Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,155)

Search Parameters:
Keywords = spike (S) protein

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 3064 KiB  
Article
Immunohistochemical Analysis of Placental Tissue of Women Infected with SARS-CoV-2 During Pregnancy—A Prospective Clinical Study
by Marija Bicanin Ilic, Tamara Nikolic Turnic, Aleksandar Nikolov, Srdjan Mujkovic, Ivana Likic Ladjevic, Igor Ilic, Marija Spasojevic, Nikola Jovic, Jovana Joksimovic Jovic, Dejana Rakic, Begzudin Ahmetovic, Sara Rosic and Aleksandra Dimitrijevic
Int. J. Mol. Sci. 2025, 26(15), 7659; https://doi.org/10.3390/ijms26157659 (registering DOI) - 7 Aug 2025
Abstract
SARS-CoV-2 has an affinity for binding to the human Angiotensin-converting enzyme 2 (ACE2) receptor through cleavage and conformational changes at the S1–S2 boundary and the receptor binding domain of the spike protein, which is also the most variable part of SARS-CoV-2. This study [...] Read more.
SARS-CoV-2 has an affinity for binding to the human Angiotensin-converting enzyme 2 (ACE2) receptor through cleavage and conformational changes at the S1–S2 boundary and the receptor binding domain of the spike protein, which is also the most variable part of SARS-CoV-2. This study aimed to investigate the expression of Angiotensin-converting enzyme 2 (ACE2), spike protein, and CD68+ markers in placental tissue to demonstrate a possible correlation with the level of systemic oxidative stress biomarkers in patients who were infected with SARS-CoV-2 during pregnancy. A prospective clinical cohort study was designed to investigate the presence of CD68+ macrophages, ACE2, and spike proteins in placental tissue using immunohistochemical methods and to compare these results with oxidative stress from our previous study. Spike and CD68+ macrophages’ immunoreactivity were more pronounced in the placental tissue of patients from the SARS-CoV-2 group. Placental tissue spike protein and CD68+ immunoreactivity correlate with maternal and fetal Thiobarbituric Acid Reactive (TBARS) levels. This study has confirmed that spike protein expression in placental tissue is associated with the newborn’s stay in intensive neonatal care. Therefore, immunoreactivity analysis for the Spike antigen is important in detecting newborns at risk of early neonatal complications. Full article
(This article belongs to the Special Issue Molecular Insights into Placental Pathology)
Show Figures

