Next Generation Sequencing Analysis in Patients Affected by Parkinson’s Disease and Correlation Between Genotype and Phenotype in Selected Clinical Cases
Abstract
:1. Introduction
2. Results
2.1. Metrics
2.2. Validation Cohort
2.3. Identification of the Variants in the Prospective Cohort
2.4. GBA1
2.5. Main Mutations of HFE Gene
2.6. C9ORF72 Hexanucleotide Expansion
2.7. Private Mutations and Clinical Data
3. Discussion
3.1. Choice of the Genes
3.2. Comment on the Mutations and Clinical Data
3.3. HFE Mutations
3.4. General Analyses C9ORF72
3.5. Importance of Defining a Phenotype with a Genotype
4. Material and Methods
4.1. DNA Extraction
4.2. NGS Sequencing
4.3. NGS Data Analysis
4.4. Sanger Sequencing
4.5. MLPA Analysis
4.6. GBA1 Gene Analysis
4.7. Analysis of Hexanucleotide Expansion of C9ORF72
4.8. Prediction of the Effect of Mutations
4.9. Statistical Methods
5. Patients
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- de Lau, L.M.; Breteler, M.M. Epidemiology of Parkinson’s disease. Lancet Neurol. 2006, 5, 525–535. [Google Scholar] [CrossRef]
- Tysnes, O.B.; Storstein, A. Epidemiology of Parkinson’s disease. J. Neural Transm. 2017, 124, 901–905. [Google Scholar] [CrossRef] [PubMed]
- Rajan, R.; Holla, V.V.; Kamble, N.; Yadav, R.; Pal, P.K. Genetic heterogeneity of early onset Parkinson disease: The dilemma of clinico-genetic correlation. Park. Relat. Disord. 2024, 129, 107146. [Google Scholar] [CrossRef]
- Dorsey, E.R.; Bloem, B.R. The Parkinson Pandemic-A Call to Action. JAMA Neurol. 2018, 75, 9–10. [Google Scholar] [CrossRef]
- De Virgilio, A.; Greco, A.; Fabbrini, G.; Inghilleri, M.; Rizzo, M.I.; Gallo, A.; Conte, M.; Rosato, C.; Ciniglio Appiani, M.; de Vincentiis, M. Parkinson’s disease: Autoimmunity and neuroinflammation. Autoimmun. Rev. 2016, 15, 1005–1011. [Google Scholar] [CrossRef]
- Schrag, A.; Anastasiou, Z.; Ambler, G.; Noyce, A.; Walters, K. Predicting diagnosis of Parkinson’s disease: A risk algorithm based on primary care presentations. Mov. Disord. 2019, 34, 480–486. [Google Scholar] [CrossRef]
- Blesa, J.; Foffani, G.; Dehay, B.; Bezard, E.; Obeso, J.A. Motor and non-motor circuit disturbances in early Parkinson disease: Which happens first? Nat. Rev. Neurosci. 2022, 23, 115–128. [Google Scholar] [CrossRef]
- Guerreiro, R.; Ross, O.A.; Kun-Rodrigues, C.; Hernandez, D.G.; Orme, T.; Eicher, J.D.; Shepherd, C.E.; Parkkinen, L.; Darwent, L.; Heckman, M.G.; et al. Investigating the genetic architecture of dementia with Lewy bodies: A two-stage genome-wide association study. Lancet Neurol. 2018, 17, 64–74. [Google Scholar] [CrossRef]
- Zhang, P.L.; Chen, Y.; Zhang, C.H.; Wang, Y.X.; Fernandez-Funez, P. Genetics of Parkinson’s disease and related disorders. J. Med. Genet. 2018, 55, 73–80. [Google Scholar] [CrossRef]
