Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (681)

Search Parameters:
Keywords = sphingolipid metabolism

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3342 KiB  
Article
Sphingolipid Metabolism Remodels Immunity and Metabolic Network in the Muscle of Female Chinese Mitten Crab (Eriocheir sinensis)
by Miaomiao Xue, Changyou Song, Hongxia Li, Jiyan He, Jianxiang Chen, Changxin Kong, Xiaowei Li, Hang Wang, Jie He and Pao Xu
Int. J. Mol. Sci. 2025, 26(15), 7562; https://doi.org/10.3390/ijms26157562 - 5 Aug 2025
Abstract
Numerous studies have demonstrated the positive effects of formulated feeds on gonadal and hepatopancreatic development of Eriocheir sinensis. However, there are limited studies on the effects of formulated feeds on the immune homeostasis and metabolism of muscle tissue in E. sinensis during [...] Read more.
Numerous studies have demonstrated the positive effects of formulated feeds on gonadal and hepatopancreatic development of Eriocheir sinensis. However, there are limited studies on the effects of formulated feeds on the immune homeostasis and metabolism of muscle tissue in E. sinensis during the fattening period. Therefore, this study used metabolomic and lipidomic to systematically analyze the effects of formulated diets on muscle metabolism in female E. sinensis. The results indicate that the formulated feeds improved immune performance by inhibiting inflammatory responses, apoptosis and autophagy. In addition, the feed promoted amino acid metabolism and protein synthesis while decreasing muscle fatty acid metabolism. Metabolomic analysis reveal that pyrimidine metabolism is involved in the regulation of muscle physiological health in fattening female crabs. Lipidomic analysis revealed that the formulated feeds play a role in muscle immune homeostasis, amino acid and fatty acid metabolism by regulating the level of ceramide (Cer (d18:1/22:0)) in sphingolipid metabolism. Through subnetwork analysis, the functional interactions of sphingolipid metabolism with the pathways of sphingolipid signaling, apoptosis regulation, inflammatory response and lipid dynamic homeostasis were identified, which further defined the important role of sphingolipid metabolism in the regulation of muscle physiological health and metabolic homeostasis was further identified. In summary, the formulated feeds effectively promote immune homeostasis and metabolism in the muscle of female E. sinensis during the fattening period. These findings provide a solid theoretical foundation for feed formulation optimization and application in fattening practices. Full article
(This article belongs to the Section Molecular Endocrinology and Metabolism)
Show Figures

Figure 1

18 pages, 7672 KiB  
Article
Molecular Subtypes and Biomarkers of Ulcerative Colitis Revealed by Sphingolipid Metabolism-Related Genes: Insights from Machine Learning and Molecular Dynamics
by Quanwei Li, Junchen Li, Shuyuan Liu, Yunshu Zhang, Jifeng Liu, Xing Wan and Guogang Liang
Curr. Issues Mol. Biol. 2025, 47(8), 616; https://doi.org/10.3390/cimb47080616 - 4 Aug 2025
Viewed by 127
Abstract
Ulcerative colitis (UC) is a chronic inflammatory bowel disease associated with disrupted lipid metabolism. This study aimed to uncover novel molecular subtypes and biomarkers by integrating sphingolipid metabolism-related genes (SMGs) with machine learning approaches. Using data from the GEO and GeneCards databases, 29 [...] Read more.
Ulcerative colitis (UC) is a chronic inflammatory bowel disease associated with disrupted lipid metabolism. This study aimed to uncover novel molecular subtypes and biomarkers by integrating sphingolipid metabolism-related genes (SMGs) with machine learning approaches. Using data from the GEO and GeneCards databases, 29 UC-related SMGs were identified. Consensus clustering was employed to define distinct molecular subtypes of UC, and a diagnostic model was developed through various machine learning algorithms. Further analyses—including functional enrichment, transcription factor prediction, single-cell localization, potential drug screening, molecular docking, and molecular dynamics simulations—were conducted to investigate the underlying mechanisms and therapeutic prospects of the identified genes in UC. The analysis revealed two molecular subtypes of UC: C1 (metabolically dysregulated) and C2 (immune-enriched). A diagnostic model based on three key genes demonstrated high accuracy in both the training and validation cohorts. Moreover, the transcription factor FOXA2 was predicted to regulate the expression of all three genes simultaneously. Notably, mebendazole and NVP-TAE226 emerged as promising therapeutic agents for UC. In conclusion, SMGs are integral to UC molecular subtyping and immune microenvironment modulation, presenting a novel framework for precision diagnosis and targeted treatment of UC. Full article
Show Figures

