Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (190)

Search Parameters:
Keywords = sporadic Alzheimer’s disease

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 2128 KiB  
Article
Central Insulin-Like Growth Factor-1-Induced Anxiolytic and Antidepressant Effects in a Rat Model of Sporadic Alzheimer’s Disease Are Associated with the Peripheral Suppression of Inflammation
by Joanna Dunacka, Beata Grembecka and Danuta Wrona
Cells 2025, 14(15), 1189; https://doi.org/10.3390/cells14151189 - 1 Aug 2025
Viewed by 294
Abstract
(1) Insulin-like growth factor-1 (IGF-1) is a neurotrophin with anti-inflammatory properties. Neuroinflammation and stress activate peripheral immune mechanisms, which may contribute to the development of depression and anxiety in sporadic Alzheimer’s disease (sAD). This study aims to evaluate whether intracerebroventricular (ICV) premedication with [...] Read more.
(1) Insulin-like growth factor-1 (IGF-1) is a neurotrophin with anti-inflammatory properties. Neuroinflammation and stress activate peripheral immune mechanisms, which may contribute to the development of depression and anxiety in sporadic Alzheimer’s disease (sAD). This study aims to evaluate whether intracerebroventricular (ICV) premedication with IGF-1 in a rat model of streptozotocin (STZ)-induced neuroinflammation can prevent the emergence of anhedonia and anxiety-like behavior by impacting the peripheral inflammatory responses. (2) Male Wistar rats were subjected to double ICVSTZ (total dose: 3 mg/kg) and ICVIGF-1 injections (total dose: 2 µg). We analyzed the level of anhedonia (sucrose preference), anxiety (elevated plus maze), peripheral inflammation (hematological and cytometric measurement of leukocyte populations, interleukin (IL)-6), and corticosterone concentration at 7 (very early stage, VES), 45 (early stage, ES), and 90 days after STZ injections (late stage, LS). (3) We found that ICVIGF-1 administration reduces behavioral symptoms: anhedonia (ES and LS) and anxiety (VES, ES), and peripheral inflammation: number of leukocytes, lymphocytes, T lymphocytes, monocytes, granulocytes, IL-6, and corticosterone concentration (LS) in the rat model of sAD. (4) The obtained results demonstrate beneficial effects of central IGF-1 administration on neuropsychiatric symptoms and peripheral immune system activation during disease progression in the rat model of sAD. Full article
(This article belongs to the Section Cells of the Nervous System)
Show Figures

Figure 1

14 pages, 1261 KiB  
Article
Probability and Neurodegeneration: Alzheimer’s Disease and Huntington’s Disease
by Peter K. Panegyres
Brain Sci. 2025, 15(8), 814; https://doi.org/10.3390/brainsci15080814 - 29 Jul 2025
Viewed by 300
Abstract
Background: The mechanisms by which sporadic young-onset neurodegenerative processes develop are uncertain. Methods: We have previously proposed that stochastic processes involving sequence changes at a DNA, RNA, or protein level in critical genes and proteins might be important to this process. Further investigation [...] Read more.
Background: The mechanisms by which sporadic young-onset neurodegenerative processes develop are uncertain. Methods: We have previously proposed that stochastic processes involving sequence changes at a DNA, RNA, or protein level in critical genes and proteins might be important to this process. Further investigation points to the contribution of probabilistic states in other factors involved in neurodegenerative conditions, such as—in the case of young onset Alzheimer’s disease—head injury, apolipoprotein ε4 alleles and other elements that, by the interaction of conditional probabilities in these variables, influence the evolution of neurodegenerative conditions. Results: This proposal might help to explain why some autosomal dominant neurodegenerative conditions, such as trinucleotide repeat disorder (Huntington’s disease), might have variable ages of onset given the same disease-causing CAG repeat mutation length. Conclusions: The detection of somatic mutations in single brain cells provides some experimental support for these emerging concepts. Full article
(This article belongs to the Section Neurodegenerative Diseases)
Show Figures

