Magnetic Properties and THz Emission from Co/CoO/Pt and Ni/NiO/Pt Trilayers
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Magnetization Reversal
3.2. Ferromagnetic Resonance Spectroscopy, FMR
3.3. THz Spectroscopy
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
FM | Ferromagnetic |
NM | Non-magnetic |
STEs | Spintronic THz emitters |
THz-TDS | Terahertz time-domain spectroscopy |
EB | Exchange Bias |
AFM | Antiferromagnetic |
References
- Seifert, T.; Jaiswal, S.; Martens, U.; Hannegan, J.; Braun, L.; Maldonado, P.; Freimuth, F.; Kronenberg, A.; Henrizi, J.; Radu, I.; et al. Efficient metallic spintronic emitters of ultrabroadband terahertz radiation. Nat. Photon. 2016, 10, 483–488. [Google Scholar] [CrossRef]
- Papaioannou, E.T.; Beigang, R. THz spintronic emitters: A review on achievements and future challenges. Nanophotonics 2021, 10, 1243–1257. [Google Scholar] [CrossRef]
- Seifert, T.; Jaiswal, S.; Sajadi, M.; Jakob, G.; Winnerl, S.; Wolf, M.; Kläui, M.; Kampfrath, T. Ultrabroadband single-cycle terahertz pulses with peak fields of 300 kV cm−1 from a metallic spintronic emitter. Appl. Phys. Lett. 2017, 110, 252402. [Google Scholar] [CrossRef]
- Rouzegar, R.; Chekhov, A.; Behovits, Y.; Serrano, B.; Syskaki, M.; Lambert, C.; Engel, D.; Martens, U.; Münzenberg, M.; Wolf, M.; et al. Broadband Spintronic Terahertz Source with Peak Electric Fields Exceeding 1.5 MV/cm. Phys. Rev. Appl. 2023, 19, 034018. [Google Scholar] [CrossRef]
- Papaioannou, E.T.; Torosyan, G.; Keller, S.; Scheuer, L.; Battiato, M.; Mag-Usara, V.K.; Lߣhuillier, J.; Tani, M.; Beigang, R. Efficient Terahertz Generation Using Fe/Pt Spintronic Emitters Pumped at Different Wavelengths. IEEE Trans. Magn. 2018, 54, 1–5. [Google Scholar] [CrossRef]
- Hibberd, M.T.; Lake, D.S.; Johansson, N.A.B.; Thomson, T.; Jamison, S.P.; Graham, D.M. Magnetic-field tailoring of the terahertz polarization emitted from a spintronic source. Appl. Phys. Lett. 2019, 114, 031101. [Google Scholar] [CrossRef]
- Niwa, H.; Yoshikawa, N.; Kawaguchi, M.; Hayashi, M.; Shimano, R. Switchable generation of azimuthally- and radially-polarized terahertz beams from a spintronic terahertz emitter. Opt. Express 2021, 29, 13331–13343. [Google Scholar] [CrossRef] [PubMed]
- Kong, D.; Wu, X.; Wang, B.; Nie, T.; Xiao, M.; Pandey, C.; Gao, Y.; Wen, L.; Zhao, W.; Ruan, C.; et al. Broadband Spintronic Terahertz Emitter with Magnetic-Field Manipulated Polarizations. Adv. Opt. Mater. 2019, 7, 1900487. [Google Scholar] [CrossRef]
- Gueckstock, O.; Nádvorník, L.; Seifert, T.S.; Borchert, M.; Jakob, G.; Schmidt, G.; Woltersdorf, G.; Kläui, M.; Wolf, M.; Kampfrath, T. Modulating the polarization of broadband terahertz pulses from a spintronic emitter at rates up to 10 kHz. Optica 2021, 8, 1013–1019. [Google Scholar] [CrossRef]
- Kampfrath, T.; Battiato, M.; Maldonado, P.; Eilers, G.; Nötzold, J.; Mährlein, S.; Zbarsky, V.; Freimuth, F.; Mokrousov, Y.; Blügel, S.; et al. Terahertz spin current pulses controlled by magnetic heterostructures. Nat. Nanotechnol. 2013, 8, 256. [Google Scholar] [CrossRef]