Figure 1

17 pages, 1812 KiB  
Article
Systemic Metabolic Alterations Induced by Etodolac in Healthy Individuals
by Rajaa Sebaa, Reem H. AlMalki, Hatouf Sukkarieh, Lina A. Dahabiyeh, Maha Al Mogren, Tawfiq Arafat, Ahmed H. Mujamammi, Essa M. Sabi and Anas M. Abdel Rahman
Pharmaceuticals 2025, 18(8), 1155; https://doi.org/10.3390/ph18081155 - 4 Aug 2025
Viewed by 173
Abstract
Background/Objective: Pharmacological interventions often exert systemic effects beyond their primary targets, underscoring the need for a comprehensive evaluation of their metabolic impact. Etodolac is a nonsteroidal anti-inflammatory drug (NSAID) that alleviates pain, fever, and inflammation by inhibiting cyclooxygenase-2 (COX-2), thereby reducing prostaglandin synthesis. [...] Read more.
Background/Objective: Pharmacological interventions often exert systemic effects beyond their primary targets, underscoring the need for a comprehensive evaluation of their metabolic impact. Etodolac is a nonsteroidal anti-inflammatory drug (NSAID) that alleviates pain, fever, and inflammation by inhibiting cyclooxygenase-2 (COX-2), thereby reducing prostaglandin synthesis. While its pharmacological effects are well known, the broader metabolic impact and potential mechanisms underlying improved clinical outcomes remain underexplored. Untargeted metabolomics, which profiles the metabolome without prior selection, is an emerging tool in clinical pharmacology for elucidating drug-induced metabolic changes. In this study, untargeted metabolomics was applied to investigate metabolic changes following a single oral dose of etodolac in healthy male volunteers. By analyzing serial blood samples over time, we identified endogenous metabolites whose concentrations were positively or inversely associated with the drug’s plasma levels. This approach provides a window into both therapeutic pathways and potential off-target effects, offering a promising strategy for early-stage drug evaluation and multi-target discovery using minimal human exposure. Methods: Thirty healthy participants received a 400 mg dose of Etodolac. Plasma samples were collected at five time points: pre-dose, before Cmax, at Cmax, after Cmax, and 36 h post-dose (n = 150). Samples underwent LC/MS-based untargeted metabolomics profiling and pharmacokinetic analysis. A total of 997 metabolites were significantly dysregulated between the pre-dose and Cmax time points, with 875 upregulated and 122 downregulated. Among these, 80 human endogenous metabolites were identified as being influenced by Etodolac. Results: A total of 17 metabolites exhibited time-dependent changes closely aligned with Etodolac’s pharmacokinetic profile, while 27 displayed inverse trends. Conclusions: Etodolac influences various metabolic pathways, including arachidonic acid metabolism, sphingolipid metabolism, and the biosynthesis of unsaturated fatty acids. These selective metabolic alterations complement its COX-2 inhibition and may contribute to its anti-inflammatory effects. This study provides new insights into Etodolac’s metabolic impact under healthy conditions and may inform future therapeutic strategies targeting inflammation. Full article
(This article belongs to the Special Issue Advances in Drug Analysis and Drug Development, 2nd Edition)
Show Figures

Figure 1

19 pages, 2656 KiB  
Article
Circulating Lipid Profiles Indicate Incomplete Metabolic Recovery After Weight Loss, Suggesting the Need for Additional Interventions in Severe Obesity
by Alina-Iuliana Onoiu, Vicente Cambra-Cortés, Andrea Jiménez-Franco, Anna Hernández-Aguilera, David Parada, Francesc Riu, Antonio Zorzano, Jordi Camps and Jorge Joven
Biomolecules 2025, 15(8), 1112; https://doi.org/10.3390/biom15081112 - 1 Aug 2025
Viewed by 143
Abstract
The effects of long-term adjustments in body weight on the lipid balance in patients with severe obesity are not well understood. This study aimed to evaluate a non-invasive lipidomic approach to identifying biomarkers that could help predict which patients may require additional therapies [...] Read more.
The effects of long-term adjustments in body weight on the lipid balance in patients with severe obesity are not well understood. This study aimed to evaluate a non-invasive lipidomic approach to identifying biomarkers that could help predict which patients may require additional therapies before and after weight loss. Using mass spectrometry, 275 lipid species were analysed in non-obese controls, patients with severe obesity, and patients one year after bariatric surgery. The results showed that severe obesity disrupts lipid pathways, contributing to lipotoxicity, inflammation, mitochondrial stress, and abnormal lipid metabolism. Although weight loss improved these disturbances, surgery did not fully normalise the lipid profiles of all patients. Outcomes varied depending on their baseline liver health and genetic differences. Persistent alterations in cholesterol handling, membrane composition, and mitochondrial function were observed in partial responders. Elevated levels of sterol lipids, glycerophospholipids, and sphingolipids emerged as markers of complete metabolic recovery, identifying candidates for targeted post-surgical interventions. These findings support the use of lipidomics to personalise obesity treatment and follow-up. Full article
(This article belongs to the Section Molecular Biomarkers)
Show Figures

