Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (77)

Search Parameters:
Keywords = spin-depended transport

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1108 KiB  
Article
Hydrogen Permeation Resistance of PVDF–Graphene Nanocomposite Coatings for Metallic Pipelines
by Mohammed M. Aman, Bashar S. Mohammed and Ahmad Mahamad Al-Yacouby
Polymers 2025, 17(16), 2262; https://doi.org/10.3390/polym17162262 - 21 Aug 2025
Abstract
Hydrogen-induced steel embrittlement imposes a technical difficulty in facilitating effective and safe hydrogen transportation via pipelines. This investigative study assesses the potency of polyvinylidene fluoride (PVDF)–graphene-based composite coatings in the inhibition of hydrogen permeation. Spin coating was the method selected for this study, [...] Read more.
Hydrogen-induced steel embrittlement imposes a technical difficulty in facilitating effective and safe hydrogen transportation via pipelines. This investigative study assesses the potency of polyvinylidene fluoride (PVDF)–graphene-based composite coatings in the inhibition of hydrogen permeation. Spin coating was the method selected for this study, and varying graphene concentrations ranging from 0.1 to 1wt% were selected and applied to 306 stainless steel substrates. A membrane permeation cell was used in the evaluation of hydrogen permeability, while the impact of graphene loading on coating performance was analyzed using the response surface methodology (RSM). The outcomes showed an inversely proportional relationship between the graphene concentration and hydrogen ingress. The permeation coefficient for pure PVDF was recorded as 16.74, which decreased to 14.23, 12.10, and 11.46 for 0.3, 0.5, and 1.0 wt% PVDF-G, respectively, with the maximum reduction of 31.6% observed at 1.0 wt%. ANOVA established statistical significance, along with indications of strong projection dependability. However, the inhibition reduction stabilized with increasing graphene concentrations, likely caused by nanoparticle agglomeration. The results support the notion of PVDF–graphene’s potential as a suitable coating for the transformation of pipelines for hydrogen transport infrastructure. This research will aid in the establishment of suitable contemporary barrier coating materials, which will enable the safe utilization of hydrogen energy in the current energy transportation grid. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

16 pages, 4245 KiB  
Article
Van der Waals Magnetic Tunnel Junctions Based on Two-Dimensional 1T-VSe2 and Rotationally Aligned h-BN Monolayer
by Qiaoxuan Zhang, Cong Wang, Wenjie Wang, Rong Sun, Rongjie Zheng, Qingchang Ji, Hongwei Yan, Zhengbo Wang, Xin He, Hongyan Wang, Chang Yang, Jinchen Yu, Lingjiang Zhang, Ming Lei and Zhongchang Wang
Nanomaterials 2025, 15(16), 1246; https://doi.org/10.3390/nano15161246 - 14 Aug 2025
Viewed by 209
Abstract
Magnetic tunnel junctions (MTJs) are pivotal for spintronic applications such as magneto resistive memory and sensors. Two-dimensional van der Waals heterostructures offer a promising platform for miniaturizing MTJs while enabling the twist-angle engineering of their properties. Here, we investigate the impact of twisting [...] Read more.
Magnetic tunnel junctions (MTJs) are pivotal for spintronic applications such as magneto resistive memory and sensors. Two-dimensional van der Waals heterostructures offer a promising platform for miniaturizing MTJs while enabling the twist-angle engineering of their properties. Here, we investigate the impact of twisting the insulating barrier layer on the performance of a van der Waals MTJ with the structure graphene/1T-VSe2/h-BN/1T-VSe2/graphene, where 1T-VSe2 serves as the ferromagnetic electrodes and the monolayer h-BN acts as the tunnel barrier. Using first-principles calculations based on density functional theory (DFT) combined with the non-equilibrium Green’s function (NEGF) formalism, we systematically calculate the spin-dependent transport properties for 18 distinct rotational alignments of the h-BN layer (0° to 172.4°). Our results reveal that the tunneling magnetoresistance (TMR) ratio exhibits dramatic, rotation-dependent variations, ranging from 2328% to 24,608%. The maximum TMR occurs near 52.4°. An analysis shows that the twist angle modifies the d-orbital electronic states of interfacial V atoms in the 1T-VSe2 layers and alters the spin polarization at the Fermi level, thereby governing the spin-dependent transmission through the barrier. This demonstrates that rotational manipulation of the h-BN layer provides an effective means to engineer the TMR and performance of van der Waals MTJs. Full article
(This article belongs to the Section 2D and Carbon Nanomaterials)
Show Figures