Figure 1

33 pages, 8117 KiB  
Article
Induced Microglial-like Cells Derived from Familial and Sporadic Alzheimer’s Disease Peripheral Blood Monocytes Show Abnormal Phagocytosis and Inflammatory Response to PSEN1 E280A Cholinergic-like Neurons
by Viviana Soto-Mercado, Miguel Mendivil-Perez, Carlos Velez-Pardo and Marlene Jimenez-Del-Rio
Int. J. Mol. Sci. 2025, 26(15), 7162; https://doi.org/10.3390/ijms26157162 - 24 Jul 2025
Viewed by 410
Abstract
In familial Alzheimer’s disease (FAD), presenilin 1 (PSEN1) E280A cholinergic-like neurons (ChLNs) induce aberrant secretion of extracellular amyloid beta (eAβ). How PSEN1 E280A ChLNs-eAβ affects microglial activity is still unknown. We obtained induced microglia-like cells (iMG) from human peripheral blood cells (hPBCs) in [...] Read more.
In familial Alzheimer’s disease (FAD), presenilin 1 (PSEN1) E280A cholinergic-like neurons (ChLNs) induce aberrant secretion of extracellular amyloid beta (eAβ). How PSEN1 E280A ChLNs-eAβ affects microglial activity is still unknown. We obtained induced microglia-like cells (iMG) from human peripheral blood cells (hPBCs) in a 15-day differentiation process to investigate the effect of bolus addition of Aβ42, PSEN1 E280A cholinergic-like neuron (ChLN)-derived culture supernatants, and PSEN1 E280A ChLNs on wild type (WT) iMG, PSEN1 E280A iMG, and sporadic Alzheimer’s disease (SAD) iMG. We found that WT iMG cells, when challenged with non-cellular (e.g., lipopolysaccharide, LPS) or cellular (e.g., Aβ42, PSEN1 E280A ChLN-derived culture supernatants) microenvironments, closely resemble primary human microglia in terms of morphology (resembling an “amoeboid-like phenotype”), expression of surface markers (Ionized calcium-binding adapter molecule 1, IBA-1; transmembrane protein 119, TMEM119), phagocytic ability (high pHrodo™ Red E. coli BioParticles™ phagocytic activity), immune metabolism (i.e., high generation of reactive oxygen species, ROS), increase in mitochondrial membrane potential (ΔΨm), response to ATP-induced transient intracellular Ca2+ influx, cell polarization (cluster of differentiation 68 (CD68)/CD206 ratio: M1 phenotype), cell migration activity according to the scratch wound assay, and especially in their inflammatory response (secretion of cytokine interleukin-6, IL-6; Tumor necrosis factor alpha, TNF-α). We also found that PSEN1 E280A and SAD iMG are physiologically unresponsive to ATP-induced Ca2+ influx, have reduced phagocytic activity, and diminished expression of Triggering Receptor Expressed on Myeloid Cells 2 (TREM2) protein, but when co-cultured with PSEN1 E280A ChLNs, iMG shows an increase in pro-inflammatory phenotype (M1) and secretes high levels of cytokines IL-6 and TNF-α. As a result, PSEN1 E280A and SAD iMG induce apoptosis in PSEN1 E280A ChLNs as evidenced by abnormal phosphorylation of protein TAU at residue T205 and cleaved caspase 3 (CC3). Taken together, these results suggest that PSEN1 E280A ChLNs initiate a vicious cycle between damaged neurons and M1 phenotype microglia, resulting in excessive ChLN death. Our findings provide a suitable platform for the exploration of novel therapeutic approaches for the fight against FAD. Full article
(This article belongs to the Special Issue Role of Glia in Human Health and Disease)
Show Figures

Figure 1

28 pages, 1969 KiB  
Review
Clinical Management of Cerebral Amyloid Angiopathy
by Aikaterini Theodorou, Stella Fanouraki, Eleni Bakola, Georgia Papagiannopoulou, Lina Palaiodimou, Maria Chondrogianni, Maria-Ioanna Stefanou, Lampis Stavrinou, Athanasia Athanasaki, Klearchos Psychogios, Odysseas Kargiotis, Apostolos Safouris, Georgios Velonakis, Georgios P. Paraskevas and Georgios Tsivgoulis
J. Clin. Med. 2025, 14(12), 4259; https://doi.org/10.3390/jcm14124259 - 15 Jun 2025
Viewed by 4992
Abstract
Background: Cerebral amyloid angiopathy (CAA) represents a progressive cerebrovascular disorder, characterized by aberrant accumulation of beta-amyloid isoforms in cortical and leptomeningeal vessel walls of cerebrum and cerebellum. Methods: We sought to investigate the clinical manifestations, current different diagnostic tools, various therapeutic strategies and [...] Read more.
Background: Cerebral amyloid angiopathy (CAA) represents a progressive cerebrovascular disorder, characterized by aberrant accumulation of beta-amyloid isoforms in cortical and leptomeningeal vessel walls of cerebrum and cerebellum. Methods: We sought to investigate the clinical manifestations, current different diagnostic tools, various therapeutic strategies and most uncommon subtypes of the disease. Results: The vast majority of CAA remains sporadic, with increasing prevalence with age and very frequent coexistence with Alzheimer’s disease. Clinically, CAA can present with spontaneous lobar intracerebral hemorrhage, transient focal neurologic episodes attributed to convexity subarachnoid hemorrhage or cortical superficial siderosis, and progressive cognitive decline leading to dementia. Inflammatory CAA subtype should be recognized early and treated promptly so that better functional outcomes may be achieved. Moreover, genetic and iatrogenic CAA forms are rare, yet increasingly recognized during the last years. Therapeutic management remains challenging for clinicians, especially when markers indicative of higher bleeding risk are present. A targeted therapy does not currently exist. However, various clinical trials are in progress, focusing on offering new promising insights into the disease treatment. Conclusions: This review aims to deepen our understanding of CAA diagnosis and therapeutic approach but also summarizes current evidence on the most uncommon subtypes of this cerebral small-vessel disease. Full article
(This article belongs to the Section Clinical Neurology)
Show Figures