Figure 1

24 pages, 2735 KiB  
Article
Dietary Intake of a Milk Sphingolipid-Rich MFGM/EV Concentrate Ameliorates Age-Related Metabolic Dysfunction
by Richard R. Sprenger, Kat F. Kiilerich, Mikael Palner, Arsênio Rodrigues Oliveira, Mikaël Croyal, Marie S. Ostenfeld, Ann Bjørnshave, Gitte M. Knudsen and Christer S. Ejsing
Nutrients 2025, 17(15), 2529; https://doi.org/10.3390/nu17152529 - 31 Jul 2025
Viewed by 280
Abstract
Background/Objectives: Nutraceuticals containing milk fat globule membranes (MFGMs) and extracellular vesicles (EVs) are purported to abate age-related metabolic dysfunction due to their richness in milk sphingolipids. As such, nutraceuticals offer a compelling strategy to improve metabolic health through dietary means, especially for elderly [...] Read more.
Background/Objectives: Nutraceuticals containing milk fat globule membranes (MFGMs) and extracellular vesicles (EVs) are purported to abate age-related metabolic dysfunction due to their richness in milk sphingolipids. As such, nutraceuticals offer a compelling strategy to improve metabolic health through dietary means, especially for elderly persons who are unable to adhere to common therapeutic interventions. To address this, we examined the effects of supplementing aged sedentary rats with an MFGM/EV-rich concentrate. Methods/Results: In a 25-week study, 89-week-old male rats received either a milk sphingolipid-rich MFGM/EV concentrate or a control supplement. Analysis of metabolic health using a battery of tests, including MSALL lipidomics of plasma, liver, and other peripheral tissues, revealed that MFGM/EV supplementation promotes accretion of unique sphingolipid signatures, ameliorates ceramide biomarkers predictive of cardiovascular death, and has a general lipid-lowering effect. At the functional level, we find that these health-promoting effects are linked to increased lipoprotein particle turnover, showcased by reduced levels of triglyceride-rich particles, as well as a metabolically healthier liver, assessed using whole-body lipidomic flux analysis. Conclusions: Altogether, our work unveils that MFGM/EV-containing food holds a potential for ameliorating age-related metabolic dysfunction in elderly individuals. Full article
(This article belongs to the Special Issue Diet and Nutrition: Metabolic Diseases---2nd Edition)
Show Figures

Graphical abstract

17 pages, 6558 KiB  
Article
Multi-Omics Reveals Aberrant Phenotypes of Respiratory Microbiome and Phospholipidomics Associated with Asthma-Related Inflammation
by Huan Liu, Zemin Li, Xu Zhang, Jiang-Chao Zhao, Jianmin Chai and Chun Chang
Microorganisms 2025, 13(8), 1761; https://doi.org/10.3390/microorganisms13081761 - 28 Jul 2025
Viewed by 368
Abstract
Respiratory microbiota and lipids are closely associated with airway inflammation. This study aimed to analyze the correlations among the respiratory microbiome, the airway glycerophospholipid–sphingolipid profiles, and airway inflammation in patients with asthma. We conducted a cross-sectional study involving 61 patients with asthma and [...] Read more.
Respiratory microbiota and lipids are closely associated with airway inflammation. This study aimed to analyze the correlations among the respiratory microbiome, the airway glycerophospholipid–sphingolipid profiles, and airway inflammation in patients with asthma. We conducted a cross-sectional study involving 61 patients with asthma and 17 healthy controls. Targeted phospholipidomics was performed on exhaled breath condensate (EBC) samples, and microbial composition was analyzed via the 16S rDNA sequencing of induced sputum. Asthma patients exhibited significant alterations in the EBC lipid profiles, with reduced levels of multiple ceramides (Cer) and glycerophospholipids, including phosphatidylethanolamine (PE) and phosphatidylcholine (PC), compared with healthy controls. These lipids were inversely correlated with the sputum interleukin-4 (IL-4) levels. Microbiome analysis revealed an increased abundance of Leptotrichia and Parasutterella in asthma patients, both positively associated with IL-4. Correlation analysis highlighted a potential interaction network involving PA, PE, ceramides, Streptococcus, Corynebacterium, Parasutterella, and Leptotrichia. Specific alterations in airway microbiota and phospholipid metabolism are associated with asthma-related inflammation, supporting the concept of a microbiota–phospholipid–immune axis and providing potential targets for future mechanistic and therapeutic studies. Full article
(This article belongs to the Section Microbiomes)
Show Figures