- Lunati, A.; Lesage, S.; Brice, A. The genetic landscape of Parkinson’s disease. Rev. Neurol. 2018, 174, 628–643. [Google Scholar] [CrossRef]
- Monfrini, E.; Di Fonzo, A. Leucine-Rich Repeat Kinase (LRRK2) Genetics and Parkinson’s Disease. Adv. Neurobiol. 2017, 14, 3–30. [Google Scholar] [CrossRef] [PubMed]
- Trinh, J.; Zeldenrust, F.M.J.; Huang, J.; Kasten, M.; Schaake, S.; Petkovic, S.; Madoev, H.; Grünewald, A.; Almuammar, S.; König, I.R.; et al. Genotype-phenotype relations for the Parkinson’s disease genes SNCA, LRRK2, VPS35: MDSGene systematic review. Mov. Disord. 2018, 33, 1857–1870. [Google Scholar] [CrossRef] [PubMed]
- Guadagnolo, D.; Piane, M.; Torrisi, M.R.; Pizzuti, A.; Petrucci, S. Genotype-Phenotype Correlations in Monogenic Parkinson Disease: A Review on Clinical and Molecular Findings. Front. Neurol. 2021, 12, 648588. [Google Scholar] [CrossRef]
- Cherian, A.; Divya, K.P.; Vijayaraghavan, A. Parkinson’s disease–genetic cause. Curr. Opin. Neurol. 2023, 36, 292–301. [Google Scholar] [CrossRef]
- Sidransky, E.; Nalls, M.A.; Aasly, J.O.; Aharon-Peretz, J.; Annesi, G.; Barbosa, E.R.; Bar-Shira, A.; Berg, D.; Bras, J.; Brice, A.; et al. Multicenter analysis of glucocerebrosidase mutations in Parkinson’s disease. N. Engl. J. Med. 2009, 361, 1651–1661. [Google Scholar] [CrossRef]
- Goker-Alpan, O.; Schiffmann, R.; LaMarca, M.E.; Nussbaum, R.L.; McInerney-Leo, A.; Sidransky, E. Parkinsonism among Gaucher disease carriers. J. Med. Genet. 2004, 41, 937–940. [Google Scholar] [CrossRef] [PubMed]
- Gan-Or, Z.; Amshalom, I.; Kilarski, L.L.; Bar-Shira, A.; Gana-Weisz, M.; Mirelman, A.; Marder, K.; Bressman, S.; Giladi, N.; Orr-Urtreger, A. Differential effects of severe vs mild GBA mutations on Parkinson disease. Neurology 2015, 84, 880–887. [Google Scholar] [CrossRef]
- Straniero, L.; Rimoldi, V.; Melistaccio, G.; Di Fonzo, A.; Pezzoli, G.; Duga, S.; Asselta, R. A rapid and low-cost test for screening the most common Parkinson’s disease-related GBA variants. Park. Relat. Disord. 2020, 80, 138–141. [Google Scholar] [CrossRef]
- Riederer, P.; Monoranu, C.; Strobel, S.; Iordache, T.; Sian-Hülsmann, J. Iron as the concert master in the pathogenic orchestra playing in sporadic Parkinson’s disease. J. Neural. Transm. 2021, 128, 1577–1598. [Google Scholar] [CrossRef]
- Kim, Y.; Connor, J.R. The roles of iron and HFE genotype in neurological diseases. Mol. Asp. Med. 2020, 75, 100867. [Google Scholar] [CrossRef]
- Biasiotto, G.; Goldwurm, S.; Finazzi, D.; Tunesi, S.; Zecchinelli, A.; Sironi, F.; Pezzoli, G.; Arosio, P. HFE gene mutations in a population of Italian Parkinson’s disease patients. Park. Relat. Disord. 2008, 14, 426–430. [Google Scholar] [CrossRef] [PubMed]
- Marshall Moscon, S.L.; Connor, J.R. HFE Mutations in Neurodegenerative Disease as a Model of Hormesis. Int. J. Mol. Sci. 2024, 25, 3334. [Google Scholar] [CrossRef] [PubMed]