Graphical abstract

26 pages, 38696 KiB  
Review
Altermagnetism and Altermagnets: A Brief Review
by Rupam Tamang, Shivraj Gurung, Dibya Prakash Rai, Samy Brahimi and Samir Lounis
Magnetism 2025, 5(3), 17; https://doi.org/10.3390/magnetism5030017 - 23 Jul 2025
Viewed by 1766
Abstract
Recently, a new class of magnetic material, termed altermagnets, has caught the attention of the magnetism and spintronics community. The magnetic phenomenon arising from these materials differs from traditional ferromagnetism and antiferromagnetism. It generally lacks net magnetization and is characterized by unusual non-relativistic [...] Read more.
Recently, a new class of magnetic material, termed altermagnets, has caught the attention of the magnetism and spintronics community. The magnetic phenomenon arising from these materials differs from traditional ferromagnetism and antiferromagnetism. It generally lacks net magnetization and is characterized by unusual non-relativistic spin-splitting and broken time-reversal symmetry. This leads to novel transport properties, such as the anomalous Hall effect, the crystal Nernst effect, and spin-dependent phenomena. Spin-dependent phenomena such as spin currents, spin-splitter torques, and high-frequency dynamics emerge as key characteristics in altermagnets. This paper reviews the main aspects pertaining to altermagnets by providing an overview of theoretical investigations and experimental realizations. We discuss the most recent developments in altermagnetism and prospects for exploiting its unique properties in next-generation devices. Full article
Show Figures

Figure 1

10 pages, 1559 KiB  
Review
The Effect of Electron Spin-Dependent Polarizability on Protein Activity
by Gilad Haran and Ron Naaman
Biomolecules 2025, 15(6), 830; https://doi.org/10.3390/biom15060830 - 6 Jun 2025
Viewed by 524
Abstract
In recent years, it has been established that electron transport through a chiral system depends on spin. In several studies, it has further been established that charge polarization in proteins may affect their activity and, specifically, that this polarization is electron spin-dependent. Here, [...] Read more.
In recent years, it has been established that electron transport through a chiral system depends on spin. In several studies, it has further been established that charge polarization in proteins may affect their activity and, specifically, that this polarization is electron spin-dependent. Here, we review experimental methods that enable the spin dependence of protein polarizability to be recorded and describe results from several studies that indicate the importance of spin in controlling the reactivity of proteins. We conclude by suggesting why this spin dependence may be of importance and discussing how future studies might explore pathways within proteins by which polarizability affects protein reactive sites. Full article
(This article belongs to the Special Issue Single-Molecule Protein Electronics)
Show Figures