Figure 1

25 pages, 10636 KiB  
Article
Qifu Decoction Alleviates Lipopolysaccharide-Induced Myocardial Dysfunction by Inhibiting TLR4/NF-κB/NLRP3 Inflammatory Pathway and Activating PPARα/CPT Pathway
by Lingxin Zhuo, Mingxuan Ma, Jiayi Zhang, Jiayu Zhou, Yuqi Zheng, Aiyin Liang, Qingqing Sun, Jia Liu and Wenting Liao
Pharmaceuticals 2025, 18(8), 1109; https://doi.org/10.3390/ph18081109 - 25 Jul 2025
Viewed by 312
Abstract
Background/Objectives: Sepsis-induced cardiomyopathy (SIC) is a serious clinical disorder with a high death rate. Qifu decoction (QFD) is a renowned traditional Chinese medicine with documented pharmacological actions, such as anti-inflammatory, anti-oxidant and anti-apoptosis activities, and it has good therapeutic effects on cardiovascular [...] Read more.
Background/Objectives: Sepsis-induced cardiomyopathy (SIC) is a serious clinical disorder with a high death rate. Qifu decoction (QFD) is a renowned traditional Chinese medicine with documented pharmacological actions, such as anti-inflammatory, anti-oxidant and anti-apoptosis activities, and it has good therapeutic effects on cardiovascular diseases. This study aimed to reveal the cardioprotective effects and underlying mechanisms of QFD against SIC. Methods: Electrocardiography, histopathological examination, and biochemical indicator determination were carried out to investigate the cardioprotective effects of QFD in the treatment of LPS-induced SIC mice. Metabolomics and network pharmacology strategies were employed to preliminarily analyze and predict the mechanisms of QFD against SIC. Molecular docking and Western blot were further applied to validate the core targets and potential pathways for the treatment of SIC in in vitro and in vivo models. Results: It was found that QFD considerably enhanced cardiac function; attenuated myocardial injury; and reduced the serum levels of LDH, CK-MB, IL-1β, and TNF-α by 28.7%, 32.3%, 38.6%, and 36.7%, respectively. Metabolomic analysis showed that QFD could regulate seven metabolic pathways, namely, glutathione metabolism; alanine, aspartate, and glutamate metabolism; arachidonic acid metabolism; glycerophospholipid metabolism; purine metabolism; sphingolipid metabolism; and fatty acid metabolism. Network pharmacology suggested that the anti-SIC effect of QFD may be mediated through the TNF, toll-like receptor, NOD-like receptor, NF-κB, and PPAR signaling pathways. Additionally, 26 core targets were obtained. Molecular docking revealed that active ingredients such as formononetin, kaempferol, quercetin, and (R)-norcoclaurine in QFD had a high affinity for binding to PPARα and TLR4. Further Western blot validation indicated that QFD could regulate the protein levels of NLRP3, TLR4, NF-κB, IL-6, TNF-α, COX2, sPLA2, PPARα, CPT1B, and CPT2. Conclusions: This study demonstrates that QFD can alleviate SIC by suppressing the TLR4/NF-κB/NLRP3 inflammatory pathway and modulating impaired FAO through the activation of the PPARα/CPT pathway, highlighting QFD as a promising candidate drug for SIC treatment. Full article
(This article belongs to the Section Natural Products)
Show Figures

Graphical abstract

13 pages, 2684 KiB  
Article
Comprehensive Analysis of Liver Transcriptome and Metabolome Response to Oncogenic Marek’s Disease Virus Infection in Wenchang Chickens
by Lifeng Zhi, Xiangdong Xu, Yang Zeng, Wenquan Qin, Ganghua Li, Junming Zhao, Runfeng Zhang and Guang Rong
Biology 2025, 14(8), 938; https://doi.org/10.3390/biology14080938 - 25 Jul 2025
Viewed by 302
Abstract
Marek’s disease (MD), induced by the highly contagious Marek’s disease virus (MDV), remains a significant challenge to global poultry health despite extensive vaccination efforts. This study employed integrated transcriptomic and metabolomic analyses to investigate liver responses in naturally MDV-infected Wenchang chickens during late [...] Read more.
Marek’s disease (MD), induced by the highly contagious Marek’s disease virus (MDV), remains a significant challenge to global poultry health despite extensive vaccination efforts. This study employed integrated transcriptomic and metabolomic analyses to investigate liver responses in naturally MDV-infected Wenchang chickens during late infection stages. RNA sequencing identified 959 differentially expressed genes (DEGs) between the infected and uninfected groups. Functional enrichment analysis demonstrated that these DEGs were primarily associated with canonical pathways related to metabolism and cellular processes, including lipid, carbohydrate, and amino acid metabolism, as well as the p53 signaling pathway, cell cycle, and apoptosis. Ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) detected 561 differentially expressed metabolites (DEMs), showing near-significant enrichment (p = 0.069) in phenylalanine metabolism. Integrated analysis of transcriptomics and metabolomics data highlighted that critical gene–metabolite pairs such as SGPL1-palmitaldehyde–sphinganine-1-phosphate and ME1-NADP+–malic acid potentially mediate functional crosstalk between sphingolipid metabolism and cellular redox homeostasis during viral oncogenesis. This comprehensive mapping of regulatory networks provides insights into host–virus interactions during MDV pathogenesis, offering potential applications in immunomodulation approaches, targeted therapeutic strategies, and vaccine adjuvant development. Full article
(This article belongs to the Section Infection Biology)
Show Figures