- Cook, L.; Schulze, J.; Verbrugge, J.; Beck, J.C.; Marder, K.S.; Saunders-Pullman, R.; Klein, C.; Naito, A.; Alcalay, R.N.; ClinGen Parkinson’s Disease Gene Curation Expert Panel and the MDS Task Force for Recommendations for Genetic Testing in Parkinson’s Disease; et al. The commercial genetic testing landscape for Parkinson’s disease. Park. Relat. Disord. 2021, 92, 107–111. [Google Scholar] [CrossRef] [PubMed]
- Breevoort, S.; Gibson, S.; Figueroa, K.; Bromberg, M.; Pulst, S. Expanding Clinical Spectrum of C9ORF72-related disorders and promising therapeutic strategies: A review. Neurol. Genet. 2022, 8, e670. [Google Scholar] [CrossRef]
- Trujillano, D.; Weiss, M.E.; Schneider, J.; Köster, J.; Papachristos, E.B.; Saviouk, V.; Zakharkina, T.; Nahavandi, N.; Kovacevic, L.; Rolfs, A. Next-generation sequencing of the BRCA1 and BRCA2 genes for the genetic diagnostics of hereditary breast and/or ovarian cancer. J. Mol. Diagn. 2015, 17, 162–170. [Google Scholar] [CrossRef]
- Zanella, I.; Merola, F.; Biasiotto, G.; Archetti, S.; Spinelli, E.; Di Lorenzo, D. Evaluation of the Ion Torrent PGM sequencing workflow for the routine rapid detection of BRCA1 and BRCA2 germline mutations. Exp. Mol. Pathol. 2017, 102, 314–320. [Google Scholar] [CrossRef]
- Willis, G.; Wimperis, J.Z.; Smith, K.; Fellows, I.W.; Jennings, B.A. HFE mutations in the elderly. Blood Cells Mol. Dis. 2003, 31, 240–246. [Google Scholar] [CrossRef]
- Lesage, S.; Dürr, A.; Tazir, M.; Lohmann, E.; Leutenegger, A.L.; Janin, S.; Pollak, P.; Brice, A.; French Parkinson’s Disease Genetics Study Group. LRRK2 G2019S as a cause of Parkinson’s disease in North African Arabs. N. Engl. J. Med. 2006, 354, 422–423. [Google Scholar] [CrossRef]
- Jia, F.; Fellner, A.; Kumar, K.R. Monogenic Parkinson’s Disease: Genotype, Phenotype, Pathophysiology, and Genetic Testing. Genes 2022, 13, 471. [Google Scholar] [CrossRef]
- von Coelln, R.; Shulman, L.M. Clinical subtypes and genetic heterogeneity: Of lumping and splitting in Parkinson disease. Curr. Opin. Neurol. 2016, 29, 727–734. [Google Scholar] [CrossRef]
- Harbo, H.F.; Finsterer, J.; Baets, J.; Van Broeckhoven, C.; Di Donato, S.; Fontaine, B.; De Jonghe, P.; Lossos, A.; Lynch, T.; Mariotti, C.; et al. EFNS guidelines on the molecular diagnosis of neurogenetic disorders: General issues, Huntington’s disease, Parkinson’s disease and dystonias. Eur. J. Neurol. 2009, 16, 777–785. [Google Scholar] [CrossRef] [PubMed]
- Verbrugge, J.; Cook, L.; Miller, M.; Rumbaugh, M.; Schulze, J.; Heathers, L.; Wetherill, L.; Foroud, T. Outcomes of genetic test disclosure and genetic counseling in a large Parkinson’s disease research study. J. Genet. Couns. 2021, 30, 755–765. [Google Scholar] [CrossRef]
- Foglieni, B.; Ferrari, F.; Goldwurm, S.; Santambrogio, P.; Castiglioni, E.; Sessa, M.; Volontè, M.A.; Lalli, S.; Galli, C.; Wang, X.S.; et al. Analysis of ferritin genes in Parkinson disease. Clin. Chem. Lab. Med. 2007, 45, 1450–1456. [Google Scholar] [CrossRef] [PubMed]