- Walowski, J.; Münzenberg, M. Perspective: Ultrafast magnetism and THz spintronics. J. Appl. Phys. 2016, 120, 140901. [Google Scholar] [CrossRef]
- Bull, C.; Hewett, S.M.; Ji, R.; Lin, C.H.; Thomson, T.; Graham, D.M.; Nutter, P.W. Spintronic terahertz emitters: Status and prospects from a materials perspective. APL Mater. 2021, 9, 090701. [Google Scholar] [CrossRef]
- Hawecker, J.; Dang, T.H.; Rongione, E.; Boust, J.; Collin, S.; George, J.M.; Drouhin, H.J.; Laplace, Y.; Grasset, R.; Dong, J.; et al. Spin Injection Efficiency at Metallic Interfaces Probed by THz Emission Spectroscopy. Adv. Mater. 2021, 9, 2100412. [Google Scholar] [CrossRef]
- Schneider, R.; Fix, M.; Bensmann, J.; Michaelis de Vasconcellos, S.; Albrecht, M.; Bratschitsch, R. Spintronic GdFe/Pt THz emitters. Appl. Phys. Lett. 2019, 115, 152401. [Google Scholar] [CrossRef]
- Dang, T.H.; Hawecker, J.; Rongione, E.; Baez Flores, G.; To, D.Q.; Rojas-Sanchez, J.C.; Nong, H.; Mangeney, J.; Tignon, J.; Godel, F.; et al. Ultrafast spin-currents and charge conversion at 3d-5d interfaces probed by time-domain terahertz spectroscopy. Appl. Phys. Rev. 2020, 7, 041409. [Google Scholar] [CrossRef]
- Nenno, D.M.; Scheuer, L.; Sokoluk, D.; Keller, S.; Torosyan, G.; Brodyanski, A.; Lösch, J.; Battiato, M.; Rahm, M.; Binder, R.H.; et al. Modification of spintronic terahertz emitter performance through defect engineering. Sci. Rep. 2019, 9, 13348. [Google Scholar] [CrossRef]
- Wu, W.; Yaw Ameyaw, C.; Doty, M.F.; Jungfleisch, M.B. Principles of spintronic THz emitters. J. Appl. Phys. 2021, 130, 091101. [Google Scholar] [CrossRef]
- Wu, Y.; Elyasi, M.; Qiu, X.; Chen, M.; Liu, Y.; Ke, L.; Yang, H. High-Performance THz Emitters Based on Ferromagnetic/Nonmagnetic Heterostructures. Adv. Mater. 2017, 29, 1603031. [Google Scholar] [CrossRef]
- Schneider, R.; Fix, M.; Bensmann, J.; Michaelis de Vasconcellos, S.; Albrecht, M.; Bratschitsch, R. Composition-dependent ultrafast THz emission of spintronic CoFe/Pt thin films. Appl. Phys. Lett. 2022, 120, 042404. [Google Scholar] [CrossRef]
- Kumar, S.; Nivedan, A.; Singh, A.; Kumar, Y.; Malhotra, P.; Tondusson, M.; Freysz, E.; Kumar, S. Optical damage limit of efficient spintronic THz emitters. iScience 2021, 24, 103152. [Google Scholar] [CrossRef]
- Sasaki, Y.; Suzuki, K.Z.; Mizukami, S. Annealing effect on laser pulse-induced THz wave emission in Ta/CoFeB/MgO films. Appl. Phys. Lett. 2017, 111, 102401. [Google Scholar] [CrossRef]
- Seifert, T.; Martens, U.; Gunther, S.; Schoen, M.A.W.; Radu, F.; Chen, X.Z.; Lucas, I.; Ramos, R.; Aguirre, M.H.; Algarabel, P.A.; et al. Terahertz Spin Currents and Inverse Spin Hall Effect in Thin-Film Heterostructures Containing Complex Magnetic Compounds. SPIN 2017, 7, 1740010. [Google Scholar] [CrossRef]
- Gueckstock, O.; Nádvorník, L.; Gradhand, M.; Seifert, T.S.; Bierhance, G.; Rouzegar, R.; Wolf, M.; Vafaee, M.; Cramer, J.; Syskaki, M.A.; et al. Terahertz Spin-to-Charge Conversion by Interfacial Skew Scattering in Metallic Bilayers. Adv. Mater. 2021, 33, 2006281. [Google Scholar] [CrossRef]