Figure 1

13 pages, 1045 KiB  
Article
Antiviral Activity of Haematococcus pluvialis Algae Extract Is Not Exclusively Due to Astaxanthin
by Paula Peinsipp, Tanja Gerlza, Julia Kircher, Kurt Zatloukal, Corinna Jäger, Peter Pucher and Andreas J. Kungl
Pathogens 2025, 14(8), 791; https://doi.org/10.3390/pathogens14080791 (registering DOI) - 7 Aug 2025
Abstract
In this study, astaxanthin, which has previously been shown to have antiviral effects, was examined for its dose-dependent potency to inhibit cellular SARS-CoV-2 infections. Naturally occurring astaxanthin is obtained and orally administered as ASX-oleoresin, a composition of different astaxanthin fatty acid esters. We [...] Read more.
In this study, astaxanthin, which has previously been shown to have antiviral effects, was examined for its dose-dependent potency to inhibit cellular SARS-CoV-2 infections. Naturally occurring astaxanthin is obtained and orally administered as ASX-oleoresin, a composition of different astaxanthin fatty acid esters. We therefore hypothesized that the compound’s beneficial effects are not only related to astaxanthin. Thus, a “green” algae extract (i.e., poor astaxanthin content < 0.2%; ASXp) of the microalgae Haematococcus pluvialis, as well as an astaxanthin-rich algae extract (astaxanthin content = 20%; ASXr), were tested in in vitro cellular viral infection assays. Thereby, it was found that both extracts reduced viral infections significantly. As a potential mode of inhibitory action, the binding of ASX-oleoresin to the viral spike protein was investigated by isothermal fluorescence titration, revealing binding affinities of Kd = 1.05 µM for ASXr and Kd = 1.42 µM for ASXp. Based on our data, we conclude that several ASX-oleoresin fractions from H. pluvialis exhibit antiviral activity, which extends beyond the known antioxidant activity of astaxanthin. From a molecular dynamic simulation of ASX-oleoresin, fatty acid domains could be considered as activity-chaperoning factors of ASX. Therefore, microalgae biomass should be considered in the future for further antiviral activities. Full article
(This article belongs to the Special Issue Virus–Host Cell Interactions and Research of New Antivirals)
28 pages, 5780 KiB  
Article
Multiscale Modeling and Dynamic Mutational Profiling of Binding Energetics and Immune Escape for Class I Antibodies with SARS-CoV-2 Spike Protein: Dissecting Mechanisms of High Resistance to Viral Escape Against Emerging Variants
by Mohammed Alshahrani, Vedant Parikh, Brandon Foley and Gennady Verkhivker
Viruses 2025, 17(8), 1029; https://doi.org/10.3390/v17081029 - 23 Jul 2025
Viewed by 520
Abstract
The rapid evolution of SARS-CoV-2 has underscored the need for a detailed understanding of antibody binding mechanisms to combat immune evasion by emerging variants. In this study, we investigated the interactions between Class I neutralizing antibodies—BD55-1205, BD-604, OMI-42, P5S-1H1, and P5S-2B10—and the receptor-binding [...] Read more.
The rapid evolution of SARS-CoV-2 has underscored the need for a detailed understanding of antibody binding mechanisms to combat immune evasion by emerging variants. In this study, we investigated the interactions between Class I neutralizing antibodies—BD55-1205, BD-604, OMI-42, P5S-1H1, and P5S-2B10—and the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein using multiscale modeling, which combined molecular simulations with the ensemble-based mutational scanning of the binding interfaces and binding free energy computations. A central theme emerging from this work is that the unique binding strength and resilience to immune escape of the BD55-1205 antibody are determined by leveraging a broad epitope footprint and distributed hotspot architecture, additionally supported by backbone-mediated specific interactions, which are less sensitive to amino acid substitutions and together enable exceptional tolerance to mutational escape. In contrast, BD-604 and OMI-42 exhibit localized binding modes with strong dependence on side-chain interactions, rendering them particularly vulnerable to escape mutations at K417N, L455M, F456L and A475V. Similarly, P5S-1H1 and P5S-2B10 display intermediate behavior—effective in some contexts but increasingly susceptible to antigenic drift due to narrower epitope coverage and concentrated hotspots. Our computational predictions show strong agreement with experimental deep mutational scanning data, validating the accuracy of the models and reinforcing the value of binding hotspot mapping in predicting antibody vulnerability. This work highlights that neutralization breadth and durability are not solely dictated by epitope location, but also by how binding energy is distributed across the interface. The results provide atomistic insight into mechanisms driving resilience to immune escape for broadly neutralizing antibodies targeting the ACE2 binding interface—which stems from cumulative effects of structural diversity in binding contacts, redundancy in interaction patterns and reduced vulnerability to mutation-prone positions. Full article
Show Figures

Graphical abstract

20 pages, 7204 KiB  
Article
Structural Features and In Vitro Antiviral Activities of Fungal Metabolites Sphaeropsidins A and B Against Bovine Coronavirus
by Luca Del Sorbo, Maria Michela Salvatore, Clementina Acconcia, Rosa Giugliano, Giovanna Fusco, Massimiliano Galdiero, Violetta Iris Vasinioti, Maria Stella Lucente, Paolo Capozza, Annamaria Pratelli, Luigi Russo, Rosa Iacovino, Anna Andolfi and Filomena Fiorito
Int. J. Mol. Sci. 2025, 26(15), 7045; https://doi.org/10.3390/ijms26157045 - 22 Jul 2025
Viewed by 223
Abstract
The scientific community’s interest in natural compounds with antiviral properties has considerably increased after the emergence of the severe acute respiratory syndrome coronavirus (SARS-CoV-2), especially for their potential use in the treatment of the COVID-19 infection. From this perspective, bovine coronavirus (BCoV), member [...] Read more.
The scientific community’s interest in natural compounds with antiviral properties has considerably increased after the emergence of the severe acute respiratory syndrome coronavirus (SARS-CoV-2), especially for their potential use in the treatment of the COVID-19 infection. From this perspective, bovine coronavirus (BCoV), member of the genus β-CoV, represents a valuable virus model to study human β-CoVs, bypassing the risks of handling highly pathogenic and contagious viruses. Pimarane diterpenes are a significant group of secondary metabolites produced by phytopathogenic fungi, including several Diplodia species. Among the members of this class of natural products, sphaeropsidin A (SphA) and its analog sphaeropsidin B (SphB) are well known for their bioactivities, such as antimicrobial, insecticidal, herbicidal, and anticancer. In this study, the antiviral effects of SphA and SphB were evaluated for the first time on bovine (MDBK) cells infected with BCoV. Our findings showed that both sphaeropsidins significantly increased cell viability in infected cells. These substances also caused substantial declines in the virus yield and in the levels of the viral spike S protein. Interestingly, during the treatment, a cellular defense mechanism was detected in the downregulation of the aryl hydrocarbon receptor (AhR) signaling, which is affected by BCoV infection. We also observed that the presence of SphA and SphB determined the deacidification of the lysosomal environment in infected cells, which may be related to their antiviral activities. In addition, in silico investigations have been performed to elucidate the molecular mechanism governing the recognition of bovine AhR (bAhR) by Sphs. Molecular docking studies revealed significant insights into the structural determinants driving the bAhR binding by the examined compounds. Hence, in vitro and in silico results demonstrated that SphA and SphB are promising drug candidates for the development of efficient therapies able to fight a β-CoV-like BCoV during infection. Full article
(This article belongs to the Special Issue Structure, Function and Dynamics in Proteins: 3rd Edition)
Show Figures