Figure 1

51 pages, 2325 KiB  
Review
Beyond Transgenic Mice: Emerging Models and Translational Strategies in Alzheimer’s Disease
by Paula Alexandra Lopes and José L. Guil-Guerrero
Int. J. Mol. Sci. 2025, 26(12), 5541; https://doi.org/10.3390/ijms26125541 - 10 Jun 2025
Viewed by 952
Abstract
Alzheimer’s disease (AD) is a leading cause of dementia and a growing public health concern worldwide. Despite decades of research, effective disease-modifying treatments remain elusive, partly due to limitations in current experimental models. The purpose of this review is to critically assess and [...] Read more.
Alzheimer’s disease (AD) is a leading cause of dementia and a growing public health concern worldwide. Despite decades of research, effective disease-modifying treatments remain elusive, partly due to limitations in current experimental models. The purpose of this review is to critically assess and compare existing murine and alternative models of AD to identify key strengths, limitations, and future directions for model development that can enhance translational relevance and therapeutic discovery. Traditional transgenic mouse models have advanced the understanding of amyloid-beta and tau pathologies, but often fail to capture the complexity of sporadic, late-onset AD. In response, alternative models—including zebrafish, Drosophila melanogaster, Caenorhabditis elegans, non-human primates, and human brain organoids—are gaining traction due to their complementary insights and diverse experimental advantages. This review also discusses innovations in genetic engineering, neuroimaging, computational modelling, and drug repurposing that are reshaping the landscape of AD research. By integrating these diverse approaches, the review advocates for a multi-model, multidisciplinary strategy to improve the predictive power, accelerate clinical translation, and inform personalised therapeutic interventions. Ethical considerations and equitable access to diagnostics and emerging treatments are also emphasised. Ultimately, this work aims to support the development of more accurate, effective, and human-relevant models to combat AD. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

16 pages, 1742 KiB  
Article
The Retinal Dopaminergic Circuit as a Biomarker for Huntington’s and Alzheimer’s Diseases
by Pedro Blanco-Hernán, Lorena Aguado, María José Asensio, Ana Gómez-Soria, Pedro de la Villa, María José Casarejos and Alicia Mansilla
Int. J. Mol. Sci. 2025, 26(12), 5532; https://doi.org/10.3390/ijms26125532 - 10 Jun 2025
Viewed by 621
Abstract
Retinal dysfunction is emerging as a potential early marker of neurodegenerative diseases. Within the retina, the dopaminergic circuit, comprising dopaminergic amacrine cells, dopamine synthesis and turnover, and dopamine receptor signalling, is essential for visual processing, particularly colour contrast perception. Disruption of this circuit [...] Read more.
Retinal dysfunction is emerging as a potential early marker of neurodegenerative diseases. Within the retina, the dopaminergic circuit, comprising dopaminergic amacrine cells, dopamine synthesis and turnover, and dopamine receptor signalling, is essential for visual processing, particularly colour contrast perception. Disruption of this circuit may underline early retinal alterations observed in Huntington’s disease (HD) and Alzheimer’s disease (AD). In this study, we systematically analysed retinal dopaminergic dysfunction in murine models of HD (genetic origin) and AD (sporadic), across different disease stages. We assessed dopamine levels, turnover, tyrosine hydroxylase expression, D1 and D2 receptor gene expression, and neurotransmitter balance. HD mice showed early and marked alterations: reduced dopamine content, decreased tyrosine hydroxylase, increased turnover, and downregulation of D1 receptor expression—all preceding motor symptoms and detectable brain pathology. In contrast, AD mice showed only mild changes at later stages; however, clinical evidence suggests that similar dysfunction may occur earlier in human AD. These findings position retinal dopaminergic disruption as a potential early biomarker in HD and possibly in AD. While the current study relies on invasive techniques in animal models, it lays the groundwork for non-invasive retinal assessments, such as electroretinography or optical coherence tomography, as promising tools for early diagnosis and disease monitoring in neurodegeneration. Full article
(This article belongs to the Special Issue Peripheral Biomarkers in Neurodegenerative Diseases—4th Edition)
Show Figures