Figure 1

23 pages, 6611 KiB  
Article
Investigating Lipid and Energy Dyshomeostasis Induced by Per- and Polyfluoroalkyl Substances (PFAS) Congeners in Mouse Model Using Systems Biology Approaches
by Esraa Gabal, Marwah Azaizeh and Priyanka Baloni
Metabolites 2025, 15(8), 499; https://doi.org/10.3390/metabo15080499 - 24 Jul 2025
Viewed by 571
Abstract
Background: Exposure to per- and polyfluoroalkyl substances (PFAS, including 7H-Perfluoro-4-methyl-3,6-dioxaoctanesulfonic acid (PFESA-BP2), perfluorooctanoic acid (PFOA), and hexafluoropropylene oxide (GenX), has been associated with liver dysfunction. While previous research has characterized PFAS-induced hepatic lipid alterations, their downstream effects on energy metabolism remain unclear. This [...] Read more.
Background: Exposure to per- and polyfluoroalkyl substances (PFAS, including 7H-Perfluoro-4-methyl-3,6-dioxaoctanesulfonic acid (PFESA-BP2), perfluorooctanoic acid (PFOA), and hexafluoropropylene oxide (GenX), has been associated with liver dysfunction. While previous research has characterized PFAS-induced hepatic lipid alterations, their downstream effects on energy metabolism remain unclear. This study investigates metabolic alterations in the liver following PFAS exposure to identify mechanisms leading to hepatoxicity. Methods: We analyzed RNA sequencing datasets of mouse liver tissues exposed to PFAS to identify metabolic pathways influenced by the chemical toxicant. We integrated the transcriptome data with a mouse genome-scale metabolic model to perform in silico flux analysis and investigated reactions and genes associated with lipid and energy metabolism. Results: PFESA-BP2 exposure caused dose- and sex-dependent changes, including upregulation of fatty acid metabolism, β-oxidation, and cholesterol biosynthesis. On the contrary, triglycerides, sphingolipids, and glycerophospholipids metabolism were suppressed. Simulations from the integrated genome-scale metabolic models confirmed increased flux for mevalonate and lanosterol metabolism, supporting potential cholesterol accumulation. GenX and PFOA triggered strong PPARα-dependent responses, especially in β-oxidation and lipolysis, which were attenuated in PPARα−/− mice. Mitochondrial fatty acid transport and acylcarnitine turnover were also disrupted, suggesting impaired mitochondrial dysfunction. Additional PFAS effects included perturbations in the tricarboxylic acid (TCA) cycle, oxidative phosphorylation, and blood–brain barrier (BBB) function, pointing to broader systemic toxicity. Conclusions: Our findings highlight key metabolic signatures and suggest PFAS-mediated disruption of hepatic and possibly neurological functions. This study underscores the utility of genome-scale metabolic modeling as a powerful tool to interpret transcriptomic data and predict systemic metabolic outcomes of toxicant exposure. Full article
Show Figures

