Optimization of Mechanical Performance of Full-Scale Precast Concrete Pipes with Varying Concrete Strengths and Reinforcement Using Factorial Design
Abstract
1. Introduction
2. Selection of Concrete Materials and Reinforcement for Pipe Manufacturing
3. Manufacturing of Full-Scale Pipes
4. Testing Methodologies
4.1. Experimental Perfromance: Three-Edge Bearing Test
4.2. Design of Experiment Methodology: Factorial Analysis
5. Results
5.1. Crack and Ultimate Loads: Experimental Results
5.2. Factorial Analysis Results
5.2.1. Crack Load
5.2.2. Ultimate Load
6. Discussion
7. Summary and Conclusions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Joshi, N.G. Prestressed Concrete Pipes and Pipelines, 1st ed.; Alpha Science: Paris, France, 2012; 248p. [Google Scholar]
- Erdogmus, E.; Skourup, B.N.; Tadros, M. Recommendations for Design of Reinforced Concrete Pipe. J. Pipeline Syst. Eng. Pract. 2010, 1, 25–32. [Google Scholar] [CrossRef]
- Abel, T.; Pelczar, N. Modern Concrete Pipes: A Review of Reinforcement and New Technologies. Stud. Geotech. Mech. 2010, 43, 548–557. [Google Scholar] [CrossRef]
- Faisal, A.; Abbas, S.; Ahmed, A. Mechanical Performance of Spun-Cast Full-Scale Precast Pipes incorporating Hybrid Conventional Rebar Cage and Steel Fibers. Structures 2023, 52, 104–116. [Google Scholar] [CrossRef]
- Faisal, A.; Abbas, S.; Khan, A.H.; Ahmed, I.; Shaukat, S. Field Buried and Laboratory Investigation of Full-Scale Eco-friendly Spun-Cast Concrete Pipes under Various Construction Loading Regimes. Tunn. Undergr. Space Technol. 2024, 149, 105813. [Google Scholar] [CrossRef]
- Nedal, M. Experimental and Numerical Study on Full-Scale Precast Steel Fibre-Reinforced Concrete Pipes. Ph.D. Thesis, University of Western Ontario, London, ON, Canada, 2015. Available online: https://ir.lib.uwo.ca/etd/2795 (accessed on 14 December 2024).
- Ramadan, A.; Shehata, A.; Younis, A.; Wong, L.S.; Nehdi, M. Modeling Structural Behavior of Precast Concrete Pipe with Single Elliptical Steel Cage Reinforcement. Structures 2020, 27, 903–916. [Google Scholar] [CrossRef]
- Sun, Y.; Huang, Y.; Yin, Y.; Wang, Y.; Hu, S. Experimental and Numerical Study of a Rebar-prestressed Cylinder Concrete Pipe (RPCCP) under Internal Load. Materials 2022, 15, 7771. [Google Scholar] [CrossRef] [PubMed]
- Hata, M.; Sato, M.; Miyazawa, S. Experimental Study on the Application of Cementless Material with Industrial By-products to Steam-cured Precast Concrete Products. Materials 2022, 15, 7624. [Google Scholar] [CrossRef] [PubMed]
- Alshboul, O.; Almasabha, G.; Shehadeh, A.; Al Hattamleh, O.; Almuflih, A.S. Optimization of the Structural Performance of Buried Reinforced Concrete Pipelines in Cohesionless Soils. Materials 2022, 15, 4051. [Google Scholar] [CrossRef]
- Ancaș, A.D.; Țurcanu, F.-E.; Verdes, M.; Hudisteanu, S.V.; Cherecheș, N.C.; Popovici, C.G.; Profire, M. Comparative Numerical Studies on the Structural Behavior of Buried Pipes subjected to Extreme Environmental Actions. Materials 2022, 15, 3385. [Google Scholar] [CrossRef]
- Merachtsaki, D.; Fytianos, G.; Papastergiadis, E.; Samaras, P.; Yiannoulakis, H.; Zouboulis, A. Properties and Performance of Novel Mg(OH)2 based Coatings for Corrosion Mitigation in Concrete Sewer Pipes. Materials 2020, 13, 5291. [Google Scholar] [CrossRef]