Figure 1

16 pages, 4186 KiB  
Article
Physiological and Oxidative Stress in General and Spinal Anesthesia for Elective Cesarean Section in Women: Is There Any Difference?
by Nemanja D. Dimic, Gorica D. Maric, Zorana S. Orescanin Dusic, Tanja M. Grahovac, Teodora F. Vidonja Uzelac, Marko D. Djuric, Irina B. Nenadic, Marina M. Bobos, Predrag D. Stevanovic, Sladjana J. Mihajlovic and Marina M. Stojanovic
Life 2025, 15(8), 1158; https://doi.org/10.3390/life15081158 - 22 Jul 2025
Viewed by 280
Abstract
This study evaluates the influence of general anesthesia (GA) and spinal anesthesia (SA) on physiological and oxidative stress in parturients undergoing elective cesarean section, one of the most frequently performed surgical procedures worldwide. A total of 101 pregnant women were included, categorized into [...] Read more.
This study evaluates the influence of general anesthesia (GA) and spinal anesthesia (SA) on physiological and oxidative stress in parturients undergoing elective cesarean section, one of the most frequently performed surgical procedures worldwide. A total of 101 pregnant women were included, categorized into GA (n = 51) and SA (n = 50) groups. Blood samples were collected at three time points: one hour before surgery (Measurement 1), at umbilical cord clamping (Measurement 2), and two hours post-surgery (Measurement 3). Biomarkers of oxidative stress, complete blood count, and levels of biochemical parameters were measured. In second and/or third measurement, biochemical blood analysis showed increased prolactin and cortisol levels, followed by spike of glucose and insulin in the GA group. However, levels of tri-iodothyronine were reduced in both groups in the third measurement. Glutathione S-transferase (GST) activity was increased in both groups in third measurement. The results showed increased concentrations of total SH groups and decreased concentrations of non-protein SH groups in the GA group during Measurement 2. Lymphocyte count was found to be predictor of GST levels. The results indicate more a pronounced endocrine response in GA group and speak in favor of spinal anesthesia. Both kinds of anesthesia are equally safe in terms of the oxidative status of the tissue. Full article
(This article belongs to the Section Medical Research)
Show Figures

Figure 1

17 pages, 6805 KiB  
Article
Ferritin Nanocages Exhibit Unique Structural Dynamics When Displaying Surface Protein
by Monikaben Padariya, Natalia Marek-Trzonkowska and Umesh Kalathiya
Int. J. Mol. Sci. 2025, 26(15), 7047; https://doi.org/10.3390/ijms26157047 - 22 Jul 2025
Viewed by 201
Abstract
Ferritin nanocages with spherical shells carry proteins or antigens that enable their use as highly efficient nanoreactors and nanocarriers. Mimicking the surface Spike (S) receptor-binding domain (RBD) from SARS-CoV-2, ferritin nanocages induce neutralizing antibody production or block viral entry. Herein, by implementing molecular [...] Read more.
Ferritin nanocages with spherical shells carry proteins or antigens that enable their use as highly efficient nanoreactors and nanocarriers. Mimicking the surface Spike (S) receptor-binding domain (RBD) from SARS-CoV-2, ferritin nanocages induce neutralizing antibody production or block viral entry. Herein, by implementing molecular dynamics simulation, we evaluate the efficiency in the interaction pattern (active or alternative sites) of H-ferritin displaying the 24 S RBDs with host-cell-receptor or monoclonal antibodies (mAbs; B38 or VVH-72). Our constructed nanocage targeted the receptor- or antibody-binding interfaces, suggesting that mAbs demonstrate an enhanced binding affinity with the RBD, with key interactions originating from its variable heavy chain. The S RBD interactions with ACE2 and B38 involved the same binding site but led to divergent dynamic responses. In particular, both B38 chains showed that asymmetric fluctuations had a major effect on their engagement with the Spike RBD. Although the receptor increased the binding affinity of VVH-72 for the RBD, the mAb structural orientation on the nanocage remained identical to its conformation when bound to the host receptor. Overall, our findings characterize the essential pharmacophore formed by Spike RBD residues over nanocage molecules, which mediates high-affinity interactions with either binding partner. Importantly, the ferritin-displayed RBD maintained native receptor and antibody binding profiles, positioning it as a promising scaffold for pre-fusion stabilization and protective RBD vaccine design. Full article
Show Figures