Graphical abstract

22 pages, 1781 KiB  
Article
Gene Expression Profile of the Cerebral Cortex of Niemann-Pick Disease Type C Mutant Mice
by Iris Valeria Servín-Muñoz, Daniel Ortuño-Sahagún, María Paulina Reyes-Mata, Christian Griñán-Ferré, Mercè Pallàs and Celia González-Castillo
Genes 2025, 16(8), 865; https://doi.org/10.3390/genes16080865 - 24 Jul 2025
Viewed by 365
Abstract
Background/Objectives: Niemann-Pick disease Type C (NPC) represents an autosomal recessive disorder with an incidence rate of 1 in 100,000 live births that belongs to the lysosomal storage diseases (LSDs). NPC is characterized by the abnormal accumulation of unesterified cholesterol, in addition to being [...] Read more.
Background/Objectives: Niemann-Pick disease Type C (NPC) represents an autosomal recessive disorder with an incidence rate of 1 in 100,000 live births that belongs to the lysosomal storage diseases (LSDs). NPC is characterized by the abnormal accumulation of unesterified cholesterol, in addition to being an autosomal recessive inherited pathology, which belongs to LSDs. It occurs in 95% of cases due to mutations in the NPC1 gene, while 5% of cases are due to mutations in the NPC2 gene. In the cerebral cortex (CC), the disease shows lipid inclusions, increased cholesterol and multiple sphingolipids in neuronal membranes, and protein aggregates such as hyperphosphorylated tau, α-Synuclein, TDP-43, and β-amyloid peptide. Mitochondrial damage and oxidative stress are some alterations at the cellular level in NPC. Therefore, the aim of this work was to determine the gene expression profile in the CC of NPC1 mice in order to identify altered molecular pathways that may be related to the pathophysiology of the disease. Methods: In this study, we performed a microarray analysis of a 22,000-gene chip from the cerebral cortex of an NPC mutant mouse compared to a WT mouse. Subsequently, we performed a bioinformatic analysis in which we found groups of dysregulated genes, and their expression was corroborated by qPCR. Finally, we performed Western blotting to determine the expression of proteins probably dysregulated. Results: We found groups of dysregulated genes in the cerebral cortex of the NPC mouse involved in the ubiquitination, fatty acid metabolism, differentiation and development, and underexpression in genes with mitochondrial functions, which could be involved in intrinsic apoptosis reported in NPC, in addition, we found a generalized deregulation in the cortical circadian rhythm pathway, which could be related to the depressive behavior that has even been reported in NPC patients. Conclusions: Recognizing that there are changes in the expression of genes related to ubiquitination, mitochondrial functions, and cortical circadian rhythm in the NPC mutant mouse lays the basis for targeting treatments to new potential therapeutic targets. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

26 pages, 2170 KiB  
Article
Exploratory Metabolomic and Lipidomic Profiling in a Manganese-Exposed Parkinsonism-Affected Population in Northern Italy
by Freeman Lewis, Daniel Shoieb, Somaiyeh Azmoun, Elena Colicino, Yan Jin, Jinhua Chi, Hari Krishnamurthy, Donatella Placidi, Alessandro Padovani, Andrea Pilotto, Fulvio Pepe, Marinella Tula, Patrizia Crippa, Xuexia Wang, Haiwei Gu and Roberto Lucchini
Metabolites 2025, 15(7), 487; https://doi.org/10.3390/metabo15070487 - 20 Jul 2025
Viewed by 616
Abstract
Background/Objectives: Chronic manganese (Mn) exposure is a recognized environmental contributor to Parkinsonian syndromes, including Mn-induced Parkinsonism (MnIP). This study aimed to evaluate whole-blood Mn levels and investigate disease/exposure-status-related alterations in metabolomic and lipidomic profiles. Methods: A case–control study (N = 97) was conducted [...] Read more.
Background/Objectives: Chronic manganese (Mn) exposure is a recognized environmental contributor to Parkinsonian syndromes, including Mn-induced Parkinsonism (MnIP). This study aimed to evaluate whole-blood Mn levels and investigate disease/exposure-status-related alterations in metabolomic and lipidomic profiles. Methods: A case–control study (N = 97) was conducted in Brescia, Italy, stratifying participants by Parkinsonism diagnosis and residential Mn exposure. Whole-blood Mn was quantified using ICP-MS. Untargeted metabolomic and lipidomic profiling was conducted using LC-MS. Statistical analyses included Mann–Whitney U tests, conditional logistic regression, ANCOVA, and pathway analysis. Results: Whole-blood Mn levels were significantly elevated in Parkinsonism cases vs. controls (median: 1.55 µg/dL [IQR: 0.75] vs. 1.02 µg/dL [IQR: 0.37]; p = 0.001), with Mn associated with increased odds of Parkinsonism (OR = 2.42, 95% CI: 1.13–5.17; p = 0.022). The disease effect metabolites included 3-sulfoxy-L-tyrosine (β = 1.12), formiminoglutamic acid (β = 0.99), and glyoxylic acid (β = 0.83); all FDR p < 0.001. The exposure effect was associated with elevated glycocholic acid (β = 0.51; FDR p = 0.006) and disrupted butanoate (Impact = 0.03; p = 0.004) and glutamate metabolism (p = 0.03). Additionally, SLC-mediated transmembrane transport was enriched (p = 0.003). The interaction effect identified palmitelaidic acid (β = 0.30; FDR p < 0.001), vitamin B6 metabolism (Impact = 0.08; p = 0.03), and glucose homeostasis pathways. In lipidomics, triacylglycerols and phosphatidylethanolamines were associated with the disease effect (e.g., TG(16:0_10:0_18:1), β = 0.79; FDR p < 0.01). Ferroptosis and endocannabinoid signaling were enriched in both disease and interaction effects, while sphingolipid metabolism was specific to the interaction effect. Conclusions: Mn exposure and Parkinsonism are associated with distinct metabolic and lipidomic perturbations. These findings support the utility of omics in identifying environmentally linked Parkinsonism biomarkers and mechanisms. Full article
(This article belongs to the Special Issue Metabolomics in Human Diseases and Health)
Show Figures