- Bouhouche, A.; Tibar, H.; Ben El Haj, R.; El Bayad, K.; Razine, R.; Tazrout, S.; Skalli, A.; Bouslam, N.; Elouardi, L.; Benomar, A.; et al. G2019S Mutation: Prevalence and Clinical Features in Moroccans with Parkinson’s Disease. Parkinsons Dis. 2017, 2017, 2412486. [Google Scholar] [CrossRef]
- Chaudhary, S.; Behari, M.; Dihana, M.; Swaminath, P.V.; Govindappa, S.T.; Jayaram, S.; Goyal, V.; Maitra, A.; Muthane, U.B.; Juyal, R.C.; et al. Parkin mutations in familial and sporadic Parkinson’s disease among Indians. Park. Relat. Disord. 2006, 12, 239–245. [Google Scholar] [CrossRef]
- Gundogdu, M.; Tadayon, R.; Salzano, G.; Shaw, G.S.; Walden, H. A mechanistic review of Parkin activation. Biochim. Biophys. Acta Gen. Subj. 2021, 1865, 129894. [Google Scholar] [CrossRef]
- Gladkova, C.; Maslen, S.L.; Skehel, J.M.; Komander, D. Mechanism of parkin activation by PINK1. Nature 2018, 559, 410–414. [Google Scholar] [CrossRef]
- Vilageliu, L.; Grinberg, D. Involvement of Gaucher Disease Mutations in Parkinson Disease. Curr. Protein Pept. Sci. 2017, 18, 758–764. [Google Scholar] [CrossRef]
- Shen, L.; Dettmer, U. Alpha-Synuclein Effects on Mitochondrial Quality Control in Parkinson’s Disease. Biomolecules 2024, 14, 1649. [Google Scholar] [CrossRef]
- Dvir, H.; Harel, M.; McCarthy, A.A.; Toker, L.; Silman, I.; Futerman, A.H.; Sussman, J.L. X-ray structure of human acid-beta-glucosidase, the defective enzyme in Gaucher disease. EMBO Rep. 2003, 4, 704–709. [Google Scholar] [CrossRef]
- von Heijne, G. A new method for predicting signal sequence cleavage sites. Nucleic Acids Res. 1986, 14, 4683–4690. [Google Scholar] [CrossRef] [PubMed]
- Mutation Taster. Available online: www.mutationtaster.org (accessed on 31 December 2024).
- Millar Vernetti, P.; Rossi, M.; Merello, M. Parkin Pleiotropy: Extremely Atypical Phenotypes in Patients With Compound Heterozygous Mutations. Tremor Other Hyperkinetic Mov. 2020, 10, 26. [Google Scholar] [CrossRef] [PubMed]
- Aamodt, A.H.; Stovner, L.J.; Thorstensen, K.; Lydersen, S.; White, L.R.; Aasly, J.O. Prevalence of haemochromatosis gene mutations in Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 2007, 78, 315–317. [Google Scholar] [CrossRef] [PubMed]
- Biasiotto, G.; Carini, M.; Bresciani, R.; Ferrari, F. Hereditary hemochromatosis: The complex role of the modifier genes. J. Trace Elem. Med. Biol. 2023, 79, 127248. [Google Scholar] [CrossRef]
- Kim, Y.; Stahl, M.C.; Huang, X.; Connor, J.R. H63D variant of the homeostatic iron regulator (HFE) gene alters α-synuclein expression, aggregation, and toxicity. J. Neurochem. 2020, 155, 177–190. [Google Scholar] [CrossRef]