Figure 1

14 pages, 3463 KiB  
Article
The Renin–Angiotensin System Modulates SARS-CoV-2 Entry via ACE2 Receptor
by Sophia Gagliardi, Tristan Hotchkin, Hasset Tibebe, Grace Hillmer, Dacia Marquez, Coco Izumi, Jason Chang, Alexander Diggs, Jiro Ezaki, Yuichiro J. Suzuki and Taisuke Izumi
Viruses 2025, 17(7), 1014; https://doi.org/10.3390/v17071014 - 19 Jul 2025
Viewed by 560
Abstract
The renin–angiotensin system (RAS) plays a central role in cardiovascular regulation and has gained prominence in the pathogenesis of Coronavirus Disease 2019 (COVID-19) due to the critical function of angiotensin-converting enzyme 2 (ACE2) as the entry receptor for severe acute respiratory syndrome coronavirus [...] Read more.
The renin–angiotensin system (RAS) plays a central role in cardiovascular regulation and has gained prominence in the pathogenesis of Coronavirus Disease 2019 (COVID-19) due to the critical function of angiotensin-converting enzyme 2 (ACE2) as the entry receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Angiotensin IV, but not angiotensin II, has recently been reported to enhance the binding between the viral spike protein and ACE2. To investigate the virological significance of this effect, we developed a single-round infection assay using SARS-CoV-2 viral-like particles expressing the spike protein. Our results demonstrate that while angiotensin II does not affect viral infectivity across concentrations ranging from 40 nM to 400 nM, angiotensin IV enhances viral entry at a low concentration but exhibits dose-dependent inhibition at higher concentrations. These findings highlight the unique dual role of angiotensin IV in modulating SARS-CoV-2 entry. In silico molecular docking simulations indicate that angiotensin IV was predicted to associate with the S1 domain near the receptor-binding domain in the open spike conformation. Given that reported plasma concentrations of angiotensin IV range widely from 17 pM to 81 nM, these levels may be sufficient to promote, rather than inhibit, SARS-CoV-2 infection. This study identifies a novel link between RAS-derived peptides and SARS-CoV-2 infectivity, offering new insights into COVID-19 pathophysiology and informing potential therapeutic strategies. Full article
(This article belongs to the Section Human Virology and Viral Diseases)
Show Figures

Figure 1

10 pages, 2451 KiB  
Article
Development and Validation of ELISA for In Vitro Diagnosis of SARS-CoV-2 Infection
by Larissa de Carvalho Medrado Vasconcelos, Leonardo Maia Leony, Ângelo Antônio Oliveira Silva, Aquiles Assunção Camelier, Antônio Carlos Bandeira, Isadora Cristina de Siqueira and Fred Luciano Neves Santos
COVID 2025, 5(7), 108; https://doi.org/10.3390/covid5070108 - 11 Jul 2025
Viewed by 295
Abstract
(1) Background: The ongoing global health threat posed by SARS-CoV-2 requires reliable and accessible diagnostic tools, especially in resource-limited settings where RT-qPCR may be impractical. This study describes the development and validation of two enzyme-linked immunosorbent assays (ELISA) designed to detect anti-SARS-CoV-2 IgG [...] Read more.
(1) Background: The ongoing global health threat posed by SARS-CoV-2 requires reliable and accessible diagnostic tools, especially in resource-limited settings where RT-qPCR may be impractical. This study describes the development and validation of two enzyme-linked immunosorbent assays (ELISA) designed to detect anti-SARS-CoV-2 IgG antibodies employing recombinant S1 and S2 spike protein subunits. (2) Methods: The assays were optimized and validated using serum samples from 354 RT-qPCR-confirmed hospitalized patients and 337 pre-pandemic blood donors. (3) Results: The S1-based ELISA achieved a 52.8% sensitivity and a specificity of 93.5%, with an area under the ROC curve (AUC) of 71.6%. In contrast, the S2-based ELISA demonstrated superior diagnostic performance, with a sensitivity of 63.7%, a specificity of 99.7%, and an AUC of 83.1%. Cross-reactivity analysis using sera from individuals with unrelated infectious diseases confirmed the high specificity of the S2-ELISA. Time-stratified analysis revealed that sensitivity increased with time, peaking between 15 and 21 days post-symptom onset. Compared to commercial serological assays, the S2-ELISA demonstrated comparable or improved performance, particularly in specificity and diagnostic odds ratio. (4) Conclusions: The S2-ELISA offers a robust, highly specific, and operationally simple tool for serological detection of SARS-CoV-2 infection. Its strong diagnostic performance and accessibility make it well-suited for implementation in diverse epidemiological settings, particularly where molecular testing is limited. The development of affordable, validated serological assays such as this is critical for strengthening surveillance, understanding transmission dynamics, and informing public health responses. Full article
(This article belongs to the Section Human or Animal Coronaviruses)
Show Figures