Figure 1

16 pages, 4092 KiB  
Article
Observation of Thickness-Modulated Out-of-Plane Spin–Orbit Torque in Polycrystalline Few-Layer Td-WTe2 Film
by Mingkun Zheng, Wancheng Zhang, You Lv, Yong Liu, Rui Xiong, Zhenhua Zhang and Zhihong Lu
Nanomaterials 2025, 15(10), 762; https://doi.org/10.3390/nano15100762 - 19 May 2025
Viewed by 637
Abstract
The low-symmetry Weyl semimetallic Td-phase WTe2 exhibits both a distinct out-of-plane damping torque (τDL) and exceptional charge–spin interconversion efficiency enabled by strong spin-orbit coupling, positioning it as a prime candidate for spin–orbit torque (SOT) applications in two-dimensional transition metal [...] Read more.
The low-symmetry Weyl semimetallic Td-phase WTe2 exhibits both a distinct out-of-plane damping torque (τDL) and exceptional charge–spin interconversion efficiency enabled by strong spin-orbit coupling, positioning it as a prime candidate for spin–orbit torque (SOT) applications in two-dimensional transition metal dichalcogenides. Herein, we report on thickness-dependent unconventional out-of-plane τDL in chemically vapor-deposited (CVD) polycrystalline Td-WTe2 (t)/Ni80Fe20/MgO/Ti (Td-WTN-t) heterostructures. Angle-resolved spin-torque ferromagnetic resonance measurements on the Td-WTN-12 structure showed significant spin Hall conductivities of σSH,y = 4.93 × 103 (ℏ/2e) Ω−1m−1 and σSH,z = 0.81 × 103 (ℏ/2e) Ω−1m−1, highlighting its potential for wafer-scale spin–orbit torque device applications. Additionally, a detailed examination of magnetotransport properties in polycrystalline few-layer Td-WTe2 films as a function of thickness revealed a marked amplification of the out-of-plane magnetoresistance, which can be ascribed to the anisotropic nature of charge carrier scattering mechanisms within the material. Spin pumping measurements in Td-WTN-t heterostructures further revealed thickness-dependent spin transport properties of Td-WTe2, with damping analysis yielding an out-of-plane spin diffusion length of λSD ≈ 14 nm. Full article
Show Figures

Figure 1

14 pages, 3796 KiB  
Article
Nanoarchitectonics and Theoretical Evaluation on Electronic Transport Mechanism of Spin-Filtering Devices Based on Bridging Molecules
by Haiyan Wang, Shuaiqi Liu, Chao Wu, Fang Xie, Zhiqiang Fan and Xiaobo Li
Nanomaterials 2025, 15(10), 759; https://doi.org/10.3390/nano15100759 - 18 May 2025
Viewed by 557
Abstract
By combining density functional theory with the non-equilibrium Green’s function method, we conducted a first-principles investigation of spin-dependent transport properties in a molecular device featuring a dynamic covalent chemical bridge connected to zigzag graphene nanoribbon electrodes. The effects of spin-filtering and spin-rectifying on [...] Read more.
By combining density functional theory with the non-equilibrium Green’s function method, we conducted a first-principles investigation of spin-dependent transport properties in a molecular device featuring a dynamic covalent chemical bridge connected to zigzag graphene nanoribbon electrodes. The effects of spin-filtering and spin-rectifying on the IV characteristics are revealed and explained for the proposed molecular device. Interestingly, our results demonstrate that all three devices exhibit significant single-spin-filtering behavior in parallel (P) magnetization and dual-spin-filtering effects in antiparallel (AP) configurations, achieving nearly 100% spin-filtering efficiency. At the same time, from the IV curves, we find that there is a weak negative differential resistance effect. Moreover, a high rectifying ratio is found for spin-up electron transport in AP magnetization, which is explained by the transmission spectrum and local density of state. The fundamental mechanisms governing these phenomena have been elucidated through a systematic analysis of spin-resolved transmission spectra and spin-polarized electron transport pathways. These results extend the design principles of spin-controlled molecular electronics beyond graphene-based systems, offering a universal strategy for manipulating spin-polarized currents through dynamic covalent interfaces. The nearly ideal spin-filtering efficiency and tunable rectification suggest potential applications in energy-efficient spintronic logic gates and non-volatile memory devices, while the methodology provides a framework for optimizing spin-dependent transport in hybrid organic–inorganic nanoarchitectures. Our findings suggest that such systems are promising candidates for future spintronic applications. Full article
(This article belongs to the Special Issue The Interaction of Electron Phenomena on the Mesoscopic Scale)
Show Figures

