Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (164)

Search Parameters:
Keywords = spectrum leakage

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2562 KiB  
Article
Harmonic and Interharmonic Measurement Method Using Two-Fold Compound Convolution Windows and Zoom Fast Fourier Transform
by Xiangui Xiao, Lei Zhao, Shengjun Zhou, Haijun Liu, Zhong Fu and Dan Hu
Energies 2025, 18(15), 4047; https://doi.org/10.3390/en18154047 - 30 Jul 2025
Viewed by 142
Abstract
With the rapidly increasing penetration of new energy resources, the power grid faces significant threats from harmonics. To measure and suppress these harmonics, numerous harmonic measurement methods have been proposed. However, accurately identifying the parameters of harmonics and interharmonics remains challenging. To address [...] Read more.
With the rapidly increasing penetration of new energy resources, the power grid faces significant threats from harmonics. To measure and suppress these harmonics, numerous harmonic measurement methods have been proposed. However, accurately identifying the parameters of harmonics and interharmonics remains challenging. To address this issue, we propose a new method that combines two-fold convolution windows and ZoomFFT. This method leverages the advantages of low side lobe peaks and high side lobe attenuation rates of compound convolution windows to suppress spectral leakage. Additionally, a six-spectral-line interpolation method is employed to correct the calculation results. Furthermore, ZoomFFT is utilized to locally amplify the spectrum, enabling the distinction between interharmonics and harmonics with closely spaced frequencies. The simulation results demonstrate that the proposed algorithm effectively identifies interharmonics with similar frequencies, outperforming single-window functions and ZoomFFT in terms of accuracy. Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Figure 1

17 pages, 1308 KiB  
Article
Dual-Functional AgNPs/Magnetic Coal Fly Ash Composite for Wastewater Disinfection and Azo Dye Removal
by Lei Gong, Jiaxin Li, Rui Jin, Menghao Li, Jiajie Peng and Jie Zhu
Molecules 2025, 30(15), 3155; https://doi.org/10.3390/molecules30153155 - 28 Jul 2025
Viewed by 221
Abstract
In this study, we report the development of a novel magnetized coal fly ash-supported nano-silver composite (AgNPs/MCFA) for dual-functional applications in wastewater treatment: the efficient degradation of methyl orange (MO) dye and broad-spectrum antibacterial activity. The composite was synthesized via a facile impregnation–reduction–sintering [...] Read more.
In this study, we report the development of a novel magnetized coal fly ash-supported nano-silver composite (AgNPs/MCFA) for dual-functional applications in wastewater treatment: the efficient degradation of methyl orange (MO) dye and broad-spectrum antibacterial activity. The composite was synthesized via a facile impregnation–reduction–sintering route, utilizing sodium citrate as both a reducing and stabilizing agent. The AgNPs/MCFA composite was systematically characterized through multiple analytical techniques, including Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and vibrating sample magnetometry (VSM). The results confirmed the uniform dispersion of AgNPs (average size: 13.97 nm) on the MCFA matrix, where the formation of chemical bonds (Ag-O-Si) contributed to the enhanced stability of the material. Under optimized conditions (0.5 g·L−1 AgNO3, 250 °C sintering temperature, and 2 h sintering time), AgNPs/MCFA exhibited an exceptional catalytic performance, achieving 99.89% MO degradation within 15 min (pseudo-first-order rate constant ka = 0.3133 min−1) in the presence of NaBH4. The composite also demonstrated potent antibacterial efficacy against Escherichia coli (MIC = 0.5 mg·mL−1) and Staphylococcus aureus (MIC = 2 mg·mL−1), attributed to membrane disruption, intracellular content leakage, and reactive oxygen species generation. Remarkably, AgNPs/MCFA retained >90% catalytic and antibacterial efficiency after five reuse cycles, enabled by its magnetic recoverability. By repurposing industrial waste (coal fly ash) as a low-cost carrier, this work provides a sustainable strategy to mitigate nanoparticle aggregation and environmental risks while enhancing multifunctional performance in water remediation. Full article
Show Figures