Figure 1

20 pages, 3946 KiB  
Article
Immune Durability and Breakthrough Infections 15 Months After SARS-CoV-2 Boosters in People over 65: The IMMERSION Study
by Concepció Violán, Bibiana Quirant-Sánchez, Maria Palau-Antoja, Dolors Palacin, Edwards Pradenas, Macedonia Trigueros, Guillem Pera, Gemma Molist, Gema Fernández-Rivas, Marc Boigués, Mar Isnard, Nuria Prat, Meritxell Carmona-Cervelló, Noemi Lamonja-Vicente, Brenda Biaani León-Gómez, Eva María Martínez-Cáceres, Pere Joan Cardona, Julià Blanco, Marta Massanella and Pere Torán-Monserrat
Vaccines 2025, 13(7), 738; https://doi.org/10.3390/vaccines13070738 - 9 Jul 2025
Viewed by 556
Abstract
Background: SARS-CoV-2 booster vaccination remains essential to prevent severe COVID-19, particularly in vulnerable populations such as older adults. This study evaluated the durability and dynamics of immune responses following booster vaccination(s) in >65-year-old individuals and examined their association with protection against new [...] Read more.
Background: SARS-CoV-2 booster vaccination remains essential to prevent severe COVID-19, particularly in vulnerable populations such as older adults. This study evaluated the durability and dynamics of immune responses following booster vaccination(s) in >65-year-old individuals and examined their association with protection against new infections. Methods: Immune responses were evaluated at 3, 9, and 15 months post-booster, measuring SARS-CoV-2-specific IgG antibodies against spike [IgG(S)] and nucleocapsid [IgG(N)] proteins, neutralizing activity against the Omicron BA.2 variant, and cellular immunity. A subset of participants was tested before booster administration. Regression analyses examined the influence of clinical and immunological factors—including a bivalent fourth dose—on infection risk over time. Results: Booster vaccination significantly enhanced IgG(S) and neutralizing capacity, peaking at 3 months. Although a decline was observed by 9 months, responses remained above baseline. Individuals with prior SARS-CoV-2 infection exhibited higher IgG(S) levels and neutralizing titers, and significantly lower reinfection rates (15%), compared to uninfected individuals. A fourth vaccine dose further increased IgG(S) levels. While neutralizing capacity was not consistently enhanced by the fourth dose, recipients experienced a lower rate of new infections. Immune trajectory analyses revealed that breakthrough infections elicited strong humoral responses comparable to those seen in previously infected individuals, highlighting the role of hybrid immunity. Conclusions: In older adults, booster vaccination induces durable immune responses, with hybrid immunity offering enhanced protection. A fourth dose boosts antibody levels and reduces infection risk, supporting its use in this high-risk group. Continued monitoring is needed to determine the long-term effectiveness of boosters, particularly against emerging variants. Full article
Show Figures

Figure 1

32 pages, 5019 KiB  
Article
Syzygium aromaticum Phytoconstituents Target SARS-CoV-2: Integrating Molecular Docking, Dynamics, Pharmacokinetics, and miR-21 rs1292037 Genotyping
by Mustafa Ahmed Muhmood, Faiza Safi, Mohammed Mukhles Ahmed and Safaa Abed Latef Almeani
Viruses 2025, 17(7), 951; https://doi.org/10.3390/v17070951 - 5 Jul 2025
Viewed by 1610
Abstract
Background and aim: The COVID-19 pandemic, caused by SARS-CoV-2, remains a global health crisis despite vaccination efforts, necessitating novel therapeutic strategies. Natural compounds from Syzygium aromaticum (clove), such as eugenol and β-caryophyllene, exhibit antiviral and anti-inflammatory properties, while host genetic factors, including miR-21 [...] Read more.
Background and aim: The COVID-19 pandemic, caused by SARS-CoV-2, remains a global health crisis despite vaccination efforts, necessitating novel therapeutic strategies. Natural compounds from Syzygium aromaticum (clove), such as eugenol and β-caryophyllene, exhibit antiviral and anti-inflammatory properties, while host genetic factors, including miR-21 rs1292037 polymorphism, may influence disease susceptibility and severity. This study investigates the dual approach of targeting SARS-CoV-2 via Syzygium aromaticum phytoconstituents while assessing the role of miR-21 rs1292037 in COVID-19 pathogenesis. Methods: Firstly, molecular docking and molecular dynamics simulations were employed to assess the binding affinities of eugenol and caryophyllene against seven key SARS-CoV-2 proteins—including Spike-RBD, 3CLpro, and RdRp—using SwissDock (AutoDock Vina) and the Desmond software package, respectively. Secondly, GC-MS was used to characterize the composition of clove extract. Thirdly, pharmacokinetic profiles were predicted using in silico models. Finally, miR-21 rs1292037 genotyping was performed in 100 COVID-19 patients and 100 controls, with cytokine and coagulation markers analyzed. Results: Docking revealed strong binding of eugenol to viral Envelope Protein (−5.267 kcal/mol) and caryophyllene to RdRp (−6.200 kcal/mol). ADMET profiling indicated favorable absorption and low toxicity. Molecular dynamics simulations confirmed stable binding of methyl eugenol and caryophyllene to SARS-CoV-2 proteins, with caryophyllene–7Z4S showing the highest structural stability, highlighting its strong antiviral potential. Genotyping identified the TC genotype as prevalent in patients (52%), correlating with elevated IL-6 and D-dimer levels (p ≤ 0.01), suggesting a hyperinflammatory phenotype. Males exhibited higher ferritin and D-dimer (p < 0.0001), underscoring sex-based disparities. Conclusion: The bioactive constituents of Syzygium aromaticum exhibit strong potential as multi-target antivirals, with molecular simulations highlighting caryophyllene’s particularly stable interaction with the 7Z4S protein. Methyl eugenol also maintained consistent binding across several SARS-CoV-2 targets. Additionally, the miR-21 rs1292037 polymorphism may influence COVID-19 severity through its role in inflammatory regulation. Together, these results support the combined application of phytochemicals and genetic insights in antiviral research, pending further clinical verification. Full article
(This article belongs to the Special Issue Recent Advances in Antiviral Natural Products 2025)
Show Figures