Graphical abstract

22 pages, 11861 KiB  
Article
Solution-Processed Nanostructured Hybrid Materials Based on Graphene Oxide Flakes Decorated with Ligand-Exchanged PbS QDs: Synthesis, Characterization and Optoelectronic Properties
by Giovanny Perez-Parra, Nayely Torres-Gomez, Vineetha Vinayakumar, Diana F. Garcia-Gutierrez, Selene Sepulveda-Guzman and Domingo I. Garcia-Gutierrez
Appl. Nano 2025, 6(2), 7; https://doi.org/10.3390/applnano6020007 - 1 Apr 2025
Cited by 1 | Viewed by 957
Abstract
Nanostructured hybrid materials based on the combination of semiconductor QDs and GO are promising candidates for different optoelectronic and catalytic applications and being able to produce such hybrid materials in solution will expand their possible range of applications. In the current work, capping [...] Read more.
Nanostructured hybrid materials based on the combination of semiconductor QDs and GO are promising candidates for different optoelectronic and catalytic applications and being able to produce such hybrid materials in solution will expand their possible range of applications. In the current work, capping ligand-exchange procedures have been developed to replace the lead oleate normally found on the surface of PbS QDs synthesized by the popular hot-injection method. After the capping ligand-exchange process, the QDs are water soluble, which makes them soluble in most GO solutions. Solution-processed nanostructured hybrid materials based on GO flakes decorated with ligand-exchanged (EDT, TBAI and L-Cysteine) PbS QDs were synthesized by combining PbS QDs and GO solutions. Afterward, the resulting hybrid materials were thoroughly characterized by means of FTIR, XPS, Raman, UV-Vis-NIR and photoluminescence spectroscopy, as well as SEM and TEM techniques. The results indicate a clear surface chemistry variation in the capping ligand-exchanged PbS QDs, showing the presence of the exchanged ligand molecules. Thin films from the solution-processed nanostructured hybrid materials were deposited by the spin coating technique, and their optoelectronic properties were studied. Depending on the capping ligand molecule, the photoresponse and resistance of the thin films varied; the sample with the EDT ligand exchange showed the highest photoresponse and the lowest resistance. This surface chemistry had a direct effect on the charge carrier transfer and transport behavior of the nanostructured hybrid materials synthesized. These results show a novel and accessible route for synthesizing solution-processed and affordable nanostructured hybrid materials based on semiconductor QDs and GO. Additionally, the importance of the surface chemistry displayed by the PbS QDs and GO was clearly seen in determining the final optoelectronic properties displayed by their hybrid materials. Full article
Show Figures