- Nixon, A.M.; Meadowcroft, M.D.; Neely, E.B.; Snyder, A.M.; Purnell, C.J.; Wright, J.; Lamendella, R.; Nandar, W.; Huang, X.; Connor, J.R. HFE Genotype Restricts the Response to Paraquat in a Mouse Model of Neurotoxicity. J. Neurochem. 2018, 145, 299–311. [Google Scholar] [CrossRef]
- Ye, Q.; Kim, J. Mutation in HFE gene decreases manganese accumulation and oxidative stress in the brain after olfactory manganese exposure. Metallomics 2016, 8, 618–627. [Google Scholar] [CrossRef]
- Zanella, I.; Rossini, A.; Di Lorenzo, D.; Biasiotto, G. Hereditary hemochromatosis: The same old song. Blood Cells Mol. Dis. 2015, 55, 216–217. [Google Scholar] [CrossRef]
- Xi, Z.; Zinman, L.; Grinberg, Y.; Moreno, D.; Sato, C.; Bilbao, J.M.; Ghani, M.; Hernández, I.; Ruiz, A.; Boada, M.; et al. Investigation of c9orf72 in 4 neurodegenerative disorders. Arch. Neurol. 2012, 69, 1583–1590. [Google Scholar] [CrossRef]
- Lesage, S.; Le Ber, I.; Condroyer, C.; Broussolle, E.; Gabelle, A.; Thobois, S.; Pasquier, F.; Mondon, K.; Dion, P.A.; Rochefort, D.; et al. C9orf72 repeat expansions are a rare genetic cause of parkinsonism. Brain 2013, 136 Pt 2, 385–391. [Google Scholar] [CrossRef]
- Akimoto, C.; Forsgren, L.; Linder, J.; Birve, A.; Backlund, I.; Andersson, J.; Nilsson, A.C.; Alstermark, H.; Andersen, P.M. No GGGGCC-hexanucleotide repeat expansion in C9ORF72 in parkinsonism patients in Sweden. Amyotroph. Lateral Scler. Front. Degener. 2013, 14, 26–29. [Google Scholar] [CrossRef] [PubMed]
- Majounie, E.; Abramzon, Y.; Renton, A.E.; Keller, M.F.; Traynor, B.J.; Singleton, A.B. Large C9orf72 repeat expansions are not a common cause of Parkinson’s disease. Neurobiol. Aging 2012, 33, 2527.e1–2527.e2. [Google Scholar] [CrossRef] [PubMed]
- Dejesus-Hernandez, M.; Rayaprolu, S.; Soto-Ortolaza, A.I.; Rutherford, N.J.; Heckman, M.G.; Traynor, S.; Strongosky, A.; Graff-Radford, N.; Van Gerpen, J.; Uitti, R.J.; et al. Analysis of the C9orf72 repeat in Parkinson’s disease, essential tremor and restless legs syndrome. Park. Relat. Disord. 2013, 19, 198–201. [Google Scholar] [CrossRef]
- Nuytemans, K.; Bademci, G.; Kohli, M.M.; Beecham, G.W.; Wang, L.; Young, J.I.; Nahab, F.; Martin, E.R.; Gilbert, J.R.; Benatar, M.; et al. C9ORF72 intermediate repeat copies are a significant risk factor for Parkinson disease. Ann. Hum. Genet. 2013, 77, 351–363. [Google Scholar] [CrossRef] [PubMed]
- Harms, M.B.; Neumann, D.; Benitez, B.A.; Cooper, B.; Carrell, D.; Racette, B.A.; Perlmutter, J.S.; Goate, A.; Cruchaga, C. Parkinson disease is not associated with C9ORF72 repeat expansions. Neurobiol. Aging 2013, 34, 1519.e1–1519.e2. [Google Scholar] [CrossRef]
- Daoud, H.; Noreau, A.; Rochefort, D.; Paquin-Lanthier, G.; Gauthier, M.T.; Provencher, P.; Pourcher, E.; Dupré, N.; Chouinard, S.; Jodoin, N.; et al. Investigation of C9orf72 repeat expansions in Parkinson’s disease. Neurobiol. Aging 2013, 34, 1710.e7–1710.e9. [Google Scholar] [CrossRef]