Figure 1

37 pages, 7439 KiB  
Review
A Review Discussing Synthesis and Translational Studies of Medicinal Agents Targeting Sphingolipid Pathways
by Sameena Mateen, Jordan Oman, Soha Haniyyah, Kavita Sharma, Ali Aghazadeh-Habashi and Srinath Pashikanti
Biomolecules 2025, 15(7), 1022; https://doi.org/10.3390/biom15071022 - 16 Jul 2025
Viewed by 521
Abstract
Sphingolipids (SLs) are a class of bioactive lipids characterized by sphingoid bases (SBs) as their backbone structure. These molecules exhibit distinct cellular functions, including cell growth, apoptosis, senescence, migration, and inflammatory responses, by interacting with esterases, amidases, kinases, phosphatases, and membrane receptors. These [...] Read more.
Sphingolipids (SLs) are a class of bioactive lipids characterized by sphingoid bases (SBs) as their backbone structure. These molecules exhibit distinct cellular functions, including cell growth, apoptosis, senescence, migration, and inflammatory responses, by interacting with esterases, amidases, kinases, phosphatases, and membrane receptors. These interactions result in a highly interconnected network of enzymes and pathways, known as the sphingolipidome. Dysregulation within this network is implicated in the onset and progression of cardiovascular diseases, metabolic disorders, neurodegenerative disorders, autoimmune diseases, and various cancers. This review highlights the pharmacologically significant sphingoid-based medicinal agents in preclinical and clinical studies. These include myriocin, fingolimod, fenretinide, safingol, spisulosine (ES-285), jaspine B, D-e-MAPP, B13, and α-galactosylceramide. It covers enantioselective syntheses, drug development efforts, and advances in molecular modeling to facilitate an understanding of the binding interactions of these compounds with their biological targets. This review provides a comprehensive evaluation of chiral pool synthetic strategies, translational studies, and the pharmacological relevance of sphingolipid-based drug candidates, offering a pathway for future research in sphingolipid-based therapeutic development. Full article
Show Figures

Figure 1

17 pages, 1855 KiB  
Article
Effects of Muscle Fiber Composition on Meat Quality, Flavor Characteristics, and Nutritional Traits in Lamb
by Yu Fu, Yang Chen, Xuewen Han, Dandan Tan, Jinlin Chen, Cuiyu Lai, Xiaofan Yang, Xuesong Shan, Luiz H. P. Silva and Huaizhi Jiang
Foods 2025, 14(13), 2309; https://doi.org/10.3390/foods14132309 - 29 Jun 2025
Cited by 1 | Viewed by 483
Abstract
Skeletal muscle fiber type composition critically influences lamb meat quality. This study examined the relationships between muscle fiber types and key quality traits, including tenderness, color, lipid and amino acid profiles, and volatile flavor compounds. MyHC I (slow-twitch oxidative fibers) positively correlated with [...] Read more.
Skeletal muscle fiber type composition critically influences lamb meat quality. This study examined the relationships between muscle fiber types and key quality traits, including tenderness, color, lipid and amino acid profiles, and volatile flavor compounds. MyHC I (slow-twitch oxidative fibers) positively correlated with desirable traits such as increased redness, water-holding capacity, unsaturated fatty acids, and essential amino acids. Conversely, MyHC IIb (fast glycolytic fibers) was linked to reduced tenderness and higher levels of off-flavor compounds. MyHC IIa and IIx showed minimal effects. Untargeted metabolomics comparing muscles with high versus low slow-twitch fiber proportions revealed differential metabolites enriched in sphingolipid and arginine-proline metabolism pathways. These results suggest that a higher proportion of oxidative fibers enhances both the sensory and nutritional qualities of lamb meat by modulating lipid metabolism, amino acid availability, and flavor formation. Full article
Show Figures