Figure 1

11 pages, 360 KiB  
Article
Assessment of X Chromosome Centromere Instability in Alzheimer’s Disease: A Quantitative FISH Approach
by Biljana Spremo-Potparević, Petar Popović, Dijana Topalović, Andrea Pirković, George Perry and Lada Živković
Curr. Issues Mol. Biol. 2025, 47(6), 420; https://doi.org/10.3390/cimb47060420 - 5 Jun 2025
Viewed by 399
Abstract
Chromosomal instability in Alzheimer’s disease (AD) neurons has been previously reported. This pilot study aimed to establish a quantitative technique for assessing X chromosome centromere signals using fluorescence in situ hybridization (FISH). Hippocampal brain tissue was collected at autopsy from sporadic AD patients [...] Read more.
Chromosomal instability in Alzheimer’s disease (AD) neurons has been previously reported. This pilot study aimed to establish a quantitative technique for assessing X chromosome centromere signals using fluorescence in situ hybridization (FISH). Hippocampal brain tissue was collected at autopsy from sporadic AD patients and age- and gender-matched controls. FISH was utilized to detect and measure the intensity of hybridization signals for X chromosome centromeres in the interphase nuclei of hippocampal brain cells. The premature centromere division (PCD) phenomenon, marked by a close bipartite signal appearing as two separated FISH spots, was examined to see if the hybridized DNA amount in each spot matched the expected centromere DNA amount. The technique effectively distinguished between PCD+ and PCD− signals. The average PCD frequency of the X chromosome in the AD group was 7 ± 1%, compared with 3.2 ± 0.84% in the controls. This quantitative approach supports qualitative analyses of FISH centromere spots, reinforcing findings of chromosomal instability in AD. The presence of a double signal at the centromere of a single X chromosome indicates re-entered cell cycles, DNA replication, and PCD in hippocampal neurons. This technique provides a reliable method for identifying PCD + signals and contributes to understanding chromosomal instability in AD. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Figure 1

22 pages, 3855 KiB  
Article
Sex-Associated Cerebellar and Hippocampal Volume Reduction in Alzheimer’s Disease: Insights from the Clinical ADNI Cohort and STZ Animal Model
by Krista Mineia Wartchow, Leticia Rodrigues, William Jones Dartora, Regina Biasibetti, Nicholas Guerini Selistre, Artur Lazarian, Carmen Barrios-Castellanos, Nicholas Bartelo, Carlos-Alberto Gonçalves, Laura Beth J. McIntire and on behalf of Alzheimer’s Disease Neuroimaging Initiative (ADNI)
Int. J. Mol. Sci. 2025, 26(10), 4810; https://doi.org/10.3390/ijms26104810 - 17 May 2025
Viewed by 647
Abstract
While the greatest risk factor for Alzheimer’s disease (AD) is aging, women are disproportionately affected by the disease. Interestingly, the hippocampus and cerebellum exhibit gender-specific cytoarchitecture differences, which are associated with AD, despite the absence of a role in animal reproductive behavior or [...] Read more.
While the greatest risk factor for Alzheimer’s disease (AD) is aging, women are disproportionately affected by the disease. Interestingly, the hippocampus and cerebellum exhibit gender-specific cytoarchitecture differences, which are associated with AD, despite the absence of a role in animal reproductive behavior or hormonal signaling. This study investigates the potential association of sex differences associated with AD by interrogating cerebellar and hippocampal volume in preclinical (MCI) as well as clinical phases of AD compared to cognitively normal patients (CN) and in an animal model of AD, the streptozotocin (STZ)-induced sporadic AD model. In order to investigate putative changes in cerebellum and hippocampus in a rat model of AD, we used a STZ-induced sporadic AD model at three different time points (2, 4, and 8 weeks) after surgery in male and female rats. Previous studies have reported hippocampal-dependent changes as well as sex-dependent behavioral and signaling effects in the STZ animal model of sporadic AD while our current study showed involvement of cerebellum-mediated changes. To interrogate the role of cerebellar volume in AD progression within the human context, we analyzed data available through the Alzheimer’s Disease Neuroimaging Initiative (ADNI). In a cross-sectional analysis, we observed that levels of peripheral Glial Acidic Fibrillary Protein (GFAP) (astrocytic protein) were associated negatively with cerebellar and hippocampal volumes (β = −0.002, p-value = 0.04; β = −6.721, p-value < 0.0001) and were associated with sex specific differences in males. Our analysis identified that the effect on hippocampal volume was earlier in disease stage, reinforcing the relevance of longitudinal alterations of cerebellum and hippocampus volume over time. The STZ animal model of sporadic AD, corroborated the progressive changes in hippocampal volume and more minor and temporally delayed involvement of the cerebellum volume changes which were dependent on sex. This suggests that cerebellar involvement may be secondary to hippocampal neurodegeneration, and both regional differences were dependent on sex. Due to the association with GFAP, our findings may be due to network astrocyte connection spread regardless of primary pathology. Overall, our study uncovers a novel role for cerebellum in AD in a model and in the human context. Full article
(This article belongs to the Special Issue The Function of Glial Cells in the Nervous System)
Show Figures