- Zhang, P.; Gong, C.; Wu, Q.; Zeng, C. Experimental Study on the Bearing Capacity of Reinforced Concrete Pipes with Corrosion-thinning Defects Repaired by UHP-ECC Mortar Spraying. Appl. Sci. 2023, 13, 7800. [Google Scholar] [CrossRef]
- Mei, Z.; Zhang, P.; Zeng, C. Experimental Study on Mechanical Properties of Rectangular Reinforced Concrete Pipe with Corrosion Defects. Appl. Sci. 2023, 13, 7570. [Google Scholar] [CrossRef]
- Li, P.; Zhang, W.; Ye, Z.; Wang, Y.; Yang, S.; Wang, L. Analysis of Acoustic Emission Energy from Reinforced Concrete Sewage Pipeline under Full-Scale Loading Test. Appl. Sci. 2022, 12, 8624. [Google Scholar] [CrossRef]
- Mostofizadeh, S.; Tee, K.F. Static and Seismic Responses of Eco-Friendly Buried Concrete Pipes with Various Dosages of Fly Ash. Appl. Sci. 2021, 11, 11700. [Google Scholar] [CrossRef]
- Zhang, Z.; Fang, H.; Li, B.; Wang, F. Mechanical Properties of Concrete Pipes with Pre-Existing Cracks. Appl. Sci. 2020, 10, 1545. [Google Scholar] [CrossRef]
- Basit, A.; Abbas, S.; Ajmal, M.M.; Mughal, U.A.; Kazmi, S.M.S.; Munir, M.J. Joint Behavior of Full-Scale Precast Concrete Pipe Infrastructure: Experimental and Numerical Analysis. Infrastructures 2024, 9, 69. [Google Scholar] [CrossRef]
- Zhai, K.; Zhang, C.; Fang, H.; Ma, H.; Ni, P.; Wang, F.; Li, B.; He, H. Mechanical Responses of Bell-and-Spigot Joints in Buried Prestressed Concrete Cylinder Pipe under Coupled Service and Surcharge Loads. Struct. Concr. 2021, 22, 827–844. [Google Scholar] [CrossRef]
- Wong, L.S.; Nehdi, M.L. Critical Analysis of International Precast Concrete Pipe Standards. Infrastructures 2018, 3, 18. [Google Scholar] [CrossRef]
- Abbas, S.; Faisal, A.; Khan, M.A.; Nehdi, M.L.; Hameed, R.; Shaukat, S. Systematic State-of-the-Art Review on Precast Concrete Pipes. Results Eng. 2025, 25, 103826. [Google Scholar] [CrossRef]
- Hongfang, L.; Cuiwei, L.; Xing, Z.; Haoyan, P.; Houming, N.; Tom, I. Prediction of Construction Traction Force for Corroded Pipeline Rehabilitation Using Multilayer Composite Liners. J. Pipeline Syst. Eng. Pract. 2025, 16, 04024080. [Google Scholar] [CrossRef]
- Liu, S.; Li, Y.; Zhang, Y.; Ma, M.; Qiu, W.; She, L.; Zhou, H.; Li, K.; Sun, K. Monitoring the Circumferential Cracking of Inner Concrete Core in Prestressed Concrete Cylinder Pipe during Wire-wrapping using Distributed Optical Fiber Sensors. Tunn. Undergr. Space Technol. 2025, 157, 106330. [Google Scholar] [CrossRef]
- Fang, H.; Sun, J.; Li, B.; Du, X.; Wang, N.; Di, D.; Zhai, K. Longitudinal and Circumferential Bending Moment Responses of Dislocated Concrete Pipes Rehabilitated with CIPP Liners under Traffic Loads. Tunn. Undergr. Space Technol. 2025, 155 Pt 1, 106222. [Google Scholar] [CrossRef]
- Li, C.; Hu, S.; Hu, Y.; Ye, Y. Investigating the Impact of Steam Curing Parameters on the Chloride Ion Penetration Resistance of the Prestressed Concrete Cylinder Pipe (PCCP) Protective Layer. J. Build. Eng. 2024, 92, 109777. [Google Scholar] [CrossRef]
- Pour, M.; Eskandari-Naddaf, H.; Pakzad, A. Linear and Non-linear SVM Prediction for Fresh Properties and Compressive Strength of High Volume Fly Ash Self-compacting Concrete. Constr. Build. Mater. 2020, 230, 117021. [Google Scholar] [CrossRef]