Graphical abstract

33 pages, 6828 KiB  
Article
Acoustic Characterization of Leakage in Buried Natural Gas Pipelines
by Yongjun Cai, Xiaolong Gu, Xiahua Zhang, Ke Zhang, Huiye Zhang and Zhiyi Xiong
Processes 2025, 13(7), 2274; https://doi.org/10.3390/pr13072274 - 17 Jul 2025
Viewed by 309
Abstract
To address the difficulty of locating small-hole leaks in buried natural gas pipelines, this study conducted a comprehensive theoretical and numerical analysis of the acoustic characteristics associated with such leakage events. A coupled flow–acoustic simulation framework was developed, integrating gas compressibility via the [...] Read more.
To address the difficulty of locating small-hole leaks in buried natural gas pipelines, this study conducted a comprehensive theoretical and numerical analysis of the acoustic characteristics associated with such leakage events. A coupled flow–acoustic simulation framework was developed, integrating gas compressibility via the realizable k-ε and Large Eddy Simulation (LES) turbulence models, the Peng–Robinson equation of state, a broadband noise source model, and the Ffowcs Williams–Hawkings (FW-H) acoustic analogy. The effects of pipeline operating pressure (2–10 MPa), leakage hole diameter (1–6 mm), soil type (sandy, loam, and clay), and leakage orientation on the flow field, acoustic source behavior, and sound field distribution were systematically investigated. The results indicate that the leakage hole size and soil medium exert significant influence on both flow dynamics and acoustic propagation, while the pipeline pressure mainly affects the strength of the acoustic source. The leakage direction was found to have only a minor impact on the overall results. The leakage noise is primarily composed of dipole sources arising from gas–solid interactions and quadrupole sources generated by turbulent flow, with the frequency spectrum concentrated in the low-frequency range of 0–500 Hz. This research elucidates the acoustic characteristics of pipeline leakage under various conditions and provides a theoretical foundation for optimal sensor deployment and accurate localization in buried pipeline leak detection systems. Full article
(This article belongs to the Special Issue Design, Inspection and Repair of Oil and Gas Pipelines)
Show Figures

Figure 1

24 pages, 3887 KiB  
Article
Applying Quantitative Fluorescence Techniques to Investigate the Effectiveness of Deep-Seated Mudstone Caprocks in the Junggar Basin, NW China
by Jiangxiu Qu, Keshun Liu, Hailei Liu, Minghui Zhou, Xiujian Ding and Ming Zha
Geosciences 2025, 15(6), 215; https://doi.org/10.3390/geosciences15060215 - 10 Jun 2025
Viewed by 2356
Abstract
The Central Depression of the Junggar Basin relies heavily on Permian lacustrine mudstone for deep-seated hydrocarbon sealing. This research investigated how the fluorescence parameters of caprock samples responded to the leakage of palaeo-oil zones based on measurements from SEM, Rock-Eval, and X-ray diffraction [...] Read more.
The Central Depression of the Junggar Basin relies heavily on Permian lacustrine mudstone for deep-seated hydrocarbon sealing. This research investigated how the fluorescence parameters of caprock samples responded to the leakage of palaeo-oil zones based on measurements from SEM, Rock-Eval, and X-ray diffraction analysis. First, two sets of control experiments were conducted to establish the proper grain-size range of 100–140 mesh for testing caprock samples in the research area using quantitative fluorescence technology. Subsequently, based on the examination of the rock pyrolysis parameters and the fluorescence parameters against TOC values, the conjecture was formed that the quantitative fluorescence technology test results were mostly unaffected by the primary hydrocarbons. Lastly, four fluorescence parameters were used to assess seal integrity: quantitative grain fluorescence intensity of the extract (QGF E intensity, the meaning of QGF is the same in this study), QGF spectral peaks (QGF λmax), the ratio of QGF intensity to fluorescence intensity at 300 nm on the QGF spectrum (QGF index), and total scanning fluorescence spectral ratio R1 (TSF R1). The Permian caprock can effectively seal hydrocarbons as evidenced by the decrease of QGF E intensity and QGF index values with depth. When hydraulic fracturing causes caprock failure, it can lead to complete leakage of hydrocarbons from the palaeo-oil zones. As the depth becomes shallower, the QGF E intensity value increases, the QGF index value decreases. Due to the differences in the migration pathways of hydrocarbons in the caprock, those leaked from the Permian palaeo-oil zone into the well PD1 caprock are mainly condensate and light–normal crude oil, while the hydrocarbons from the Carboniferous palaeo-oil zone into the well MS1 caprock consist predominantly of light–normal crude oil and medium–heavy crude oil. Full article
(This article belongs to the Section Geochemistry)
Show Figures