Figure 1

136 pages, 24434 KiB  
Perspective
Alzheimer’s Is a Multiform Disease of Sustained Neuronal Integrated Stress Response Driven by the C99 Fragment Generated Independently of AβPP; Proteolytic Production of Aβ Is Suppressed in AD-Affected Neurons: Evolution of a Theory
by Vladimir Volloch and Sophia Rits-Volloch
Int. J. Mol. Sci. 2025, 26(9), 4252; https://doi.org/10.3390/ijms26094252 - 29 Apr 2025
Viewed by 1349
Abstract
The present Perspective analyzes the remarkable evolution of the Amyloid Cascade Hypothesis 2.0 (ACH2.0) theory of Alzheimer’s disease (AD) since its inception a few years ago, as reflected in the diminishing role of amyloid-beta (Aβ) in the disease. In the initial iteration of [...] Read more.
The present Perspective analyzes the remarkable evolution of the Amyloid Cascade Hypothesis 2.0 (ACH2.0) theory of Alzheimer’s disease (AD) since its inception a few years ago, as reflected in the diminishing role of amyloid-beta (Aβ) in the disease. In the initial iteration of the ACH2.0, Aβ-protein-precursor (AβPP)-derived intraneuronal Aβ (iAβ), accumulated to neuronal integrated stress response (ISR)-eliciting levels, triggers AD. The neuronal ISR, in turn, activates the AβPP-independent production of its C99 fragment that is processed into iAβ, which drives the disease. The second iteration of the ACH2.0 stemmed from the realization that AD is, in fact, a disease of the sustained neuronal ISR. It introduced two categories of AD—conventional and unconventional—differing mainly in the manner of their causation. The former is caused by the neuronal ISR triggered by AβPP-derived iAβ, whereas in the latter, the neuronal ISR is elicited by stressors distinct from AβPP-derived iAβ and arising from brain trauma, viral and bacterial infections, and various types of inflammation. Moreover, conventional AD always contains an unconventional component, and in both forms, the disease is driven by iAβ generated independently of AβPP. In its third, the current, iteration, the ACH2.0 posits that proteolytic production of Aβ is suppressed in AD-affected neurons and that the disease is driven by C99 generated independently of AβPP. Suppression of Aβ production in AD seems an oxymoron: Aβ is equated with AD, and the later is inconceivable without the former in an ingrained Amyloid Cascade Hypothesis (ACH)-based notion. But suppression of Aβ production in AD-affected neurons is where the logic leads, and to follow it we only need to overcome the inertia of the preexisting assumptions. Moreover, not only is the generation of Aβ suppressed, so is the production of all components of the AβPP proteolytic pathway. This assertion is not a quantum leap (unless overcoming the inertia counts as such): the global cellular protein synthesis is severely suppressed under the neuronal ISR conditions, and there is no reason for constituents of the AβPP proteolytic pathway to be exempted, and they, apparently, are not, as indicated by the empirical data. In contrast, tau protein translation persists in AD-affected neurons under ISR conditions because the human tau mRNA contains an internal ribosomal entry site in its 5′UTR. In current mouse models, iAβ derived from AβPP expressed exogenously from human transgenes elicits the neuronal ISR and thus suppresses its own production. Its levels cannot principally reach AD pathology-causing levels regardless of the number of transgenes or the types of FAD mutations that they (or additional transgenes) carry. Since the AβPP-independent C99 production pathway is inoperative in mice, the current transgenic models have no potential for developing the full spectrum of AD pathology. What they display are only effects of the AβPP-derived iAβ-elicited neuronal ISR. The paper describes strategies to construct adequate transgenic AD models. It also details the utilization of human neuronal cells as the only adequate model system currently available for conventional and unconventional AD. The final alteration of the ACH2.0, introduced in the present Perspective, is that AβPP, which supports neuronal functionality and viability, is, after all, potentially produced in AD-affected neurons, albeit not conventionally but in an ISR-driven and -compatible process. Thus, the present narrative begins with the “omnipotent” Aβ capable of both triggering and driving the disease and ends up with this peptide largely dislodged from its pedestal and retaining its central role in triggering the disease in only one, although prevalent (conventional), category of AD (and driving it in none). Among interesting inferences of the present Perspective is the determination that “sporadic AD” is not sporadic at all (“non-familial” would be a much better designation). The term has fatalistic connotations, implying that the disease can strike at random. This is patently not the case: The conventional disease affects a distinct subpopulation, and the basis for unconventional AD is well understood. Another conclusion is that, unless prevented, the occurrence of conventional AD is inevitable given a sufficiently long lifespan. This Perspective also defines therapeutic directions not to be taken as well as auspicious ways forward. The former category includes ACH-based drugs (those interfering with the proteolytic production of Aβ and/or depleting extracellular Aβ). They are legitimate (albeit inefficient) preventive agents for conventional AD. There is, however, a proverbial snowball’s chance in hell of them being effective in symptomatic AD, lecanemab, donanemab, and any other “…mab” or “…stat” notwithstanding. They comprise Aβ-specific antibodies, inhibitors of beta- and gamma-secretase, and modulators of the latter. In the latter category, among ways to go are the following: (1) Depletion of iAβ, which, if sufficiently “deep”, opens up a tantalizing possibility of once-in-a-lifetime preventive transient treatment for conventional AD and aging-associated cognitive decline, AACD. (2) Composite therapy comprising the degradation of C99/iAβ and concurrent inhibition of the neuronal ISR. A single transient treatment could be sufficient to arrest the progression of conventional AD and prevent its recurrence for life. Multiple recurrent treatments would achieve the same outcome in unconventional AD. Alternatively, the sustained reduction/removal of unconventional neuronal ISR-eliciting stressors through the elimination of their source would convert unconventional AD into conventional one, preventable/treatable by a single transient administration of the composite C99/iAβ depletion/ISR suppression therapy. Efficient and suitable ISR inhibitors are available, and it is explicitly clear where to look for C99/iAβ-specific targeted degradation agents—activators of BACE1 and, especially, BACE2. Directly acting C99/iAβ-specific degradation agents such as proteolysis-targeting chimeras (PROTACs) and molecular-glue degraders (MGDs) are also viable options. (3) A circumscribed shift (either upstream or downstream) of the position of transcription start site (TSS) of the human AβPP gene, or, alternatively, a gene editing-mediated excision or replacement of a small, defined segment of its portion encoding 5′-untranslated region of AβPP mRNA; targeting AβPP RNA with anti-antisense oligonucleotides is another possibility. If properly executed, these RNA-based strategies would not interfere with the protein-coding potential of AβPP mRNA, and each would be capable of both preventing and stopping the AβPP-independent generation of C99 and thus of either preventing AD or arresting the progression of the disease in its conventional and unconventional forms. The paper is interspersed with “validation” sections: every conceptually significant notion is either validated by the existing data or an experimental procedure validating it is proposed. Full article
Show Figures