Figure 1

24 pages, 19853 KiB  
Article
Optimization of Mechanical Performance of Full-Scale Precast Concrete Pipes with Varying Concrete Strengths and Reinforcement Using Factorial Design
by Safeer Abbas
Infrastructures 2025, 10(2), 29; https://doi.org/10.3390/infrastructures10020029 - 24 Jan 2025
Cited by 1 | Viewed by 1077
Abstract
The use of precast concrete pipes for water and sewage transportation systems is a very important element of a country’s infrastructure. The main aim of this study was to investigate the effects of concrete’s compressive strength and reinforcement levels on the mechanical performance [...] Read more.
The use of precast concrete pipes for water and sewage transportation systems is a very important element of a country’s infrastructure. The main aim of this study was to investigate the effects of concrete’s compressive strength and reinforcement levels on the mechanical performance of spun-cast full-scale precast concrete pipes in the local construction industries of developing countries. A test matrix was adopted using a full 32 factorial design. The studied concrete’s compressive strength was 20, 30, and 40 MPa, and reinforcement levels were 60%, 80%, and 100%, representing low, medium, and high levels, respectively. The medium level of reinforcement represented the reinforcement requirement of ASTM C76 in concrete pipes. A total of eighteen full-scale pipes of 450 mm diameter were cast in an industrial precast pipe unit using a spin-casting technique and were tested under a three-edge bearing load. The experimental results showed that the crack load and ultimate load of the tested pipes increased with higher levels of concrete strength and reinforcement levels. For example, an approximately 35% increase in the 0.30 mm crack load was observed when the concrete strength increased from 20 MPa to 30 MPa for all tested levels of reinforcement. Similarly, around a 19% increase in ultimate load was observed for pipes with 80% reinforcement compared to identical pipes with 60% reinforcement. It was found that the pipe class, as per ASTM C76, is highly dependent on the concrete strength and reinforcement levels. All of the pipes exhibited the development of flexural cracks at critical locations (crown, invert, and springlines). Moreover, concrete pipes cast with low-level strength and reinforcement also showed signs of crushing at the crown location near to the pipe failure. The analysis of variance (ANOVA) results showed that the main factors (compressive strength and reinforcement levels) were significantly affected by the cracking loads of precast pipes. No significant effect of the interaction of factors was observed on the crack load response. However, interaction factors, along with main factors, have significant effects on the ultimate load capacity of the concrete pipes, as indicated by the F-value, p-value, and Pareto charts. This study made an effort to illustrate and optimize the mechanical performance of pipes cast with various concrete strengths and reinforcement levels to facilitate the efficient use of materials for more resilient pipe infrastructure. Moreover, the exact optimization of concrete strength and reinforcement level for the desired pipe class will make the pipe design economical, leading to an increased profit margin for local spin-cast pipe fabricators without compromising the pipe’s quality. Full article
Show Figures

Figure 1

12 pages, 3346 KiB  
Article
Spin Glass State and Griffiths Phase in van der Waals Ferromagnetic Material Fe5GeTe2
by Jiaqi He, Yuan Cao, Yu Zou, Mengyuan Liu, Jia Wang, Wenliang Zhu and Minghu Pan
Nanomaterials 2025, 15(1), 19; https://doi.org/10.3390/nano15010019 - 27 Dec 2024
Cited by 2 | Viewed by 1440
Abstract
The discovery of two-dimensional (2D) van der Waals ferromagnetic materials opens up new avenues for making devices with high information storage density, ultra-fast response, high integration, and low power consumption. Fe5GeTe2 has attracted much attention because of its ferromagnetic transition [...] Read more.
The discovery of two-dimensional (2D) van der Waals ferromagnetic materials opens up new avenues for making devices with high information storage density, ultra-fast response, high integration, and low power consumption. Fe5GeTe2 has attracted much attention because of its ferromagnetic transition temperature near room temperature. However, the investigation of its phase transition is rare until now. Here, we have successfully synthesized a single crystal of the layered ferromagnet Fe5GeTe2 by chemical vapor phase transport, soon after characterized by X-ray diffraction (XRD), DC magnetization M(T), and isotherm magnetization M(H) measurements. A paramagnetic to ferromagnetic transition is observed at ≈302 K (TC) in the temperature dependence of the DC magnetic susceptibility of Fe5GeTe2. We found an unconventional potential spin glass state in the low-temperature regime that differs from the conventional spin glass states and Griffiths phase (GP) in the high-temperature regime. The physical mechanisms behind the potential spin glass state of Fe5GeTe2 at low temperatures and the Griffith phase at high temperatures need to be further investigated. Full article
Show Figures