Graphical abstract

22 pages, 5021 KiB  
Article
Luteolin-Rich Extract from Harrisonia perforata (Blanco) Merr. Root Alleviates SARS-CoV-2 Spike Protein-Stimulated Lung Inflammation via Inhibition of MAPK/NLRP3 Inflammasome Signaling Pathways
by Warathit Semmarath, Punnida Arjsri, Kamonwan Srisawad, Sonthaya Umsumarng and Pornngarm Dejkriengkraikul
Life 2025, 15(7), 1077; https://doi.org/10.3390/life15071077 - 5 Jul 2025
Viewed by 424
Abstract
The COVID-19-related long-standing effect or Post-Acute Sequelae of COVID-19 (PASC) is often associated with NLRP3 inflammasome activation in pulmonary inflammation elicited by SARS-CoV-2 spike proteins. Spike proteins engage toll-like receptors (TLRs) in respiratory epithelial cells, leading to excessive cytokine production. Given the need [...] Read more.
The COVID-19-related long-standing effect or Post-Acute Sequelae of COVID-19 (PASC) is often associated with NLRP3 inflammasome activation in pulmonary inflammation elicited by SARS-CoV-2 spike proteins. Spike proteins engage toll-like receptors (TLRs) in respiratory epithelial cells, leading to excessive cytokine production. Given the need for effective therapeutic strategies to mitigate spike protein-stimulated lung inflammation, we examined the anti-inflammatory properties of luteolin and ethanolic extract from Harrisonia perforata (Blanco) Merr. root. The ethanolic extract of H. perforata root (HPEE) contained a high concentration of luteolin flavonoid (143.53 ± 1.58 mg/g extract). Both HPEE (25–100 μg/mL) and luteolin (4.5–36 μM) significantly inhibited inflammation stimulated by the Wuhan (W) and Omicron (O) spike protein S1, as evidenced by a dose-dependent significant decrease in IL-6, IL-1β, and IL-18 secretion in A549 lung epithelial cells (p < 0.05). Furthermore, pretreatment with HPEE or luteolin prior to spike protein exposure (100 ng/mL) significantly, in a dose-dependent manner, repressed the inflammatory mRNA expression (p < 0.05). Mechanistic study revealed that HPEE and luteolin suppressed NLRP3 inflammasome signaling activation by reducing their machinery protein expressions. Additionally, they inhibited the ERK/JNK/p38 MAPK signaling activation, resulting in decreased inflammatory mRNA expression and cytokine release. These findings suggest that H. perforata root extract and its major flavonoid luteolin exert potent anti-inflammatory effects and may offer therapeutic potential against spike protein-induced lung inflammation. Full article
Show Figures