Figure 1

28 pages, 13669 KiB  
Article
Central Insulin-like Growth Factor-1 Treatment Enhances Working and Reference Memory by Reducing Neuroinflammation and Amyloid Beta Deposition in a Rat Model of Sporadic Alzheimer’s Disease
by Joanna Dunacka, Beata Grembecka, Irena Majkutewicz and Danuta Wrona
Pharmaceuticals 2025, 18(4), 527; https://doi.org/10.3390/ph18040527 - 4 Apr 2025
Cited by 1 | Viewed by 714
Abstract
Background/Objectives: Brain insulin resistance is a potential causal factor for dementia in Alzheimer’s disease (AD). Insulin-like growth factor-1 (IGF-1), a neurotrophin, plays a key role in central insulin signaling and neuroprotection. Intracerebrovenitricular (ICV) administration of streptozotocin (STZ) disrupts insulin signal transduction, leading [...] Read more.
Background/Objectives: Brain insulin resistance is a potential causal factor for dementia in Alzheimer’s disease (AD). Insulin-like growth factor-1 (IGF-1), a neurotrophin, plays a key role in central insulin signaling and neuroprotection. Intracerebrovenitricular (ICV) administration of streptozotocin (STZ) disrupts insulin signal transduction, leading to brain insulin resistance, which may mimic the early pathophysiological changes in sporadic AD (sAD). In this study, we investigated whether restoring insulin signaling through ICV injection of IGF-1 could ameliorate spatial memory deficits during sAD progression in a rat model induced by ICV STZ injection. Methods: Male Wistar rats (n = 40) were subjected to double ICV injections of STZ (0.75 mg/kg/ventricle, days 2 and 4) and IGF-1 (1 μg/single injection, days 1 and 3), and placed at the Morris water maze (MWM) at baseline, 7, 45 and 90 days after injections. Reference (days 1–3 and day 4 MWM)) and working (days 5–8 MWM) memory, microglia activation (CD68+ cells), and amyloid β (Aβ) deposition (immunohistochemistry) were measured. Results: We found that ICVIGF-1 administration protected working memory demonstrated as (1) reduced latency to reach the platform, and reduced swimming distance in trials 3 (p < 0.05) and 4 (p < 0.01) on days 45 and 90 post-injection and (2) a short-term (up to 45 days post-injection) enhancement of reference memory, manifested by a reduction in swimming distance and latency (p < 0.05). Furthermore, IGF-1 treatment reduced neuroinflammation in CA2 (p < 0.05) and Aβ deposition in CA1(p < 0.01) of the hippocampus. Conclusions: Central IGF-1 attenuates spatial memory deficits in the ICVSTZ-induced sAD model by reducing neuroinflammation and Aβ accumulation in the hippocampus. Full article
Show Figures

Graphical abstract

18 pages, 1925 KiB  
Review
Clinical Significance of Early-Onset Alzheimer’s Mutations in Asian and Western Populations: A Scoping Review
by Prevathe Poniah, Aswir Abdul Rashed, Julaina Abdul Jalil and Ernie Zuraida Ali
Genes 2025, 16(3), 345; https://doi.org/10.3390/genes16030345 - 17 Mar 2025
Viewed by 1450
Abstract
Background/Objectives: Background: Early-onset Alzheimer’s disease (EOAD) is primarily inherited in an autosomal dominant pattern, with mutations in the APP, PSEN1, and PSEN2 genes being central contributors. Diagnosing Alzheimer’s poses challenges due to the coexistence of various co-pathologies, and treatment options remain [...] Read more.
Background/Objectives: Background: Early-onset Alzheimer’s disease (EOAD) is primarily inherited in an autosomal dominant pattern, with mutations in the APP, PSEN1, and PSEN2 genes being central contributors. Diagnosing Alzheimer’s poses challenges due to the coexistence of various co-pathologies, and treatment options remain limited for most patients, apart from familial cases linked to specific genetic mutations. While significant research on Alzheimer’s genetics has been conducted in both Asian and Caucasian populations, the specific mutations and their clinical impacts in EOAD are still inadequately explored. This review aims to provide a detailed analysis of commonly reported genetic mutations and associated clinical features in EOAD patients from Asian and Western populations. Methods: Following the PRISMA-ScR guidelines, a systematic database search was conducted for studies published between 2016 and 2023. After screening 491 records, 36 studies from Asian cohorts and 40 from Western cohorts met the inclusion criteria. Results: The analysis revealed 127 unique mutations in the Asian population and 190 in the Western population. About 16.7% of Asian and 21.9% of Western studies covered both familial and sporadic AD, with consistent patterns across groups. Some mutations were shared between the populations and displayed similar clinical features, while others were population-specific. Conclusions: These findings underscore the considerable variability in EOAD mutations and phenotypes, emphasizing the importance of genetic testing in younger patients to enhance diagnostic accuracy and guide treatment strategies effectively. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
Show Figures