Figure 1

20 pages, 1797 KiB  
Article
Hyperon Production in Bi + Bi Collisions at the Nuclotron-Based Ion Collider Facility and Angular Dependence of Hyperon Spin Polarization
by Nikita S. Tsegelnik, Vadym Voronyuk and Evgeni E. Kolomeitsev
Particles 2024, 7(4), 984-1003; https://doi.org/10.3390/particles7040060 - 13 Nov 2024
Cited by 2 | Viewed by 1175
Abstract
The strange baryon production in Bi + Bi collisions at sNN=9.0 GeV is studied using the PHSD transport model. Hyperon and anti-hyperon yields, transverse momentum spectra, and rapidity spectra are calculated, and their centrality dependence and the effect of [...] Read more.
The strange baryon production in Bi + Bi collisions at sNN=9.0 GeV is studied using the PHSD transport model. Hyperon and anti-hyperon yields, transverse momentum spectra, and rapidity spectra are calculated, and their centrality dependence and the effect of rapidity and transverse momentum cuts are studied. The rapidity distributions for Λ¯, Ξ, Ξ¯ baryons are found to be systematically narrower than for Λs. The pT slope parameters for anti-hyperons vary more with centrality than those for hyperons. Restricting the accepted rapidity range to |y|<1 increases the slope parameters by 13–30 MeV, depending on the centrality class and the hyperon mass. Hydrodynamic velocity and vorticity fields are calculated, and the formation of two oppositely rotating vortex rings moving in opposite directions along the collision axis is found. The hyperon spin polarization induced by the medium vorticity within the thermodynamic approach is calculated, and the dependence of the polarization on the transverse momentum and rapidity cuts and on the centrality selection is analyzed. The cuts have stronger effect on the polarization of Λ and Ξ hyperons than on the corresponding anti-hyperons. The polarization signal is maximal for the centrality class, 60–70%. We show that, for the considered hyperon polarization mechanism, the structure of the vorticity field makes an imprint on the polarization signal as a function of the azimuthal angle in the transverse momentum plane, ϕH, cosϕH=px/pT. For particles with positive longitudinal momentum, pz>0, the polarization increases with cosϕH, while for particles with pz<0 it decreases. Full article
(This article belongs to the Special Issue Infinite and Finite Nuclear Matter (INFINUM))
Show Figures

Figure 1

11 pages, 4145 KiB  
Article
Asphalt-Binder Mixtures Evaluated by T1 NMR Relaxometry
by Rebecca M. Herndon, Jay Balasubramanian, Magdy Abdelrahman and Klaus Woelk
Physchem 2024, 4(3), 285-295; https://doi.org/10.3390/physchem4030020 - 13 Aug 2024
Cited by 2 | Viewed by 1632
Abstract
Asphalt pavements make up a majority of the essential transportation systems in the US. Asphalt mixtures age and degrade over time, reducing the pavement performance. Pavement performance critically depends on the aging of asphalt binder. The aging of asphalt binder during construction is [...] Read more.
Asphalt pavements make up a majority of the essential transportation systems in the US. Asphalt mixtures age and degrade over time, reducing the pavement performance. Pavement performance critically depends on the aging of asphalt binder. The aging of asphalt binder during construction is traditionally modeled by rolling thin film oven (RTFO) testing, while aging during service life is modeled by pressure aging vessel (PAV) testing. Comparing these models to the aging of binders in actual pavements is limited because, to be used for current testing, binders must be separated from the pavement’s aggregate by solvent extraction. Solvent extraction will, at least in part, compromise the structural integrity of asphalt binder samples. Spin-lattice NMR relaxometry has been shown to nondestructively evaluate asphalt properties in situ through the analysis of hydrogen environments. The molecular mobility of hydrogen environments and with it the stiffness of asphalt binder samples can be determined by characteristic T1 relaxation times, indicating the complexity of asphalt-binder aging. In this study, two laboratory-generated asphalt mixtures, a failed field sample, and several laboratory-aged binder samples are compared by NMR relaxometry. NMR relaxometry was found to be able to differentiate between asphalt samples based on their binder percentage. According to the relaxometry findings, the RTFO binder aging compared favorably to the 6% laboratory-mixed sample. The PAV aging, however, did not compare well to the relaxometry results found for the field-aged sample. The amount of aggregate was found to have an influence on the relaxation times of the binder in the mixed samples and an inverse proportionality of the binder content to the primary NMR relaxation time was detected. It is concluded that molecular water present in the pores of the aggregate material gives rise to such a relationship. The findings of this study lay the foundation for nondestructive asphalt performance evaluation by NMR relaxometry. Full article
(This article belongs to the Section Solid-State Chemistry and Physics)
Show Figures

