatial cognition. Full article
Show Figures

Figure 1

11 pages, 8024 KiB  
Article
The Low-Loss Spot Size Converter for Alignment with Cleaved Single Mode Fiber
by Jinyang Zhao, Zhutian Wang, Nan Ye, Fufei Pang and Yingxiong Song
Appl. Sci. 2023, 13(14), 8157; https://doi.org/10.3390/app13148157 - 13 Jul 2023
Cited by 3 | Viewed by 2777
Abstract
Integrating the graded index (GRIN) waveguide with the 2-D inversely-tapered waveguide, a new design of spot size converter (SSC) has been proposed to couple the light beam between the cleaved single-mode fiber (SMF) and the silicon (Si) wire waveguide on the silicon-on-insulator (SOI) [...] Read more.
Integrating the graded index (GRIN) waveguide with the 2-D inversely-tapered waveguide, a new design of spot size converter (SSC) has been proposed to couple the light beam between the cleaved single-mode fiber (SMF) and the silicon (Si) wire waveguide on the silicon-on-insulator (SOI) platform. The device demonstrates a low coupling loss of 0.27 dB when it is coupled to a cleaved SMF. The polarization-dependent loss (PDL) is less than 0.25 dB, and the 1-dB alignment tolerance is about −2.0~2.0 µm for both vertical and horizontal directions. At the same time, the starting tip width of the tapered waveguide is kept at the level of the lithography limitation at the current commercial silicon photonics fab. This integrated SSC could be an improved design for reducing the coupling loss between the cleaved SMF and the Si waveguide. Full article
Show Figures

Figure 1

24 pages, 4673 KiB  
Article
Production and Characterization of ACE Inhibitory and Anti-Diabetic Peptides from Buffalo and Camel Milk Fermented with Lactobacillus and Yeast: A Comparative Analysis with In Vitro, In Silico, and Molecular Interaction Study
by Ruchita Khakhariya, Bethsheba Basaiawmoit, Amar A. Sakure, Ruchika Maurya, Mahendra Bishnoi, Kanthi Kiran Kondepudi, Srichandan Padhi, Amit Kumar Rai, Zhenbin Liu and Subrota Hati
Foods 2023, 12(10), 2006; https://doi.org/10.3390/foods12102006 - 15 May 2023
Cited by 21 | Viewed by 3801
Abstract
The investigation aimed at assessing a comparative study on the production and characterization of ACE inhibitory, anti-diabetic, and anti-inflammatory activities, along with the production of ACE inhibitory and anti-diabetic peptides through the fermentation of buffalo and camel milk by Limosilactobacillus fermentum (KGL4) and [...] Read more.
The investigation aimed at assessing a comparative study on the production and characterization of ACE inhibitory, anti-diabetic, and anti-inflammatory activities, along with the production of ACE inhibitory and anti-diabetic peptides through the fermentation of buffalo and camel milk by Limosilactobacillus fermentum (KGL4) and Saccharomyces cerevisiae (WBS2A). The angiotensin-converting enzyme (ACE) inhibitory and anti-diabetic properties were evaluated at particular time intervals (12, 24, 36, and 48 h) at 37 °C, and we discovered maximum activity at 37 °C after 48 h of incubation. The maximum ACE inhibitory, lipase inhibitory activities, alpha-glucosidase inhibitory, and alpha-amylase inhibitory activities were found in the fermented camel milk (77.96 ± 2.61, 73.85 ± 1.19, 85.37 ± 2.15, and 70.86 ± 1.02), as compared to the fermented buffalo milk (FBM) (75.25 ± 1.72, 61.79 ± 2.14, 80.09 ± 0.51, and 67.29 ± 1.75). Proteolytic activity was measured with different inoculation rates (1.5%, 2.0%, and 2.5%) and incubation times (12, 24, 36, and 48 h) to optimize the growth conditions. Maximum proteolysis was found at a 2.5% inoculation rate and at a 48 h incubation period in both fermented buffalo (9.14 ± 0.06) and camel milk (9.10 ± 0.17). SDS-PAGE and 2D gel electrophoresis were conducted for protein purification. The camel and buffalo milk that had not been fermented revealed protein bands ranging from 10 to 100 kDa and 10 to 75 kDa, respectively, whereas all the fermented samples showed bands ranging from 10 to 75 kDa. There were no visible protein bands in the permeates on SDS-PAGE. When fermented buffalo and camel milk were electrophoresed in 2D gel, 15 and 20 protein spots were detected, respectively. The protein spots in the 2D gel electrophoresis ranged in size from 20 to 75 kDa. To distinguish between different peptide fractions, water-soluble extract (WSE) fractions of ultrafiltration (3 and 10 kDa retentate and permeate) of fermented camel and buffalo milk were employed in RP-HPLC (reversed-phase high-performance liquid chromatography). The impact of fermented buffalo and camel milk on inflammation induced by LPS (lipopolysaccharide) was also investigated in the RAW 264.7 cell line. Novel peptide sequences with ACE inhibitory and anti-diabetic properties were also analyzed on the anti-hypertensive database (AHTDB) and bioactive peptide (BIOPEP) database. We found the sequences SCQAQPTTMTR, EMPFPK, TTMPLW, HPHPHLSFMAIPPK, FFNDKIAK, ALPMHIR, IPAVFK, LDQWLCEK, and AVPYPQR from the fermented buffalo milk and the sequences TDVMPQWW, EKTFLLYSCPHR, SSHPYLEQLY, IDSGLYLGSNYITAIR, and FDEFLSQSCAPGSDPR from the fermented camel milk. Full article
(This article belongs to the Section Food Physics and (Bio)Chemistry)
Show Figures