Figure 1

14 pages, 4360 KiB  
Article
Frequency Domain Sampling Optimization of Cable Defect Detection and Location Method Based on Exponentially Increased Frequency Reflection Coefficient Spectrum
by Kuangyi Jiang, Kai Zhou, Xiang Ren and Yefei Xu
Energies 2025, 18(10), 2428; https://doi.org/10.3390/en18102428 - 8 May 2025
Viewed by 416
Abstract
The existing linear frequency increment cable defect detection method using frequency domain reflectometry suffers from severe pseudo-peak phenomena due to non-targeted frequency domain sampling, which interferes with diagnosis. To address this issue, this paper proposes an optimized frequency domain sampling method based on [...] Read more.
The existing linear frequency increment cable defect detection method using frequency domain reflectometry suffers from severe pseudo-peak phenomena due to non-targeted frequency domain sampling, which interferes with diagnosis. To address this issue, this paper proposes an optimized frequency domain sampling method based on the exponential frequency increment reflection coefficient spectrum. This method optimizes the distribution of frequency domain sampling points, reducing the sampling of high-frequency noise signals, thereby effectively suppressing pseudo-peaks. Research indicates that the low-frequency band of the cable reflection coefficient spectrum contains richer information about the cable’s condition and has less noise compared to the high-frequency band. Therefore, an exponential frequency increment is used instead of the current linear frequency increment, resulting in a denser sampling in the low-frequency band and sparser sampling in the high-frequency band, better matching the information distribution characteristics of the cable reflection coefficient spectrum. To avoid spectral leakage caused by non-uniform sampling under exponential frequency increments, this method locally linearizes exponential sampling and uses interpolation to complete the overall frequency sampling rate, ensuring it meets the basic assumption of Fourier transform—uniform and equally spaced sampling signals. Finally, this method was validated on a 500 m laboratory test cable and a 2000 m operational cable. Experimental results show that this method can make the amplitude of regions other than impedance mismatch points in the positioning curve flatter and effectively suppress abnormal peak interference, significantly improving the accuracy of defect diagnosis. Full article
(This article belongs to the Section F4: Critical Energy Infrastructure)
Show Figures