- Cannas, A.; Solla, P.; Borghero, G.; Floris, G.L.; Chio, A.; Mascia, M.M.; Modugno, N.; Muroni, A.; Orofino, G.; Di Stefano, F.; et al. C9ORF72 intermediate repeat expansion in patients affected by atypical parkinsonian syndromes or Parkinson’s disease complicated by psychosis or dementia in a Sardinian population. J. Neurol. 2015, 262, 2498–2503. [Google Scholar] [CrossRef]
- Alavi, A.; Malakouti Nejad, M.; Shahidi, G.; Elahi, E. Mutations in C19orf12 and intronic repeat expansions in C9orf72 not observed in Iranian Parkinson’s disease patients. Neurobiol. Aging 2017, 54, 214.e11–214.e12. [Google Scholar] [CrossRef]
- Chen, X.; Chen, Y.; Wei, Q.; Ou, R.; Cao, B.; Zhao, B.; Shang, H.F. C9ORF72 repeat expansions in Chinese patients with Parkinson’s disease and multiple system atrophy. J. Neural Transm. 2016, 123, 1341–1345. [Google Scholar] [CrossRef]
- Lin, C.H.; Chen, T.F.; Chiu, M.J.; Lin, H.I.; Wu, R.M. Lack of c9orf72 repeat expansion in taiwanese patients with mixed neurodegenerative disorders. Front. Neurol. 2014, 5, 59. [Google Scholar] [CrossRef]
- Theuns, J.; Verstraeten, A.; Sleegers, K.; Wauters, E.; Gijselinck, I.; Smolders, S.; Crosiers, D.; Corsmit, E.; Elinck, E.; Sharma, M.; et al. Global investigation and meta-analysis of the C9orf72 (G4C2)n repeat in Parkinson disease. Neurology 2014, 83, 1906–1913. [Google Scholar] [CrossRef] [PubMed]
- Jiao, B.; Guo, J.F.; Wang, Y.Q.; Yan, X.X.; Zhou, L.; Liu, X.Y.; Zhang, F.F.; Zhou, Y.F.; Xia, K.; Tang, B.S.; et al. C9orf72 mutation is rare in Alzheimer’s disease, Parkinson’s disease, and essential tremor in China. Front. Cell. Neurosci. 2013, 7, 164. [Google Scholar] [CrossRef] [PubMed]
- Ng, A.S.L.; Tan, E.K. Intermediate C9orf72 alleles in neurological disorders: Does size really matter? J. Med. Genet. 2017, 54, 591–597. [Google Scholar] [CrossRef] [PubMed]
- Bourinaris, T.; Houlden, H. C9orf72 and its Relevance in Parkinsonism and Movement Disorders: A Comprehensive Review of the Literature. Mov. Disord. Clin. Pract. 2018, 5, 575–585. [Google Scholar] [CrossRef]
- Tönges, L.; Kwon, E.H.; Klebe, S. Monogenetic Forms of Parkinson’s Disease—Bridging the Gap Between Genetics and Biomarkers. Front. Aging Neurosci. 2022, 14, 822949. [Google Scholar] [CrossRef]
- Pilotto, A.; Carini, M.; Lupini, A.; di Fonzo, A.; Monti, E.; Bresciani, R.; Padovani, A.; Biasiotto, G. The p.Val234Met LRP10 likely pathogenic variant associated with Parkinson’s disease: Possible molecular implications. Park. Relat. Disord. 2024, 123, 106973. [Google Scholar] [CrossRef]
- Blauwendraat, C.; Nalls, M.A.; Singleton, A.B. The genetic architecture of Parkinson’s disease. Lancet Neurol. 2020, 19, 170–178. [Google Scholar] [CrossRef]
- HGVS Human Genome Variation Society. Available online: https://www.hgvs.org (accessed on 31 December 2024).
- LOVD. Available online: http://www.lovd.nl (accessed on 31 December 2024).