Figure 1

9 pages, 4562 KiB  
Communication
A Theoretical Sub-0.1 dB Loss Single Mode Fiber-To-Chip Edge Coupler for Silicon Nitride Waveguides
by Di Wu, Wei Yan, Yucong Yang, Xiaoyi Song, Zixuan Wei, Jun Qin, Longjiang Deng and Lei Bi
Photonics 2023, 10(3), 231; https://doi.org/10.3390/photonics10030231 - 21 Feb 2023
Cited by 7 | Viewed by 5353
Abstract
A low loss optical interconnection between optical fibers and photonic integrated circuits is critical for high performance photonic systems. In the past decade, spot size converters, subwavelength waveguide grating (SWG) structures, and different refractive index materials have been applied to allow efficient coupling [...] Read more.
A low loss optical interconnection between optical fibers and photonic integrated circuits is critical for high performance photonic systems. In the past decade, spot size converters, subwavelength waveguide grating (SWG) structures, and different refractive index materials have been applied to allow efficient coupling between the fiber and the photonic chips. However, it is still challenging to achieve low-loss coupling when interfacing high index contrast waveguides such as SiN with SMF-28 fibers. In this work, we report a multilayer edge-coupler using SiOxN materials with different indices to allow for efficient edge coupling between SMF-28 fiber and SiN single mode waveguides. A coupling loss of 0.068 dB for the TM mode was achieved theoretically at a 1550 nm wavelength, with a 1 dB alignment tolerance offset of 2.4 μm. Full article
(This article belongs to the Section Optoelectronics and Optical Materials)
Show Figures

Figure 1

11 pages, 2814 KiB  
Communication
Theoretical Analysis of Continuous-Wave Mid-Infrared Optical Vortex Source Generated by Singly Resonant Optical Parametric Oscillator
by Ziheng Zhou, Shirui Zhang, Yuanhao Duan, Minghao Guo and Peng Li
Photonics 2022, 9(12), 1002; https://doi.org/10.3390/photonics9121002 - 19 Dec 2022
Cited by 1 | Viewed by 2105
Abstract
Due to the important application in the study of vibrational circular dichroism and helical dichroism of chiral molecules, the tunable vortex beam at mid-infrared region has attracted increasing attention. Based on orbital angular momentum (OAM) conservation in nonlinear interactions, the vortex pumped singly [...] Read more.
Due to the important application in the study of vibrational circular dichroism and helical dichroism of chiral molecules, the tunable vortex beam at mid-infrared region has attracted increasing attention. Based on orbital angular momentum (OAM) conservation in nonlinear interactions, the vortex pumped singly resonant optical parametric oscillator (SRO) is recognized as a versatile source of coherent vortex radiation providing high power and broad wavelength coverage from a single device. However, the low parametric gain and high oscillation threshold under continuous wave (cw) pumping has so far been the most challenging factor in generating cw tunable vortex beams. To predict the output characteristic of vortex pumped SRO, a theoretical model describing the vortex pumped SRO is needed. In this study, the theoretical model describing the vortex pumped SRO is set up under collimated Gaussian beam approximation. Output characteristics of different SROs are simulated numerically. By proper selection of pump scheme (such as double-pass pumping scheme), the vortex pumped mid-infrared SRO can oscillate at a relatively low pump power. By controlling the gain (mode overlap ratio between the pump and resonant wave in the nonlinear crystal) and loss (employing a spot-defect mirror with different defect size as the output coupler) of the resonant signal mode in the SRO, the OAM of the pump beam can be directionally transferred to a specific down converted beam. The transfer mechanism of the OAM among the pump light and the down-converted beams and factors affecting the transfer are studied. Our study provides the guidelines for the design and optimization of vortex pumped SRO under cw operation. Full article
(This article belongs to the Special Issue Vortex Beams: Fundamentals and Applications)
Show Figures