Figure 1

14 pages, 6171 KiB  
Article
A Discrete Fourier Transform-Based Signal Processing Method for an Eddy Current Detection Sensor
by Songhua Huang, Maocheng Hong, Ge Lin, Bo Tang and Shaobin Shen
Sensors 2025, 25(9), 2686; https://doi.org/10.3390/s25092686 - 24 Apr 2025
Viewed by 536
Abstract
This paper presents a discrete Fourier transform (DFT)-based signal processing framework for eddy current non-destructive testing (NDT), aiming to enhance signal quality for precise defect characterization in critical nuclear components. By enforcing strict periodicity matching between sampling points and signal frequencies, the proposed [...] Read more.
This paper presents a discrete Fourier transform (DFT)-based signal processing framework for eddy current non-destructive testing (NDT), aiming to enhance signal quality for precise defect characterization in critical nuclear components. By enforcing strict periodicity matching between sampling points and signal frequencies, the proposed approach mitigates DFT spectrum leakage, validated via phase linearity analysis with errors of ≤0.07° across the 20 Hz–1 MHz frequency range. A high-resolution 24-bit analog-to-digital converter (ADC) hardware architecture eliminates complex analog balancing circuits, reducing system-wide noise by overcoming the limitations of traditional 16-bit ADCs. A 6 × 6 mm application-specific integrated circuit (ASIC) for array sensors enables three-dimensional (3D) defect visualization, complemented by Gaussian filtering to suppress vibration-induced noise. Our experimental results demonstrate that the digital method yields smoother signal waveforms and superior 3D defect imaging for nuclear power plant tubes, enhancing result interpretability. Field tests confirm stable performance, showcasing clear 3D defect distributions and improved inspection performance compared to conventional techniques. By integrating DFT signal processing, hardware optimization, and array sensing, this study introduces a robust framework for precise defect localization and characterization in nuclear components, addressing key challenges in eddy current NDT through systematic signal integrity enhancement and hardware innovation. Full article
Show Figures

Figure 1

17 pages, 2565 KiB  
Article
Photoreceptors Are Involved in Antioxidant Effects of Melatonin Under High Light in Arabidopsis
by Ivan Bychkov, Anastasia Doroshenko, Natalia Kudryakova and Victor Kusnetsov
Antioxidants 2025, 14(4), 458; https://doi.org/10.3390/antiox14040458 - 12 Apr 2025
Viewed by 520
Abstract
The beneficial role of melatonin (MT) as a potent broad-spectrum antioxidant and hormone-like regulator in plant protection against adverse environmental conditions is indisputable. However, the molecular networks underlying its unique scavenging capabilities are still far from understood. Herein, we show the ability of [...] Read more.
The beneficial role of melatonin (MT) as a potent broad-spectrum antioxidant and hormone-like regulator in plant protection against adverse environmental conditions is indisputable. However, the molecular networks underlying its unique scavenging capabilities are still far from understood. Herein, we show the ability of MT to maintain physiological functions under high light stress (HL) is mediated by photoreceptors. Melatonin treatment (50 μM) of the photoreceptor mutants phyA/B and cry1/2 augmented the deleterious effects of excess light (600 μmol m−2 s−1, 24 h), as evidenced by increased TBARs levels and electrolyte leakage, as well as decreased photosynthetic efficiency, in contrast to their parental form, Landsberg erecta, in which these parameters were significantly improved. The reduced stress resistance of the mutants was also confirmed by analysis of the transcript accumulation of ROS markers and enzymatic scavengers. Moreover, the increase in melatonin content in the mutants exposed to HL + MT contributed to increased ROS accumulation; therefore, the deleterious effect of MT could not be explained by an imbalance in ROS production below the cytostatic level. We hypothesize that the light-sensitive phenotypes of photoreceptor mutants under MT treatment may be due to the misregulation of stress-related genes that are targets for melatonin action. Full article
Show Figures