- ClinVar. Available online: http://www.ncbi.nlm.nih.gov/clinvar/ (accessed on 31 December 2024).
- gnomAD. Available online: https://gnomad.broadinstitute.org (accessed on 31 December 2024).
- Biasiotto, G.; Archetti, S.; Di Lorenzo, D.; Merola, F.; Paiardi, G.; Borroni, B.; Alberici, A.; Padovani, A.; Filosto, M.; Bonvicini, C.; et al. A PCR-based protocol to accurately size C9orf72 intermediate-length alleles. Mol. Cell. Probes 2017, 32, 60–64. [Google Scholar] [CrossRef]
- PolyPhen-2: Prediction of Functional Effects of Human nsSNPs. Available online: http://genetics.bwh.harvard.edu/pph2/ (accessed on 31 December 2024).
- Provean. Available online: https://provean.jcvi.org/index.php (accessed on 31 December 2024).
- SIFT. Available online: https://sift.bii.a-star.edu.sg/ (accessed on 31 December 2024).
- SNAP2. Available online: https://github.com/Rostlab/SNAP2 (accessed on 31 December 2024).
- SNPs&GO. Available online: https://snps-and-go.biocomp.unibo.it/snps-and-go/ (accessed on 31 December 2024).
Patient Code | GBA1 NM_000157.4 | Protein | Zigousity | rs | ClinVar |
---|---|---|---|---|---|
32976 | c.116G>A | p.Gly39Asp | +/− | rs200378040 | Not available |
34267 | c.1226A>G | p.Asn409Ser | +/− | rs76763715 | Pathogenic/Likely pathogenic Risk factor |
34310 | c.1223C>T | p.Thr408Met | +/− | rs75548401 | Likely benign Uncertain significance |
c.1448T>C | p.Leu483Pro | +/− | rs421016 | Pathogenic Risk factor | |
35118 | c.1223C>T | p.Thr408Met | +/− | rs75548401 | Likely benign Uncertain significance |
28694 | c.1226A>G | p.Asn409Ser | +/− | rs76763715 | Pathogenic/Likely pathogenic Risk factor |
33231 | c.1093G>A | p.Glu365Lys | +/− | rs2230288 | Likely benign, Uncertain significance Risk factor |
32931 | c.1448T>C | p.Leu483Pro | +/− | rs421016 | Pathogenic Risk factor |
Mutation | +/+ | +/− | −/− | p Value | Dominant Model | p Value | Allele Contrast | p Value | ||
---|---|---|---|---|---|---|---|---|---|---|
H63D | DD | HD | HH | DD+HD | HH | D | H | |||
Patients | 1 | 6 | 31 | 0.3892 | 7 | 31 | 0.1983 | 7 | 69 | 0.1566 |
Controls | 13363 | 150441 | 426128 | 163804 | 426128 | 177167 | 1002697 | |||
S65C | CC | CS | SS | CC+CS | SS | C | S | |||
Patients | 0 | 2 | 36 | 0.7666 | 2 | 36 | 0.4777 | 2 | 74 | 0.4889 |
Controls | 159 | 18883 | 570962 | 19042 | 570962 | 19201 | 1160807 | |||
C282Y | YY | YC | CC | YY+YC | CC | Y | C | |||
Patients | 0 | 1 | 37 | 0.1402 | 1 | 37 | 0.0477 | 1 | 75 | 0.0495 |
Controls | 3173 | 77461 | 509366 | 80634 | 509366 | 83807 | 1096193 |
Genotype | 2-2 | 5-5 | 8-8 | 2-5 | 2-8 | 5-8 | 8-10 |
---|---|---|---|---|---|---|---|
N. Patients | 10 | 2 | 4 | 11 | 6 | 4 | 1 |
Patient Code | Gene | Mutation | Familial History | Clinical Phenotype |
---|---|---|---|---|
34262 | LRRK2 | p.Gly2019Ser | yes | Symmetrical mono-lateral tremor, significant bradykinesia, urinary incontinence, insomnia and anxiety-depression disorder |
34203 | PRKN | p.Arg104Trp | no | Initial tremor in the right upper limb and then spread to the lower ipsilateral limb, slow gait and mild generalized bradykinesia |