Figure 1

9 pages, 5386 KiB  
Article
Manufacture of Three-Dimensional Optofluidic Spot-Size Converters in Fused Silica Using Hybrid Laser Microfabrication
by Jianping Yu, Jian Xu, Aodong Zhang, Yunpeng Song, Jia Qi, Qiaonan Dong, Jianfang Chen, Zhaoxiang Liu, Wei Chen and Ya Cheng
Sensors 2022, 22(23), 9449; https://doi.org/10.3390/s22239449 - 2 Dec 2022
Cited by 12 | Viewed by 2749
Abstract
We propose a hybrid laser microfabrication approach for the manufacture of three-dimensional (3D) optofluidic spot-size converters in fused silica glass by a combination of femtosecond (fs) laser microfabrication and carbon dioxide laser irradiation. Spatially shaped fs laser-assisted chemical etching was first performed to [...] Read more.
We propose a hybrid laser microfabrication approach for the manufacture of three-dimensional (3D) optofluidic spot-size converters in fused silica glass by a combination of femtosecond (fs) laser microfabrication and carbon dioxide laser irradiation. Spatially shaped fs laser-assisted chemical etching was first performed to form 3D hollow microchannels in glass, which were composed of embedded straight channels, tapered channels, and vertical channels connected to the glass surface. Then, carbon dioxide laser-induced thermal reflow was carried out for the internal polishing of the whole microchannels and sealing parts of the vertical channels. Finally, 3D optofluidic spot-size converters (SSC) were formed by filling a liquid-core waveguide solution into laser-polished microchannels. With a fabricated SSC structure, the mode spot size of the optofluidic waveguide was expanded from ~8 μm to ~23 μm with a conversion efficiency of ~84.1%. Further measurement of the waveguide-to-waveguide coupling devices in the glass showed that the total insertion loss of two symmetric SSC structures through two ~50 μm-diameter coupling ports was ~6.73 dB at 1310 nm, which was only about half that of non-SSC structures with diameters of ~9 μm at the same coupling distance. The proposed approach holds great potential for developing novel 3D fluid-based photonic devices for mode conversion, optical manipulation, and lab-on-a-chip sensing. Full article
(This article belongs to the Special Issue Feature Papers in Optical Sensors 2022)
Show Figures

Figure 1

8 pages, 2028 KiB  
Article
Dielectric Metalens for Superoscillatory Focusing Based on High-Order Angular Bessel Function
by Yu Li, Xinhao Fan, Yunfeng Huang, Xuyue Guo, Liang Zhou, Peng Li and Jianlin Zhao
Nanomaterials 2022, 12(19), 3485; https://doi.org/10.3390/nano12193485 - 5 Oct 2022
Cited by 3 | Viewed by 2325
Abstract
The phenomenon of optical superoscillation provides an unprecedented way to solve the problem of optical far-field label-free super-resolution imaging. Numerous optical devices that enable superoscillatory focusing were developed based on scalar and vector diffraction theories in the past several years. However, these reported [...] Read more.
The phenomenon of optical superoscillation provides an unprecedented way to solve the problem of optical far-field label-free super-resolution imaging. Numerous optical devices that enable superoscillatory focusing were developed based on scalar and vector diffraction theories in the past several years. However, these reported devices are designed according to the half-wave zone method in spatial coordinates. In this paper, we propose a dielectric metalens for superoscillatory focusing based on the diffraction of angular Bessel functional phase modulated vector field, under the inspiration of the tightly autofocusing property of a radially polarized high-order Bessel beam. Based on this kind of metalens with a numerical aperture (NA) of 0.9, the linearly polarized light is converted into a radially polarized one and then focus into a superoscillating focal spot with the size of 0.32λ/NA. This angular spectrum modulation theory involved in this paper provides a different way of designing superoscillatory devices. Full article
(This article belongs to the Special Issue Metasurfaces for Photonic Devices: Theory and Applications)
Show Figures