Figure 1

18 pages, 3470 KiB  
Article
Challenges and Advantages of Using Spatially Resolved Lipidomics to Assess the Pathological State of Human Lung Tissue
by Ibai Calvo, Albert Maimó-Barceló, Jone Garate, Joan Bestard-Escalas, Sergio Scrimini, Jaume Sauleda, Borja G. Cosío, José Andrés Fernández and Gwendolyn Barceló-Coblijn
Cancers 2025, 17(13), 2160; https://doi.org/10.3390/cancers17132160 - 26 Jun 2025
Viewed by 414
Abstract
Background: Mass spectrometry imaging (MSI) lipidomics is a subset of spatially resolved techniques wherein lipids are detected by mass spectrometry, allowing their multiplexed detection and acquiring position-correlated spectra along a tissue section. Rapid advances in the field provide solid evidence demonstrating how specific [...] Read more.
Background: Mass spectrometry imaging (MSI) lipidomics is a subset of spatially resolved techniques wherein lipids are detected by mass spectrometry, allowing their multiplexed detection and acquiring position-correlated spectra along a tissue section. Rapid advances in the field provide solid evidence demonstrating how specific and regulated lipid distribution is in any biological context. Objectives: Herein, we describe the MSI, particularly matrix-assisted laser desorption/ionization (MALDI-MSI), challenges and advantages in defining human lung pathophysiology, particularly in lung cancer and chronic obstructive pulmonary disease, leading causes of death. Methods: MALDI-MSI analysis of lung tissue sections at 25 μm of lateral resolution allowed associating specific lipid profiles with the main tissues present and independently assessing the impact on lipid composition of smoking, chronic inflammation, and lung cancer. Results: Consistent with MALDI-MSI studies in tumor epithelia, arachidonic acid-containing phospholipids increased, agreeing with its role as a precursor of numerous bioactive molecules participating in cell differentiation and malignization. Next, a gene expression dataset of epithelial human non-small cell lung cancer samples was analyzed using system biology approaches, revealing that, consistent with the most relevant changes in lipid profiles, the network dominated by the tumor-associated module included genes tightly involved in phosphatidylinositol and sphingolipid metabolism. Hence, despite the intrinsic difficulties entailed by lung tissue handling, the results strongly encourage future analysis at higher lateral resolutions so that the lipidome changes associated with each lung cellular type, even subtype, could be fully mapped. Therefore, MALDI-MSI lipidomics definitively broadens the options, some still rather unexplored, to delve into pathophysiology at the cell-type level. Full article
(This article belongs to the Section Cancer Biomarkers)
Show Figures

Figure 1

18 pages, 1000 KiB  
Article
Diabetic Ketoacidosis Is Associated with Lower Serum Sphingolipids but Higher β-Hydroxybutyrate and Lactate: A Pilot Study
by Ibrahim Aslan, Tuğçe Çeker, Tayfun Ustabaş, Vuslat Zorlu, Çağatay Yılmaz and Mutay Aslan
Pathophysiology 2025, 32(3), 29; https://doi.org/10.3390/pathophysiology32030029 - 26 Jun 2025
Viewed by 398
Abstract
Background/Objectives: Diabetic ketoacidosis (DKA) is an acute and severe complication of diabetes mellitus, marked by hyperglycemia, ketosis, and acidosis. It is associated with significant metabolic and inflammatory adjustments that can impact multiple biochemical pathways. This study aimed to determine the serum sphingolipid [...] Read more.
Background/Objectives: Diabetic ketoacidosis (DKA) is an acute and severe complication of diabetes mellitus, marked by hyperglycemia, ketosis, and acidosis. It is associated with significant metabolic and inflammatory adjustments that can impact multiple biochemical pathways. This study aimed to determine the serum sphingolipid profile in DKA and investigate its relationship with neutral sphingomyelinase (N-SMase), pro-inflammatory cytokines, β-hydroxybutyrate (β-OHB), and lactate levels. Methods: Thirty-three participants were divided into three groups: control (BMI ≤ 30, no health issues), obese (BMI > 30), and DKA (BMI ≤ 30). Sphingomyelins (16:0–24:0 SMs) and ceramides (C16–C24 CERs) were measured using ultra-fast liquid chromatography combined with tandem mass spectrometry (LC-MS/MS). N-SMase, interleukin 1 beta (IL-1β), and tumor necrosis factor alpha (TNF-α) levels were assessed by enzyme-linked immunosorbent assay. Evaluations were done in the DKA group before and after standard clinical treatment for DKA (post-DKA group), which included intravenous insulin therapy, fluid resuscitation, and electrolyte replacement, as per established clinical guidelines. Results: β-OHB levels were significantly higher in the DKA group than in the control, obese, and post-DKA groups. Although β-OHB levels decreased in the post-DKA group, they remained elevated compared to the control and obese groups. Lactate levels were also higher in the DKA group, with a significant decrease in the post-DKA group. TNF-α and IL-1β were higher in the obese group compared to control and DKA groups, and TNF-α decreased significantly in the post-DKA group compared to DKA. N-SMase, 16:0–18:0 SMs, and C18-C24 CER levels were lower in the DKA and post-DKA groups compared to obese and control groups. Serum β-OHB and lactate levels were significantly correlated with S1P, total CER, total SM, and N-SMase values. Conclusions: The study reveals significant metabolic and inflammatory differences in DKA and post-DKA states, suggesting a relationship between sphingolipids, N-SMase, and these alterations, which could offer insights into DKA pathophysiology and therapeutic targets. Full article
(This article belongs to the Section Metabolic Disorders)
Show Figures

Graphical abstract

Back to TopTop