Figure 1

18 pages, 762 KiB  
Article
Next Generation Sequencing Analysis in Patients Affected by Parkinson’s Disease and Correlation Between Genotype and Phenotype in Selected Clinical Cases
by Andrea Pilotto, Mattia Carini, Roberto Bresciani, Eugenio Monti, Fabiana Ferrari, Maria Antonia De Francesco, Alessandro Padovani and Giorgio Biasiotto
Int. J. Mol. Sci. 2025, 26(6), 2397; https://doi.org/10.3390/ijms26062397 - 7 Mar 2025
Viewed by 1080
Abstract
Parkinson’s Disease (PD) is the most frequent movement disorder and is second only to Alzheimer’s Disease as the most frequent neurodegenerative pathology. Early onset Parkinson’s disease (EOPD) is less common and may be characterized by genetic predisposition. NGS testing might be useful in [...] Read more.
Parkinson’s Disease (PD) is the most frequent movement disorder and is second only to Alzheimer’s Disease as the most frequent neurodegenerative pathology. Early onset Parkinson’s disease (EOPD) is less common and may be characterized by genetic predisposition. NGS testing might be useful in the diagnostic assessment of these patients. A panel of eight genes (SNCA, PRKN, PINK1, DJ1, LRRK2, FBXO7, GBA1 and HFE) was validated and used as a diagnostic tool. A total of 38 in sequence EOPD patients of the Parkinson’s Disease Unit of our Hospital Institution were tested. In addition, the number of the hexanucleotide repeats of the C9ORF72 gene and the frequency of main HFE mutations were evaluated. Six patients were carriers of likely pathogenic mutations in heterozygosity in the analyzed genes, one of them presented mutations in association and another had a complex genetic background. Their clinical symptoms were correlated with their genotypes. In the cohort of patients, only the p.Cys282Tyr of HFE was significantly decreased in the dominant model and allele contrast comparison. Only one patient with one allele of C9ORF72 containing 10 repeats was identified and clinically described. The clinical signs of sporadic and monogenic PD are often very similar; for this reason, it is fundamental to correlate genotypes and phenotypes, as we tried to describe here, to better classify PD patients with the aim to deepen our knowledge in the molecular mechanisms involved and collaborate in reaching a personalized management and treatment. Full article
Show Figures

Figure 1

39 pages, 21233 KiB  
Article
Sex-Specific Adaptations in Alzheimer’s Disease and Ischemic Stroke: A Longitudinal Study in Male and Female APPswe/PS1dE9 Mice
by Klara J. Lohkamp, Nienke Timmer, Gemma Solé Guardia, Justin Shenk, Vivienne Verweij, Bram Geenen, Pieter J. Dederen, Lieke Bakker, Cansu Egitimci, Rengin Yoldas, Minou Verhaeg, Josine Kothuis, Desirée Nieuwenhuis, Maximilian Wiesmann and Amanda J. Kiliaan
Life 2025, 15(3), 333; https://doi.org/10.3390/life15030333 - 21 Feb 2025
Cited by 1 | Viewed by 1046
Abstract
The long-term impact of stroke on Alzheimer’s disease (AD) progression, particularly regarding sex-specific differences, remains unknown. Using a longitudinal study design, we investigated transient middle cerebral artery occlusion in 3.5-month-old APPswe/PS1dE9 (APP/PS1) and wild-type mice. In vivo, we assessed behavior, [...] Read more.
The long-term impact of stroke on Alzheimer’s disease (AD) progression, particularly regarding sex-specific differences, remains unknown. Using a longitudinal study design, we investigated transient middle cerebral artery occlusion in 3.5-month-old APPswe/PS1dE9 (APP/PS1) and wild-type mice. In vivo, we assessed behavior, cerebral blood flow (CBF), and structural integrity by neuroimaging, as well as post-mortem myelin integrity (polarized light imaging, PLI), neuroinflammation, and amyloid beta (Aβ) deposition. APP/PS1 mice exhibited cognitive decline, white matter degeneration (reduced fractional anisotropy (FA) via diffusion tensor imaging (DTI)), and decreased myelin density via PLI. Despite early hypertension, APP/PS1 mice showed only sporadic hypoperfusion. Cortical thickening and hippocampal hypertrophy likely resulted from Aβ accumulation and neuroinflammation. Stroke-operated mice retained cognition despite cortical thinning and hippocampal atrophy due to cerebrovascular adaptation, including increased CBF in the hippocampus and thalamus. Stroke did not worsen AD pathology, nor did AD exacerbate stroke outcomes. Sex differences were found: female APP/PS1 mice had more severe Aβ deposition, hyperactivity, lower body weight, and reduced CBF but less neuroinflammation, suggesting potential neuroprotection. These findings highlight white matter degeneration and Aβ pathology as key drivers of cognitive decline in AD, with stroke-related deficits mitigated by (cerebro)vascular adaptation. Sex-specific therapies are crucial for AD and stroke. Full article
(This article belongs to the Section Medical Research)
Show Figures