Figure 1

14 pages, 2851 KiB  
Article
Characterization of Different Types of Micro-Fission and Micro-Ionization Chambers Under X-Ray Beams
by Juan Antonio Moreno-Pérez, Álvaro Marchena, Pablo Araya, Jesús J. López-Peñalver, Juan Alejandro de la Torre, Antonio M. Lallena, Santiago Becerril, Marta Anguiano, Alberto J. Palma and Miguel A. Carvajal
Sensors 2025, 25(6), 1862; https://doi.org/10.3390/s25061862 - 17 Mar 2025
Viewed by 537
Abstract
Various models of ionization and fission chambers for ionizing radiation detection, designed to operate under harsh conditions such as those found in fusion reactors or particle accelerators, have been experimentally characterized and numerically simulated. These models were calibrated using a photon beam in [...] Read more.
Various models of ionization and fission chambers for ionizing radiation detection, designed to operate under harsh conditions such as those found in fusion reactors or particle accelerators, have been experimentally characterized and numerically simulated. These models were calibrated using a photon beam in the X-ray spectrum. Irradiations were performed at the Biomedical Research Center of the University of Granada (CIBM) with a bipolar metal-ceramic X-ray tube operating at a voltage of 150 kV and a dose rate ranging from 0.05 to 2.28 Gy/min. All detectors under study featured identical external structures but varied in detection volume, anode configuration, and filling gas composition. To assess inter- and intra-model response variations, the tested models included 12 micro-ionization chambers (CRGR10/C5B/UG2), 3 micro-fission chambers (CFUR43/C5B-U5/UG2), 8 micro-fission chambers (CFUR43/C5B-U8/UG2), and 3 micro-fission chambers (CFUR44/C5B-U8/UG2), all manufactured by Photonis (Merignac, France). The experimental setup was considered suitable for the tests, as the leakage current was below 20 pA. The optimal operating voltage range was determined to be 130–150 V, and the photon sensitivities for the chambers were measured as 29.8 ± 0.3 pA/(Gy/h), 43.0 ± 0.8 pA/(Gy/h), 39.2 ± 0.3 pA/(Gy/h), and 96.0 ± 0.9 pA/(Gy/h), respectively. Monte Carlo numerical simulations revealed that the U layer in the fission chambers was primarily responsible for their higher sensitivities due to photoelectric photon absorption. Additionally, the simulations explained the observed differences in sensitivity based on the filling gas pressure. The detectors demonstrated linear responses to dose rates and high reproducibility, making them reliable tools for accurate determination of ionizing photon beams across a range of applications. Full article
(This article belongs to the Special Issue Detectors & Sensors in Nuclear Physics and Nuclear Astrophysics)
Show Figures

Figure 1

55 pages, 4519 KiB  
Review
IR780-Based Nanotheranostics and In Vivo Effects: A Review
by Márcia Célia Pacheco Fialho, Maria Alice de Oliveira, Marina Guimarães Carvalho Machado, Carlos Marchiorio Lacerda and Vanessa Carla Furtado Mosqueira
J. Nanotheranostics 2025, 6(1), 8; https://doi.org/10.3390/jnt6010008 - 7 Mar 2025
Cited by 2 | Viewed by 3575
Abstract
Photodynamic and photothermal therapies with IR780 have gained exponential interest, and their photophysical properties have demonstrated promise for use in antitumor and antimicrobial chemotherapy. IR780 and its derivatives are valuable in labeling nanostructures with different chemical compositions for in vitro and in vivo [...] Read more.
Photodynamic and photothermal therapies with IR780 have gained exponential interest, and their photophysical properties have demonstrated promise for use in antitumor and antimicrobial chemotherapy. IR780 and its derivatives are valuable in labeling nanostructures with different chemical compositions for in vitro and in vivo fluorescence monitoring studies in the near-infrared (NIR) spectrum. The current literature is abundant on this topic, particularly with applications in the treatment of different types of cancer using laser illumination to produce photodynamic (PDT), photothermal (PTT), and, more recently, sonodynamic therapy (SDT) approaches for cell death. This review aims to update the state of the art concerning IR780 photosensitizer as a theranostic agent for PDT, PTT, SDT, and photoacoustic (PA) effects, and fluorescence imaging monitoring associated with different types of nanocarriers. The literature update concerns a period from 2017 to 2024, considering, more specifically, the in vivo effects found in preclinical experiments. Some aspects of the labeling stability of nanostructured systems will be discussed based on the evidence of IR780 leakage from the nanocarrier and its consequences for the reliable analysis of biological data. Full article
Show Figures