Figure 1

10 pages, 2384 KiB  
Article
Wavelength-Dependent Nonlinear Absorption in Platinum Nanoparticles at Off-Resonant Wavelength
by Chunyu Chen, Yachen Gao, Jijuan Jiang and Jing Han
Photonics 2022, 9(8), 545; https://doi.org/10.3390/photonics9080545 - 3 Aug 2022
Cited by 2 | Viewed by 2112
Abstract
In order to obtain optical nonlinear materials with high transparency and low propagation loss in the visible and infrared range, noble metal materials in the off-resonant band have become a hot spot in the optical field in recent years. Therefore, the nonlinear absorption [...] Read more.
In order to obtain optical nonlinear materials with high transparency and low propagation loss in the visible and infrared range, noble metal materials in the off-resonant band have become a hot spot in the optical field in recent years. Therefore, the nonlinear absorption characteristics of platinum nanoparticles (PtNPs) with the surface plasmon resonance (SPR) in the ultraviolet band were investigated with multi-wavelength (500–700 nm) nanosecond Z-scan technology. The measurement results showed that the SPR wavelength of PtNPs was far away from the excitation wavelength, but there were still the saturated absorption (SA) and the reverse saturated absorption (RSA) phenomena, and the size of nonlinear absorption was related to the excitation wavelength and the excitation energy. When the excitation wavelength was constant, with the increase in excitation energy, PtNPs converted from SA to RSA. When the excitation energy was constant, with the excitation wavelength approaching SPR, PtNPs also converted from SA to RSA. The SA and RSA phenomena in the off-resonant region were complementary to the systematic study of the nonlinearity of PtNPs. Full article
(This article belongs to the Section Optoelectronics and Optical Materials)
Show Figures

Figure 1

21 pages, 4226 KiB  
Article
Optimal Size of a Smart Ultra-Fast Charging Station
by Carola Leone, Michela Longo and Luis M. Fernández-Ramírez
Electronics 2021, 10(23), 2887; https://doi.org/10.3390/electronics10232887 - 23 Nov 2021
Cited by 14 | Viewed by 3653
Abstract
An ever-increasing penetration of electric vehicles (EVs) on the roads inevitably leads to an ever-stringent need for an adequate charging infrastructure. The emerging ultra-fast charging (UFC) technology has the potential to provide a refueling experience similar to that of gasoline vehicles; hence, it [...] Read more.
An ever-increasing penetration of electric vehicles (EVs) on the roads inevitably leads to an ever-stringent need for an adequate charging infrastructure. The emerging ultra-fast charging (UFC) technology has the potential to provide a refueling experience similar to that of gasoline vehicles; hence, it has a key role in enabling the adoption of EVs for medium-long distance travels. From the perspective of the UFC station, the differences existing in the EVs currently on the market make the sizing problem more challenging. A suitably conceived charging strategy can help to address these concerns. In this paper, we present a smart charging station concept that, through a modular DC/DC stage design, allows the split of the output power among the different charging ports. We model the issue of finding the optimal charging station as a single-objective optimization problem, where the goal is to find the number of modular shared DC/DC converters, and where the power rate of each module ensures the minimum charging time and charging cost. Simulation results show that the proposed solution could significantly reduce the required installed power. In particular, they prove that with an installed power of 800 kW it is possible to satisfy the needs of a UFC station composed of 10 charging spots. Full article
(This article belongs to the Special Issue Electric Vehicle Charging: Technologies and Issues)
Show Figures

Figure 1

Back to TopTop