- Alqadi, A.N.; Mustapha, B.; Naganathan, S.; Al-Kadi, Q.N. Development of Self-compacting Concrete using Contrast Constant Factorial Design. J. King Saud Univ.-Eng. Sci. 2013, 25, 105–112. [Google Scholar] [CrossRef]
- Coo, M.; Pheeraphan, T. Effect of Sand, Fly Ash, and Coarse Aggregate Gradation on Preplaced Aggregate Concrete studied through Factorial Design. Constr. Build. Mater. 2015, 93, 812–821. [Google Scholar] [CrossRef]
- Colette, D.A.; Martial, A.; Joseph, A.; Benjamin, Y.; Patrick, D. Optimization of the Compressive Strength of used Tire/Cement Phase Composite Concretes using a Full Factorial Design. Constr. Build. Mater. 2023, 404, 133252. [Google Scholar] [CrossRef]
- Mukharjee, B.; Barai, S. Assessment of the Influence of Nano-Silica on the Behavior of Mortar using Factorial Design of Experiments. Constr. Build. Mater. 2014, 68, 416–425. [Google Scholar] [CrossRef]
- Senff, l.; Hotza, D.; Repette, W.L.; Ferreira, V.M.; Labrincha, J.A. Mortars with Nano-SiO2 and Micro-SiO2 investigated by Experimental Design. Constr. Build. Mater. 2010, 24, 1432–1437. [Google Scholar] [CrossRef]
- Phanpheta, S.; Bangphan, S. Application of Full Factorial Design for Optimization of Production of Product Process by some Materials. J. Tianjin Univ. Sci. Technol. 2021, 54, 35–54. [Google Scholar]
- ASTMC76; Standard Specification for Reinforced Concrete Culvert, Storm Drain, and Sewer Pipe. American Society for Testing and Materials: West Conshohocken, PA, USA, 2022.
- ACI Committee 211. Guide for Selecting Proportions for No-Slump Concrete (ACI 211.3R-02); American Concrete Institute: Farmington Hills, MI, USA, 2009. [Google Scholar]
- ASTM C497; Standard Test Methods for Concrete Pipe, Concrete Box Sections, Manhole Sections, or Tile. American Society for Testing and Materials: West Conshohocken, PA, USA, 2020.
- Madadi, A.; Tasdighi, M.; Eskandari-Naddaf, H. Structural Response of Ferrocement Panels incorporating Lightweight Expanded Clay and Perlite Aggregates: Experimental, Theoretical and Statistical Analysis. Eng. Struct. 2019, 188, 382–393. [Google Scholar] [CrossRef]
- Rezaifar, O.; Hasanzadeh, M.; Gholhaki, M. Concrete made with Hybrid Blends of Crumb Rubber and Metakaolin: Optimization using Response Surface Method. Constr. Build. Mater. 2016, 123, 59–68. [Google Scholar] [CrossRef]
- Azimi-Pour, M.; Eskandari-Naddaf, H. Synergistic Effect of Colloidal Nano and Micro-silica on the Microstructure and Mechanical Properties of Mortar using Full Factorial Design. Constr. Build. Mater. 2020, 261, 120497. [Google Scholar] [CrossRef]
- Montgomery, D. Design and Analysis of Experiments, 9th ed.; John Wiley & Sons Inc: Hoboken, NJ, USA, 2017; 749p. [Google Scholar]
- Bingol, D.; Tekin, N.; Alkan, M. Brilliant Yellow Dye Adsorption onto Sepiolite using a Full factorial design. Appl. Clay Sci. 2010, 50, 315–321. [Google Scholar] [CrossRef]
- Yong-Jie, H.; Cheng-Yong, H.; Yun-Ming, L.; Abdullah, M.; Yeng-Seng, L.; Ern-Hun, K.; Shee-Ween, O.; Wan-En, O.; Hui-Teng, N.; Yong-Sing, N. Strength Optimization and Key Factors Correlation of One-part Fly Ash/Ladle Furnace Slag (FA/LFS) Geopolymer using Statistical Approach. J. Build. Eng. 2023, 63 Pt A, 105480. [Google Scholar] [CrossRef]
- Chao, L.; Kuo, C. Optimizing the Ultimate Strength of Precast Reinforced Concrete Pipes in Three-edge Bearing Tests. Struct. Concr. 2018, 19, 1174–1184. [Google Scholar] [CrossRef]