- Scheuer, L.; Ruhwedel, M.; Karfaridis, D.; Vasileiadis, I.G.; Sokoluk, D.; Torosyan, G.; Vourlias, G.; Dimitrakopoulos, G.P.; Rahm, M.; Hillebrands, B.; et al. THz emission from Fe/Pt spintronic emitters with L10-FePt alloyed interface. iScience 2022, 25, 104319. [Google Scholar] [CrossRef] [PubMed]
- Gorchon, J.; Mangin, S.; Hehn, M.; Malinowski, G. Is terahertz emission a good probe of the spin current attenuation length? Appl. Phys. Lett. 2022, 121, 01240. [Google Scholar] [CrossRef]
- Wahada, M.A.; Şaşıoğlu, E.; Hoppe, W.; Zhou, X.; Deniz, H.; Rouzegar, R.; Kampfrath, T.; Mertig, I.; Parkin, S.S.P.; Woltersdorf, G. Atomic Scale Control of Spin Current Transmission at Interfaces. Nano Lett. 2022, 22, 3539–3544. [Google Scholar] [CrossRef]
- Yang, D.; Liang, J.; Zhou, C.; Sun, L.; Zheng, R.; Luo, S.; Wu, Y.; Qi, J. Powerful and Tunable THz Emitters Based on the Fe/Pt Magnetic Heterostructure. Adv. Opt. Mater. 2016, 4, 1944–1949. [Google Scholar] [CrossRef]
- Li, G.; Medapalli, R.; Mikhaylovskiy, R.V.; Spada, F.E.; Rasing, T.; Fullerton, E.E.; Kimel, A.V. THz emission from Co/Pt bilayers with varied roughness, crystal structure, and interface intermixing. Phys. Rev. Mater. 2019, 3, 084415. [Google Scholar] [CrossRef]
- Rezende, S.M.; Azevedo, A.; Rodríguez-Suárez, R.L. Introduction to antiferromagnetic magnons. J. Appl. Phys. 2019, 126, 151101. [Google Scholar] [CrossRef]
- Gomonay, E.V.; Loktev, V.M. Spintronics of antiferromagnetic systems (Review Article). Low Temp. Phys. 2014, 40, 17–35. [Google Scholar] [CrossRef]
- Gomonay, O.; Jungwirth, T.; Sinova, J. Concepts of antiferromagnetic spintronics. Phys. Status Solidi RRL Rapid Res. Lett. 2017, 11, 1700022. [Google Scholar] [CrossRef]
- Jungfleisch, M.B.; Zhang, W.; Hoffmann, A. Perspectives of antiferromagnetic spintronics. Phys. Lett. A 2018, 382, 865–871. [Google Scholar] [CrossRef]
- Baltz, V.; Manchon, A.; Tsoi, M.; Moriyama, T.; Ono, T.; Tserkovnyak, Y. Antiferromagnetic spintronics. Rev. Mod. Phys. 2018, 90, 015005. [Google Scholar] [CrossRef]
- Han, J.; Cheng, R.; Liu, L.; Ohno, H.; Fukami, S. Coherent antiferromagnetic spintronics. Nat. Mater. 2023, 22, 684–695. [Google Scholar] [CrossRef] [PubMed]
- Kampfrath, T.; Sell, A.; Klatt, G.; Pashkin, A.; Mährlein, S.; Dekorsy, T.; Wolf, M.; Fiebig, M.; Leitenstorfer, A.; Huber, R. Coherent terahertz control of antiferromagnetic spin waves. Nat. Photonics 2011, 5, 31–34. [Google Scholar] [CrossRef]
- Moriyama, T.; Hayashi, K.; Yamada, K.; Shima, M.; Ohya, Y.; Ono, T. Intrinsic and extrinsic antiferromagnetic damping in NiO. Phys. Rev. Mater. 2019, 3, 051402. [Google Scholar] [CrossRef]
- Satoh, T.; Cho, S.J.; Iida, R.; Shimura, T.; Kuroda, K.; Ueda, H.; Ueda, Y.; Ivanov, B.A.; Nori, F.; Fiebig, M. Spin Oscillations in Antiferromagnetic NiO Triggered by Circularly Polarized Light. Phys. Rev. Lett. 2010, 105, 077402. [Google Scholar] [CrossRef]
- Nishitani, J.; Nagashima, T.; Hangyo, M. Coherent control of terahertz radiation from antiferromagnetic magnons in NiO excited by optical laser pulses. Phys. Rev. B 2012, 85, 174439. [Google Scholar] [CrossRef]
- Wang, H.; Du, C.; Hammel, P.C.; Yang, F. Antiferromagnonic Spin Transport from Y3Fe5O12 into NiO. Phys. Rev. Lett. 2014, 113, 097202. [Google Scholar] [CrossRef]