Graphical abstract

19 pages, 5486 KiB  
Article
Extraction of Periodic Terms in Satellite Clock Bias Based on Fourier Basis Pursuit Bandpass Filter
by Cong Shen, Guocheng Wang, Lintao Liu, Dong Ren, Huiwen Hu and Wenlong Sun
Remote Sens. 2025, 17(5), 827; https://doi.org/10.3390/rs17050827 - 27 Feb 2025
Viewed by 665
Abstract
Effective noise management and control of periodic fluctuations in spaceborne atomic clocks are essential for the accuracy and reliability of Global Navigation Satellite Systems. Time-varying periodic terms can impact both the performance evaluation and prediction accuracy of satellite clocks, making it crucial to [...] Read more.
Effective noise management and control of periodic fluctuations in spaceborne atomic clocks are essential for the accuracy and reliability of Global Navigation Satellite Systems. Time-varying periodic terms can impact both the performance evaluation and prediction accuracy of satellite clocks, making it crucial to mitigate these influences in the clock bias. We propose methods based on the Fourier dictionary and basis pursuit, namely the Fourier basis pursuit (FBP) spectrum and the Fourier basis pursuit bandpass filter (FBPBPF), to analyze and extract periodic terms in the satellite clock bias. The FBP method minimizes the L1-norm to improve spectral quality, while the FBPBPF reduces boundary effects and noise. Our experimental results show that the FBP spectrum has a more obvious main lobe and reduces spectral leakage compared to traditional windowed Fourier transforms. In simulation experiments, the FBPBPF achieves periodic term extraction with errors reduced by 6.81% to 26.55% compared to traditional signal processing methods, and boundary extraction errors reduced by up to 63.67%. Using the BeiDou Navigation Satellite System’s precise clock bias for verification, the FBP-based prediction method has significantly improved the prediction accuracy compared to the spectral analysis model. For 6, 12, 18, and 24 h predictions, the average root mean square error of the FBP prediction method is reduced by 15.85%, 11.04%, 6.45%, and 4.01%, respectively. Full article
(This article belongs to the Special Issue Advances in GNSS for Time Series Analysis)
Show Figures

Figure 1

23 pages, 1351 KiB  
Article
Study on the Causes of Wellbore Leakage in Carbon Capture, Utilization, and Storage—Enhanced Oil Recovery
by Min Pang, Yichang Zhang, Qiong Li and Zheyuan Zhang
Sustainability 2025, 17(3), 1206; https://doi.org/10.3390/su17031206 - 2 Feb 2025
Cited by 2 | Viewed by 1067
Abstract
This study investigates wellbore leakage accidents associated with Carbon Capture, Utilization, and Storage Enhanced Oil Recovery (CCUS-EOR) to identify causal factors, clarify their degrees of influence, hierarchical structures, and substantive roles, while revealing the causal mechanisms behind these incidents to promote the safe [...] Read more.
This study investigates wellbore leakage accidents associated with Carbon Capture, Utilization, and Storage Enhanced Oil Recovery (CCUS-EOR) to identify causal factors, clarify their degrees of influence, hierarchical structures, and substantive roles, while revealing the causal mechanisms behind these incidents to promote the safe development of CCUS-EOR. A distinctive aspect of this research is its integrated framework, which effectively combines the theory of integrated safety management with advanced methodologies such as the Decision-Making Trial and Evaluation Laboratory (DEMATEL), Interpretive Structural Models (ISM), and Cross-Impact Matrix Multiplication (MICMAC) to systematically analyze the interdependencies among risk factors. This comprehensive approach provides a nuanced understanding of the interactions among the 20 identified influencing factors across four domains, organized into a multilayered, three-stage structure. Furthermore, the study uncovers two critical causal pathways for wellbore leakage, namely F17 (lack of supervision and feedback) → F20 (inadequate safety investment) → F16 (lack of education and training) → F3 (weak safety awareness) → F9 (improper material selection) and F13 (high geological activity) → F11 (poor reservoir properties) → F6 (corrosion and aging failure), offering unique insights into risk dynamics that remain underexplored in the existing literature. This study could be enhanced in future research by taking into account a broader spectrum of causal factors, incorporating scenario simulations to facilitate a more comprehensive analysis, and involving a greater number of experts from diverse fields to enrich the insights derived. Full article
Show Figures