Figure 1

13 pages, 10530 KiB  
Article
Two-Step Spin Crossover and Contact-Tunable Giant Magnetoresistance in Cyclopentadienyl Metalloporphyrin
by Mingbo Yu, Liping Zhou, Wen-Long You and Xuefeng Wang
Appl. Sci. 2024, 14(9), 3696; https://doi.org/10.3390/app14093696 - 26 Apr 2024
Viewed by 2021
Abstract
In this article, we study the optimized structures, spin crossover, and coherent quantum transport properties of a series of cyclopentadienyl metalloporphyrin (PTMCp, TM = transition metal) complexes using the density functional theory combined with the non-equilibrium Green’s function method. The structure of the [...] Read more.
In this article, we study the optimized structures, spin crossover, and coherent quantum transport properties of a series of cyclopentadienyl metalloporphyrin (PTMCp, TM = transition metal) complexes using the density functional theory combined with the non-equilibrium Green’s function method. The structure of the complexes can be classified into the sandwich type and the biplanar type. Energetic analyses of spin states reveal that the IS(intermediate-spin)-HS(high-spin) spin transition may appear in PMnCp and PFeCp, and the LS(low-spin)-IS(intermediate-spin)-HS(high-spin) two-step spin transition may appear in PCoCp under external stimulus. We predict that giant magnetoresistance may be observed in the ground-state sandwich PTMCp depending on the contact between the electrodes and the molecule in measurements. These results indicate that PTMCp complexes could be promising materials for spintronics. Full article
Show Figures

Figure 1

14 pages, 3461 KiB  
Article
Influence of an Overshoot Layer on the Morphological, Structural, Strain, and Transport Properties of InAs Quantum Wells
by Omer Arif, Laura Canal, Elena Ferrari, Claudio Ferrari, Laura Lazzarini, Lucia Nasi, Alessandro Paghi, Stefan Heun and Lucia Sorba
Nanomaterials 2024, 14(7), 592; https://doi.org/10.3390/nano14070592 - 27 Mar 2024
Cited by 3 | Viewed by 1830
Abstract
InAs quantum wells (QWs) are promising material systems due to their small effective mass, narrow bandgap, strong spin–orbit coupling, large g-factor, and transparent interface to superconductors. Therefore, they are promising candidates for the implementation of topological superconducting states. Despite this potential, the growth [...] Read more.
InAs quantum wells (QWs) are promising material systems due to their small effective mass, narrow bandgap, strong spin–orbit coupling, large g-factor, and transparent interface to superconductors. Therefore, they are promising candidates for the implementation of topological superconducting states. Despite this potential, the growth of InAs QWs with high crystal quality and well-controlled morphology remains challenging. Adding an overshoot layer at the end of the metamorphic buffer layer, i.e., a layer with a slightly larger lattice constant than the active region of the device, helps to overcome the residual strain and provides optimally relaxed lattice parameters for the QW. In this work, we systematically investigated the influence of overshoot layer thickness on the morphological, structural, strain, and transport properties of undoped InAs QWs on GaAs(100) substrates. Transmission electron microscopy reveals that the metamorphic buffer layer, which includes the overshoot layer, provides a misfit dislocation-free InAs QW active region. Moreover, the residual strain in the active region is compressive in the sample with a 200 nm-thick overshoot layer but tensile in samples with an overshoot layer thicker than 200 nm, and it saturates to a constant value for overshoot layer thicknesses above 350 nm. We found that electron mobility does not depend on the crystallographic directions. A maximum electron mobility of 6.07 × 105 cm2/Vs at 2.6 K with a carrier concentration of 2.31 × 1011 cm−2 in the sample with a 400 nm-thick overshoot layer has been obtained. Full article
Show Figures