- Moriyama, T.; Takei, S.; Nagata, M.; Yoshimura, Y.; Matsuzaki, N.; Terashima, T.; Tserkovnyak, Y.; Ono, T. Anti-damping spin transfer torque through epitaxial nickel oxide. Appl. Phys. Lett. 2015, 106, 162406. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, D.; Yang, Y.; Lee, K.; Mishra, R.; Go, G.; Oh, S.H.; Kim, D.H.; Cai, K.; Liu, E.; et al. Magnetization switching by magnon-mediated spin torque through an antiferromagnetic insulator. Science 2019, 366, 1125–1128. [Google Scholar] [CrossRef]
- Qiu, Z.; Li, J.; Hou, D.; Arenholz, E.; N’Diaye, A.T.; Tan, A.; Uchida, K.i.; Sato, K.; Okamoto, S.; Tserkovnyak, Y.; et al. Spin-current probe for phase transition in an insulator. Nat. Commun. 2016, 7, 12670. [Google Scholar] [CrossRef]
- Sasaki, Y.; Li, G.; Moriyama, T.; Ono, T.; Mikhaylovskiy, R.V.; Kimel, A.V.; Mizukami, S. Laser stimulated THz emission from Pt/CoO/FeCoB. Appl. Phys. Lett. 2020, 117, 192403. [Google Scholar] [CrossRef]
- Anyfantis, D.I.; Ballani, C.; Kanistras, N.; Barnasas, A.; Kapaklis, V.; Schmidt, G.; Papaioannou, E.T.; Poulopoulos, P. Growth, Magnetic Anisotropies and Exchange Bias of Thin Ni0.95Fe0.05/NiFeO Multilayers. Coatings 2022, 12, 627. [Google Scholar] [CrossRef]
- Maksymov, I.S.; Kostylev, M. Broadband stripline ferromagnetic resonance spectroscopy of ferromagnetic films, multilayers and nanostructures. Phys. E Low-Dimens. Syst. Nanostruct. 2015, 69, 253–293. [Google Scholar] [CrossRef]
- Torosyan, G.; Keller, S.; Scheuer, L.; Beigang, R.; Papaioannou, E.T. Optimized Spintronic Terahertz Emitters Based on Epitaxial Grown Fe/Pt Layer Structures. Sci. Rep. 2018, 8, 1311. [Google Scholar] [CrossRef] [PubMed]
- Nogués, J.; Schuller, I.K. Exchange bias. J. Magn. Magn. Mater. 1999, 192, 203–232. [Google Scholar] [CrossRef]
- Lang, X.Y.; Zheng, W.T.; Jiang, Q. Dependence of the blocking temperature in exchange biased ferromagnetic/antiferromagnetic bilayers on the thickness of the antiferromagnetic layer. Nanotechnology 2007, 18, 155701. [Google Scholar] [CrossRef]
- O’ Grady, K.; Sinclair, J.; Elphick, K.; Carpenter, R.; Vallejo-Fernandez, G.; Probert, M.I.J.; Hirohata, A. Anisotropy in antiferromagnets. J. Appl. Phys. 2020, 128, 040901. [Google Scholar] [CrossRef]
- Abarra, E.N.; Takano, K.; Hellman, F.; Berkowitz, A.E. Thermodynamic Measurements of Magnetic Ordering in Antiferromagnetic Superlattices. Phys. Rev. Lett. 1996, 77, 3451–3454. [Google Scholar] [CrossRef]
- Bilz, H.; Kress, W. Phonon Dispersion Relations in Insulators; Metal Oxides (Rock Salt Structure), Springer Series in Solid-State Sciences; Springer Verlag: Berlin/Heidelberg, Germany; New York, NY, USA, 1979; pp. 49–57. [Google Scholar]
- Gladii, O.; Frangou, L.; Forestier, G.; Seeger, R.L.; Auffret, S.; Rubio-Roy, M.; Weil, R.; Mougin, A.; Gomez, C.; Jahjah, W.; et al. Spin pumping as a generic probe for linear spin fluctuations: Demonstration with ferromagnetic and antiferromagnetic orders, metallic and insulating electrical states. Appl. Phys. Express 2019, 12, 023001. [Google Scholar] [CrossRef]