Figure 1

20 pages, 12787 KiB  
Article
Exploring the Properties of Quantum Scars in a Toy Model
by Sudip Sinha and Subhasis Sinha
Condens. Matter 2025, 10(1), 5; https://doi.org/10.3390/condmat10010005 - 12 Jan 2025
Viewed by 1308
Abstract
We introduce the concept of ergodicity and explore its deviation caused by quantum scars in an isolated quantum system, employing a pedagogical approach based on a toy model. Quantum scars, originally identified as traces of classically unstable orbits in certain wavefunctions of chaotic [...] Read more.
We introduce the concept of ergodicity and explore its deviation caused by quantum scars in an isolated quantum system, employing a pedagogical approach based on a toy model. Quantum scars, originally identified as traces of classically unstable orbits in certain wavefunctions of chaotic systems, have recently regained interest for their role in non-ergodic dynamics, as they retain memory of their initial states. We elucidate these features of quantum scars within the same framework of this toy model. The integrable part of the model consists of two large spins, with a classical counterpart, which we combine with a random matrix to induce ergodic behavior. Scarred states can be selectively generated from the integrable spin Hamiltonian by protecting them from the ergodic states using a projector method. Deformed projectors mimic the ‘quantum leakage’ of scarred states, enabling tunable mixing with ergodic states and thereby controlling the degree of scarring. In this simple model, we investigate various properties of quantum scarring and shed light on different aspects of many-body quantum scars observed in more complex quantum systems. Notably, the underlying classicality can be revealed through the entanglement spectrum and the dynamics of ‘out-of-time-ordered correlators’. Full article
(This article belongs to the Special Issue Non-equilibrium Dynamics in Ultra-Cold Quantum Gases)
Show Figures

Figure 1

11 pages, 4338 KiB  
Article
Wavelet Analysis and the Cone of Influence: Does the Cone of Influence Impact Wavelet Analysis Results?
by Lana Kralj, Martin Hultman and Helena Lenasi
Appl. Sci. 2024, 14(24), 11736; https://doi.org/10.3390/app142411736 - 16 Dec 2024
Viewed by 1356
Abstract
Wavelet analysis (WA) decomposes laser Doppler (LD) microcirculatory signals into characteristic frequency intervals related to endothelial nitric oxide (NO)-independent, endothelial NO-dependent, neurogenic, myogenic, respiratory, and cardiac physiological influences. Since LD signals have a finite length, the WA results suffer from spectral leakage due [...] Read more.
Wavelet analysis (WA) decomposes laser Doppler (LD) microcirculatory signals into characteristic frequency intervals related to endothelial nitric oxide (NO)-independent, endothelial NO-dependent, neurogenic, myogenic, respiratory, and cardiac physiological influences. Since LD signals have a finite length, the WA results suffer from spectral leakage due to edge effects. The cone of influence (COI) delineates the regions of the wavelet scalogram where these effects become important. We aimed to determine whether accounting for the COI leads to significant differences in the WA results. Two typical patterns of LD signals were analysed: a baseline and a post-occlusive reactive hyperemia (PORH) signal. The WA spectra were constructed without and with excluding data affected by the COI. The relative power (RP = median power of each frequency interval/median power of the total spectrum) of the spectral components obtained without and with the COI was compared. Applying the COI correction did not significantly affect the baseline signals. On the contrary, in PORH, accounting for the COI resulted in significant differences in the RP of the endothelial NO-independent (p = 0.0005; Wilcoxon signed-rank test), endothelial NO-dependent (p = 0.0005), neurogenic (p = 0.0038), myogenic (p = 0.001), respiratory (p = 0.0002), and cardiac frequency bands (p = 0.0002). The results suggest that applying the COI correction to the WA results obtained from the LD signals is desirable, especially for transient signals. Full article
Show Figures