Figure 1

11 pages, 586 KiB  
Article
Magnetic Properties and THz Emission from Co/CoO/Pt and Ni/NiO/Pt Trilayers
by Nikolaos Kanistras, Laura Scheuer, Dimitrios I. Anyfantis, Alexandros Barnasas, Garik Torosyan, René Beigang, Ovidiu Crisan, Panagiotis Poulopoulos and Evangelos Th. Papaioannou
Nanomaterials 2024, 14(2), 215; https://doi.org/10.3390/nano14020215 - 19 Jan 2024
Cited by 6 | Viewed by 2188
Abstract
THz radiation emitted by ferromagnetic/non-magnetic bilayers is a new emergent field in ultra-fast spin physics phenomena with a lot of potential for technological applications in the terahertz (THz) region of the electromagnetic spectrum. The role of antiferromagnetic layers in the THz emission process [...] Read more.
THz radiation emitted by ferromagnetic/non-magnetic bilayers is a new emergent field in ultra-fast spin physics phenomena with a lot of potential for technological applications in the terahertz (THz) region of the electromagnetic spectrum. The role of antiferromagnetic layers in the THz emission process is being heavily investigated at the moment. In this work, we fabricate trilayers in the form of Co/CoO/Pt and Ni/NiO/Pt with the aim of studying the magnetic properties and probing the role of very thin antiferromagnetic interlayers like NiO and CoO in transporting ultrafast spin current. First, we reveal the static magnetic properties of the samples by using temperature-dependent Squid magnetometry and then we quantify the dynamic properties with the help of ferromagnetic resonance spectroscopy. We show magnetization reversal that has large exchange bias values and we extract enhanced damping values for the trilayers. THz time-domain spectroscopy examines the influence of the antiferromagnetic interlayer in the THz emission, showing that the NiO interlayer in particular is able to transport spin current. Full article
Show Figures

Figure 1

11 pages, 2369 KiB  
Article
Effect of Film Morphology on Electrical Conductivity of PEDOT:PSS
by Aditya Saha, Daisuke Ohori, Takahiko Sasaki, Keisuke Itoh, Ryuji Oshima and Seiji Samukawa
Nanomaterials 2024, 14(1), 95; https://doi.org/10.3390/nano14010095 - 29 Dec 2023
Cited by 5 | Viewed by 3460
Abstract
Commercially available formulations of the popular conductive polymer, poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) are aqueous dispersions that require the addition of secondary dopants such as dimethyl sulphoxide (DMSO) or ethylene glycol (EG) for fabricated films to have the desired levels of conductivity. CleviosTM F [...] Read more.
Commercially available formulations of the popular conductive polymer, poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) are aqueous dispersions that require the addition of secondary dopants such as dimethyl sulphoxide (DMSO) or ethylene glycol (EG) for fabricated films to have the desired levels of conductivity. CleviosTM F HC Solar, a formulation of PEDOT:PSS produced by Heraeus, GmbH, achieves over 500 S/cm without these secondary dopants. This work studies whether secondary dopants such as DMSO have any additional effect on this type of PEDOT:PSS. The temperature dependencies of the conductivity of F HC Solar spin-coated thin films measured using a four-probe method seem to exhibit different charge transport properties compared with secondary doped PH1000. Observations made using atomic force microscopy (AFM) show that different concentrations of DMSO affect the orientation of the PEDOT domains in the thin film. These morphological changes cause room temperature conductivity to reduce from 640 S/cm in pristine films to as low as 555 S/cm after adding 7 wt% of DMSO along the film. Such tuning may prove useful in future applications of PEDOT:PSS, such as nanoprobes, transistors and hybrid solar cells. Full article
(This article belongs to the Special Issue Nanodevices—Technologies and Applications in Semiconductor Industry)
Show Figures

Figure 1

Back to TopTop