Figure 1

19 pages, 1304 KiB  
Review
Inflammatory Response to Ultramarathon Running: A Review of IL-6, CRP, and TNF-α
by Zbigniew Waśkiewicz, Zhassyn Mukhambet, Daulet Azerbayev and Sergei Bondarev
Int. J. Mol. Sci. 2025, 26(13), 6317; https://doi.org/10.3390/ijms26136317 - 30 Jun 2025
Viewed by 789
Abstract
Ultramarathon running elicits a profound inflammatory response, characterized by significant increases in interleukin-6 (IL-6) and C-reactive protein (CRP), with comparatively modest changes in tumor necrosis factor-alpha (TNF-α). We reviewed approximately 80 field studies of ultramarathon events (distances >42.2 km) that measured IL-6, CRP, [...] Read more.
Ultramarathon running elicits a profound inflammatory response, characterized by significant increases in interleukin-6 (IL-6) and C-reactive protein (CRP), with comparatively modest changes in tumor necrosis factor-alpha (TNF-α). We reviewed approximately 80 field studies of ultramarathon events (distances >42.2 km) that measured IL-6, CRP, and TNF-α before and after races. IL-6 typically spiked immediately post-race—often rising dozens or even thousands of times above baseline—then rapidly declined, usually returning to near baseline within 24–48 h. CRP, an acute-phase protein, exhibited a slower, sustained elevation, peaking 24–72 h after race completion and remaining above baseline for 2–3 days before gradually returning to normal. TNF-α responses were variable: some studies reported small but significant post-race increases (roughly 1.2–1.7-fold above baseline), while others found no significant change in circulating TNF-α despite the extreme effort. Longer race durations and distances generally correlated with higher peak IL-6 and CRP levels. Experienced ultramarathon runners tended to exhibit attenuated inflammatory responses compared with less-trained individuals, and anti-inflammatory cytokines (e.g., IL-10) increased in tandem with IL-6 in well-trained athletes, helping to mitigate TNF-α elevations. In total, 28 studies were included in the final synthesis, and their quality was assessed using the Newcastle–Ottawa Scale. Visual synthesis tools, including a PRISMA flowchart and time course plots, are provided to enhance the narrative’s interpretability. In summary, ultramarathon running elicits a robust systemic inflammatory response with distinct temporal patterns for IL-6, CRP, and TNF-α. These findings have important implications for athlete recovery, monitoring, and understanding the physiological limits of the inflammatory response to extreme endurance stress. Full article
Show Figures

Figure 1

19 pages, 4184 KiB  
Article
Host–Virus Interface in Persistent SARS-CoV-2 Infections: Viral Characteristic Evolution and Gene Expression Profiling Analysis
by Athok Shofiudin Maarif, Yukari Nishikawa, Miyako Takata, Kyosuke Kanai, Edo Riyandani, Kengo Mukuda, Momone Mimura, Kosuke Yamaguchi, Hiroyuki Kato, Ryo Okamoto, Kensaku Okada, Tsuyoshi Kitaura, Masaki Nakamoto, Akira Yamasaki, Seiji Kageyama and Hiroki Chikumi
Int. J. Mol. Sci. 2025, 26(13), 6221; https://doi.org/10.3390/ijms26136221 - 27 Jun 2025
Viewed by 504
Abstract
Persistent SARS-CoV-2 infections involve prolonged viral replication and immune system interactions, potentially driving viral evolution and immune escape. This study examines viral characteristics and host gene expression changes in persistent infections. The nasopharyngeal samples from four patients with persistent SARS-CoV-2 infections at Tottori [...] Read more.
Persistent SARS-CoV-2 infections involve prolonged viral replication and immune system interactions, potentially driving viral evolution and immune escape. This study examines viral characteristics and host gene expression changes in persistent infections. The nasopharyngeal samples from four patients with persistent SARS-CoV-2 infections at Tottori University Hospital, Japan, were analyzed. Viral isolates were cultured, and infectivity was assessed using TCID50 assays. To investigate host responses, RNA sequencing (RNA-seq) was performed to identify differentially expressed genes (DEGs), and Gene Ontology (GO) enrichment analysis mapped affected biological pathways. Viral genome sequencing detected mutations associated with prolonged infection. The results showed significant infectivity differences between early- and late-phase infection. Gene expression analysis revealed a strong early phase of pro-inflammatory response (IL6, TNF, IL1B, CXCL10) followed by immune suppression. GO enrichment analysis highlighted inflammation and cytokine-mediated immune pathways. Genomic sequencing identified mutations in ORF1ab and the spike (S) protein, potentially aiding immune escape. The findings underscore that SARS-CoV-2 adapts during persistent infections, altering infectivity and immune responses. These highlight the need for continued monitoring of prolonged infections to mitigate immune escape and viral evolution. Full article
(This article belongs to the Special Issue Advanced Perspectives on Virus–Host Interactions)
Show Figures