Figure 1

15 pages, 4059 KiB  
Article
An Improved Algorithm to Extract Moiré Fringe Phase for Wafer-Mask Alignment in Nanoimprint Lithography
by Feifan Xu, Yinye Ding, Wenhao Chen and Haojie Xia
Micromachines 2024, 15(12), 1408; https://doi.org/10.3390/mi15121408 - 22 Nov 2024
Cited by 4 | Viewed by 1329
Abstract
This paper proposes an improved algorithm based on the phase extraction of the Moiré fringe for wafer-mask alignment in nanoimprint lithography. The algorithm combines the strengths of the two-dimensional fast Fourier transform (2D-FFT) and two-dimensional window Fourier filtering (2D-WFF) to quickly and accurately [...] Read more.
This paper proposes an improved algorithm based on the phase extraction of the Moiré fringe for wafer-mask alignment in nanoimprint lithography. The algorithm combines the strengths of the two-dimensional fast Fourier transform (2D-FFT) and two-dimensional window Fourier filtering (2D-WFF) to quickly and accurately extract the fundamental frequencies of interest, eliminate noise in the fundamental frequency band by using the threshold of the local spectrum, and effectively suppress spectral leakage by using a Gaussian window with outstanding sidelobe characteristics while overcoming their limitations, such as avoiding the time-consuming parameter adjustment. The phase extraction accuracy determines the misalignment measurement accuracy, and the alignment accuracy is enhanced to the nanometer level, which is 15.8% and 6.6% higher than 2D-FFT and 2D-WFF, respectively. The results of simulations and experiments confirm the feasibility and rationality of the algorithm. Full article
(This article belongs to the Section E:Engineering and Technology)
Show Figures

Figure 1

20 pages, 4008 KiB  
Article
Changes in Morphological, Physiological and Phytochemical Traits of Different Dill (Anethum graveolens L.) Cultivars as Affected by Light-Emitting Diodes
by Nafiseh Dehghani, Maryam Haghighi, Mehdi Rahimmalek, Mohammad R. Sabzalian and Antoni Szumny
Molecules 2024, 29(23), 5506; https://doi.org/10.3390/molecules29235506 - 21 Nov 2024
Cited by 2 | Viewed by 1220
Abstract
Dill is a fragrant vegetable containing various beneficial compounds for health. This research aims to evaluate the impact of various spectra of LED light on essential oil composition and morphological and physiological characteristics of three dill cultivars. LED light treatments included greenhouse light [...] Read more.
Dill is a fragrant vegetable containing various beneficial compounds for health. This research aims to evaluate the impact of various spectra of LED light on essential oil composition and morphological and physiological characteristics of three dill cultivars. LED light treatments included greenhouse light as control (C), blue (B), red (R), red + blue (RB), and white (W). RB light enhanced most physiological indicators investigated in this study, including photosynthetic pigments, phenols, flavonoids, and antioxidant capacity. Furthermore, electrolyte leakage in the three cultivars of Khomein, Isfahan, and Varamin decreased when exposed to RB light compared with C light. Under RB light, the essential oil contained more dill ether and α-phellandrene than in other light conditions. In general, light treatment with 75% R light and 25% B light had a noticeable impact on enhancing physiological features compared with other light spectrums. α-phellandrene levels increased in the Isfahan and Varamin cultivars under RB and B light conditions. Finally, the RB light and Khomein cultivars improved physiological features, whereas RB and R light in the Varamin and Isfahan cultivars are recommended for more essential oil compositions in functional food production. Full article
Show Figures

Figure 1

Back to TopTop