Levels | Concrete strength (C) | Reinforcement (R) |
---|---|---|
Low (L) | 20 MPa | 60% (125 mm2/m) |
Medium (M) | 30 MPa | 80% (167 mm2/m) |
High (H) | 40 MPa | 100% (209 mm2/m) |
Pipe Type | Pipe Combination | Concrete Strength | Reinforcement |
---|---|---|---|
1 | LL | 20 MPa | 60% |
2 | ML | 30 MPa | 60% |
3 | HL | 40 MPa | 60% |
4 | LM | 20 MPa | 80% |
5 | MM | 30 MPa | 80% |
6 | HM | 40 MPa | 80% |
7 | LH | 20 MPa | 100% |
8 | MH | 30 MPa | 100% |
9 | HH | 40 MPa | 100% |
Ingredients | Mass/Cement Mass | ||
---|---|---|---|
20 MPa | 30 MPa | 40 MPa | |
Cement | 1.00 | 1.00 | 1.00 |
Coarse aggregates | 5.25 | 3.05 | 2.62 |
Fine Aggregates | 2.25 | 1.60 | 1.35 |
Water | 0.73 | 0.45 | 0.39 |
Pipes | Crack Load (kN) | Ultimate Load (kN) | ||||||
---|---|---|---|---|---|---|---|---|
Replicate 1 | Replicate 2 | Average | SD * | Replicate 1 | Replicate 2 | Average | SD * | |
LL | 81.12 | 84.10 | 82.61 | 2.11 | 104.26 | 107.85 | 106.06 | 2.54 |
ML | 113.52 | 110.34 | 111.93 | 2.25 | 138.24 | 135.78 | 137.01 | 1.74 |
HL | 130.25 | 133.24 | 131.75 | 2.11 | 148.24 | 153.87 | 151.06 | 3.98 |
LM | 88.24 | 91.85 | 90.05 | 2.55 | 124.23 | 127.12 | 125.68 | 2.04 |
MM | 119.15 | 123.75 | 121.45 | 3.25 | 164.5 | 160.14 | 162.32 | 3.08 |
HM | 137.28 | 141.92 | 139.60 | 3.28 | 177.85 | 183.15 | 180.50 | 3.75 |
LH | 99.24 | 95.87 | 97.56 | 2.38 | 142.95 | 139.10 | 141.03 | 2.72 |
MH | 130.58 | 135.85 | 133.22 | 3.73 | 187.25 | 184.95 | 186.10 | 1.63 |
HH | 155.48 | 150.25 | 152.87 | 3.70 | 201.25 | 206.95 | 204.10 | 4.03 |
Source | DF | SS | MS | F-Value | p-Value |
---|---|---|---|---|---|
Concrete strength | 2 | 8072.35 | 4036.17 | 483.90 | 0.000 |
Reinforcement | 2 | 1102.98 | 551.49 | 66.12 | 0.000 |
Concrete strength × Reinforcement (interaction) | 4 | 30.92 | 7.73 | 0.93 | 0.490 |
Error | 9 | 75.07 | 8.34 | ||
Total | 17 | 9281.31 |
Source | DF | SS | MS | F-Value | p-Value |
---|---|---|---|---|---|
Concrete strength | 2 | 9278.80 | 4639.40 | 526.24 | 0.000 |
Reinforcement | 2 | 6281.00 | 3140.50 | 356.22 | 0.000 |
Concrete strength × Reinforcement (interaction) | 4 | 183.80 | 45.94 | 5.21 | 0.019 |
Error | 9 | 79.30 | 8.82 | ||
Total | 17 | 15,822.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abbas, S. Optimization of Mechanical Performance of Full-Scale Precast Concrete Pipes with Varying Concrete Strengths and Reinforcement Using Factorial Design. Infrastructures 2025, 10, 29. https://doi.org/10.3390/infrastructures10020029
Abbas S. Optimization of Mechanical Performance of Full-Scale Precast Concrete Pipes with Varying Concrete Strengths and Reinforcement Using Factorial Design. Infrastructures. 2025; 10(2):29. https://doi.org/10.3390/infrastructures10020029
Chicago/Turabian StyleAbbas, Safeer. 2025. "Optimization of Mechanical Performance of Full-Scale Precast Concrete Pipes with Varying Concrete Strengths and Reinforcement Using Factorial Design" Infrastructures 10, no. 2: 29. https://doi.org/10.3390/infrastructures10020029
APA StyleAbbas, S. (2025). Optimization of Mechanical Performance of Full-Scale Precast Concrete Pipes with Varying Concrete Strengths and Reinforcement Using Factorial Design. Infrastructures, 10(2), 29. https://doi.org/10.3390/infrastructures10020029