Figure 1

44 pages, 2359 KiB  
Review
The Aggravating Role of Failing Neuropeptide Networks in the Development of Sporadic Alzheimer’s Disease
by Miklós Jászberényi, Balázs Thurzó, Arumugam R. Jayakumar and Andrew V. Schally
Int. J. Mol. Sci. 2024, 25(23), 13086; https://doi.org/10.3390/ijms252313086 - 5 Dec 2024
Viewed by 2111
Abstract
Alzheimer’s disease imposes an increasing burden on aging Western societies. The disorder most frequently appears in its sporadic form, which can be caused by environmental and polygenic factors or monogenic conditions of incomplete penetrance. According to the authors, in the majority of cases, [...] Read more.
Alzheimer’s disease imposes an increasing burden on aging Western societies. The disorder most frequently appears in its sporadic form, which can be caused by environmental and polygenic factors or monogenic conditions of incomplete penetrance. According to the authors, in the majority of cases, Alzheimer’s disease represents an aggravated form of the natural aging of the central nervous system. It can be characterized by the decreased elimination of amyloid β1–42 and the concomitant accumulation of degradation-resistant amyloid plaques. In the present paper, the dysfunction of neuropeptide regulators, which contributes to the pathophysiologic acceleration of senile dementia, is reviewed. However, in the present review, exclusively those neuropeptides or neuropeptide families are scrutinized, and the authors’ investigations into their physiologic and pathophysiologic activities have made significant contributions to the literature. Therefore, the pathophysiologic role of orexins, neuromedins, RFamides, corticotrope-releasing hormone family, growth hormone-releasing hormone, gonadotropin-releasing hormone, ghrelin, apelin, and natriuretic peptides are discussed in detail. Finally, the therapeutic potential of neuropeptide antagonists and agonists in the inhibition of disease progression is discussed here. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Figure 1

34 pages, 21673 KiB  
Review
Paying Homage to Microvessel Remodeling and Small Vessel Disease in Neurodegeneration: Implications for the Development of Late-Onset Alzheimer’s Disease
by Melvin R. Hayden
J. Vasc. Dis. 2024, 3(4), 419-452; https://doi.org/10.3390/jvd3040033 - 20 Nov 2024
Cited by 1 | Viewed by 2045
Abstract
The microvessel neurovascular unit, with its brain endothelial cells (BEC) and blood–brain barrier remodeling, is important in the development of impaired cognition in sporadic or late-onset Alzheimer’s disease (LOAD), which is associated with aging and is highly prevalent in older populations (≥65 years [...] Read more.
The microvessel neurovascular unit, with its brain endothelial cells (BEC) and blood–brain barrier remodeling, is important in the development of impaired cognition in sporadic or late-onset Alzheimer’s disease (LOAD), which is associated with aging and is highly prevalent in older populations (≥65 years of age). It is also linked with vascular dementia and vascular contributions to cognitive impairment and dementia, including cerebral amyloid angiopathy in neurodegeneration. LOAD is considered to be the number one cause of dementia globally; however, when one considers the role of mixed dementia (MD)—the combination of both the amyloid cascade hypothesis and the vascular hypothesis of LOAD—it becomes apparent that MD is the number one cause. Microvessel BECs are the first cells in the brain to be exposed to peripheral neurotoxins from the systemic circulation and are therefore the brain cells at the highest risk for early and chronic injury. Therefore, these cells are the first to undergo injury, followed by excessive and recurrent wound healing and remodeling processes in aging and other age-related diseases such as cerebrocardiovascular disease, hypertension, type 2 diabetes mellitus, and Parkinson’s disease. This narrative review explores the intricate relationship between microvessel remodeling, cerebral small vessel disease (SVD), and neurodegeneration in LOAD. It also discusses the current understanding of how microvessel dysfunction, disruption, and pathology contribute to the pathogenesis of LOAD and highlights potential avenues for therapeutic intervention. Full article
(This article belongs to the Section Neurovascular Diseases)
Show Figures

Graphical abstract

Back to TopTop