34310 | GBA1 | p.Thr408Met p.Leu483Pro | yes | Difficulty in the movement of the left leg associated with motor constraint of the upper contralateral limb, mild-to-moderate plastic hypertone in the upper limb, hyposmia, frequent nightly awakenings, vivid dreams and occasional sleep talking |
28694 | GBA1 SNCA PRKN HFE | p.Asn409Ser p.Ala17Asp del ex3–4 p.His63Asp | yes | Progressive motor impairment in the right hand, bradykinesia and mixed tremor in the upper limbs, moderate bradykinesia in the lower right limb and plastic-spastic hypertone in the upper right limb, urge urinary incontinence episodes and a severe anxiety-depressive syndrome |
32976 | GBA1 | p.Gly39Asp | yes | Bilateral resting tremor and mild plastic hypertone to the upper limbs, sleep talking, irregular constipation and worsening anxiety |
19GM1966 | PRKN | p.Ala82Glu | no | Buccal dystonia and dyskinesia of the tongue during speech with dysarthria |
33830 | C9ORF72 | 8-10 x GGGGCC | yes | Resting tremor in the left hand, mild plastic rigidity and a tendency to micrographia and tendency to orthostatic hypotension |
Gene | Mutation | Polyphen2 | Mutation Taster | Provean | SIFT | SNAP2 | SNPs&GO | Prediction |
---|---|---|---|---|---|---|---|---|
GBA1 | p.Ala39Asp | Benign | Disease causing | Neutral | Tolerated | Neutral | Neutral | 1 out of 6 |
PRKN | p.Arg104Trp | Probably damaging | Polymorphism | Deleterious | Damaging | Effect | Neutral | 4 out of 6 |
SNCA | p.Ala17Asp | Probably damaging | Disease causing | Deleterious | Damaging | Effect | Disease | 6 out of 6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pilotto, A.; Carini, M.; Bresciani, R.; Monti, E.; Ferrari, F.; De Francesco, M.A.; Padovani, A.; Biasiotto, G. Next Generation Sequencing Analysis in Patients Affected by Parkinson’s Disease and Correlation Between Genotype and Phenotype in Selected Clinical Cases. Int. J. Mol. Sci. 2025, 26, 2397. https://doi.org/10.3390/ijms26062397
Pilotto A, Carini M, Bresciani R, Monti E, Ferrari F, De Francesco MA, Padovani A, Biasiotto G. Next Generation Sequencing Analysis in Patients Affected by Parkinson’s Disease and Correlation Between Genotype and Phenotype in Selected Clinical Cases. International Journal of Molecular Sciences. 2025; 26(6):2397. https://doi.org/10.3390/ijms26062397
Chicago/Turabian StylePilotto, Andrea, Mattia Carini, Roberto Bresciani, Eugenio Monti, Fabiana Ferrari, Maria Antonia De Francesco, Alessandro Padovani, and Giorgio Biasiotto. 2025. "Next Generation Sequencing Analysis in Patients Affected by Parkinson’s Disease and Correlation Between Genotype and Phenotype in Selected Clinical Cases" International Journal of Molecular Sciences 26, no. 6: 2397. https://doi.org/10.3390/ijms26062397
APA StylePilotto, A., Carini, M., Bresciani, R., Monti, E., Ferrari, F., De Francesco, M. A., Padovani, A., & Biasiotto, G. (2025). Next Generation Sequencing Analysis in Patients Affected by Parkinson’s Disease and Correlation Between Genotype and Phenotype in Selected Clinical Cases. International Journal of Molecular Sciences, 26(6), 2397. https://doi.org/10.3390/ijms26062397