- Montoya, E.; McKinnon, T.; Zamani, A.; Girt, E.; Heinrich, B. Broadband ferromagnetic resonance system and methods for ultrathin magnetic films. J. Magn. Magn. Mater. 2014, 356, 12–20. [Google Scholar] [CrossRef]
- Schmidt, G.; Hauser, C.; Trempler, P.; Paleschke, M.; Papaioannou, E.T. Ultra Thin Films of Yttrium Iron Garnet with Very Low Damping: A Review. Phys. Status Solidi B 2020, 257, 1900644. [Google Scholar] [CrossRef]
- Anyfantis, D.I.; Kanistras, N.; Barnasas, A.; Poulopoulos, P.; Papaioannou, E.T.; Conca, A.; Trachylis, D.; Politis, C. Effects of Thermal Annealing and Ni Addition on the Magnetic Properties of Co–CoO Multilayers. SPIN 2020, 10, 2050030. [Google Scholar] [CrossRef]
- Pal, S.; Rana, B.; Hellwig, O.; Thomson, T.; Barman, A. Tunable magnonic frequency and damping in [Co/Pd]8 multilayers with variable Co layer thickness. Appl. Phys. Lett. 2011, 98, 082501. [Google Scholar] [CrossRef]
- Papaioannou, E.T.; Angelakeris, M.; Flevaris, N.K.; Fumagalli, P.; Mueller, C.; Troupis, A.; Spanou, A.; Karoutsos, V.; Poulopoulos, P.; Kapaklis, V.; et al. Magnetism and magneto-optics of nanocrystalline Ni/Pt multilayers grown by e-beam evaporation at room temperature. J. Appl. Phys. 2007, 101, 023913. [Google Scholar] [CrossRef]
- Mosendz, O.; Pearson, J.E.; Fradin, F.Y.; Bauer, G.E.W.; Bader, S.D.; Hoffmann, A. Quantifying Spin Hall Angles from Spin Pumping: Experiments and Theory. Phys. Rev. Lett. 2010, 104, 046601. [Google Scholar] [CrossRef] [PubMed]
- Takei, S.; Moriyama, T.; Ono, T.; Tserkovnyak, Y. Antiferromagnet-mediated spin transfer between a metal and a ferromagnet. Phys. Rev. B 2015, 92, 020409. [Google Scholar] [CrossRef]
- Khymyn, R.; Lisenkov, I.; Tiberkevich, V.S.; Slavin, A.N.; Ivanov, B.A. Transformation of spin current by antiferromagnetic insulators. Phys. Rev. B 2016, 93, 224421. [Google Scholar] [CrossRef]
- Li, Q.; Yang, M.; Klewe, C.; Shafer, P.; N’Diaye, A.T.; Hou, D.; Wang, T.Y.; Gao, N.; Saitoh, E.; Hwang, C.; et al. Coherent ac spin current transmission across an antiferromagnetic CoO insulator. Nat. Commun. 2019, 10, 5265. [Google Scholar] [CrossRef]
- Lin, W.; Chen, K.; Zhang, S.; Chien, C.L. Enhancement of Thermally Injected Spin Current through an Antiferromagnetic Insulator. Phys. Rev. Lett. 2016, 116, 186601. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kanistras, N.; Scheuer, L.; Anyfantis, D.I.; Barnasas, A.; Torosyan, G.; Beigang, R.; Crisan, O.; Poulopoulos, P.; Papaioannou, E.T. Magnetic Properties and THz Emission from Co/CoO/Pt and Ni/NiO/Pt Trilayers. Nanomaterials 2024, 14, 215. https://doi.org/10.3390/nano14020215
Kanistras N, Scheuer L, Anyfantis DI, Barnasas A, Torosyan G, Beigang R, Crisan O, Poulopoulos P, Papaioannou ET. Magnetic Properties and THz Emission from Co/CoO/Pt and Ni/NiO/Pt Trilayers. Nanomaterials. 2024; 14(2):215. https://doi.org/10.3390/nano14020215
Chicago/Turabian StyleKanistras, Nikolaos, Laura Scheuer, Dimitrios I. Anyfantis, Alexandros Barnasas, Garik Torosyan, René Beigang, Ovidiu Crisan, Panagiotis Poulopoulos, and Evangelos Th. Papaioannou. 2024. "Magnetic Properties and THz Emission from Co/CoO/Pt and Ni/NiO/Pt Trilayers" Nanomaterials 14, no. 2: 215. https://doi.org/10.3390/nano14020215