Figure 1

18 pages, 3172 KiB  
Article
Characterization of the Binding and Inhibition Mechanisms of a Novel Neutralizing Monoclonal Antibody Targeting the Stem Helix Region in the S2 Subunit of the Spike Protein of SARS-CoV-2
by Selene Si Ern Tan, Ee Hong Tam, Kah Man Lai, Yanjun Wu, Tianshu Xiao and Yee-Joo Tan
Vaccines 2025, 13(7), 688; https://doi.org/10.3390/vaccines13070688 - 26 Jun 2025
Viewed by 668
Abstract
Background/Objectives: For viral entry into host cells, the spike (S) protein of coronavirus (CoV) uses its S1 domain to bind to the host receptor and S2 domain to mediate the fusion between virion and cellular membranes. The S1 domain acquired multiple mutations as [...] Read more.
Background/Objectives: For viral entry into host cells, the spike (S) protein of coronavirus (CoV) uses its S1 domain to bind to the host receptor and S2 domain to mediate the fusion between virion and cellular membranes. The S1 domain acquired multiple mutations as the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) evolved to give rise to Variant of Concerns (VOCs) but the S2 domain has limited changes. In particular, the stem helix in S2 did not change significantly and it is fairly well-conserved across multiple beta-CoVs. In this study, we generated a murine mAb 7B2 binding to the stem helix of SARS-CoV-2. Methods: MAb 7B2 was isolated from immunized mouse and its neutralization activity was evaluated using microneutralization, plaque reduction and cell–cell fusion assays. Bio-layer interferometry was used to measure binding affinity and AlphaFold3 was used to model the antibody–antigen interface. Results: MAb 7B2 has lower virus neutralizing and membrane block activities when compared to a previously reported stem helix-binding human mAb S2P6. Alanine scanning and AlphaFold3 modeling reveals that residues K1149 and D1153 in S form a network of polar interactions with the heavy chain of 7B2. Conversely, S2P6 binding to S is not affected by alanine substitution at K1149 and D1153 as indicated by the high ipTM scores in the predicted S2P6-stem helix structure. Conclusions: Our detailed characterization of the mechanism of inhibition of 7B2 reveals its distinctive binding model from S2P6 and yields insights on multiple neutralizing and highly conserved epitopes in the S2 domain which could be key components for pan-CoV vaccine development. Full article
Show Figures

Figure 1

21 pages, 5739 KiB  
Article
Novel Lung Cell-Penetrating Peptide Targets Alveolar Epithelial Type II Cells, Basal Cells, and Ionocytes
by Jin Wen, Gajalakshmi Singuru, Jeffrey Stiltner, Sanjay Mishra, Kyle S. Feldman, Kayla McCandless, Raymond Yurko, Kazi Islam, Ray Frizzell, Hisato Yagi, Jonathan M. Brown and Maliha Zahid
Pharmaceutics 2025, 17(7), 824; https://doi.org/10.3390/pharmaceutics17070824 - 25 Jun 2025
Viewed by 593
Abstract
Background: Cell-penetrating peptides cross cell membrane barriers while carrying cargoes in a functional form. Our work identified two novel lung-targeting peptides, S7A and R11A. Here, we present studies on biodistribution, the cell types targeted, and an in vitro proof of application. Methods: Studies [...] Read more.
Background: Cell-penetrating peptides cross cell membrane barriers while carrying cargoes in a functional form. Our work identified two novel lung-targeting peptides, S7A and R11A. Here, we present studies on biodistribution, the cell types targeted, and an in vitro proof of application. Methods: Studies were performed in human bronchial epithelial cells (HBECs) with and without various endocytic inhibitors, and coincubation with fluorescently labeled transferrin or endocytic markers. Cyclic R11A (cR11A) was conjugated to siRNA duplexes and anti-viral activity against SARS-CoV-2 was tested. Biodistribution studies were performed by injecting wild-type mice with fluorescently labeled peptides, and various circulation times were allowed for, as well as cross-staining of lung sections or isolated single cells with various cellular markers, followed by fluorescence-activated cell sorting or confocal microscopy. Results: cR11A showed peak uptake in 15 min, with the highest uptake in airway epithelial type II (ATII) cells, followed by p63+ basal cells and ionocytes. Cyclization increased transduction efficiencies ~100-fold. Endocytosis studies showed a decrease in peptide uptake by pre-treatment with Pitstop2 but not Amiloride or Nystatin. Endocytic marker Lamp1 showed colocalization at the earliest time point, with the escape of the peptide from endocytic vesicles later. cR11A conjugated to ant-spike and anti-envelop proteins showed anti-viral effects with an EC90 of 0.6 μM and 1.0 µM, respectively. Conclusions: We have identified a novel peptide, cR11A, that targets ATII, basal cells, and ionocytes, the cyclization of which increased transduction efficiency in vitro and in vivo. The uptake mechanism appears to be via clathrin-mediated endocytosis with escape from endocytic vesicles. cR11A can act as a vector to deliver anti-viral siRNA to epithelial cells. Full article
(This article belongs to the Section Biologics and Biosimilars)
Show Figures

Figure 1

Back to TopTop