Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (346)

Search Parameters:
Keywords = spectrum hole

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
33 pages, 6828 KiB  
Article
Acoustic Characterization of Leakage in Buried Natural Gas Pipelines
by Yongjun Cai, Xiaolong Gu, Xiahua Zhang, Ke Zhang, Huiye Zhang and Zhiyi Xiong
Processes 2025, 13(7), 2274; https://doi.org/10.3390/pr13072274 - 17 Jul 2025
Viewed by 309
Abstract
To address the difficulty of locating small-hole leaks in buried natural gas pipelines, this study conducted a comprehensive theoretical and numerical analysis of the acoustic characteristics associated with such leakage events. A coupled flow–acoustic simulation framework was developed, integrating gas compressibility via the [...] Read more.
To address the difficulty of locating small-hole leaks in buried natural gas pipelines, this study conducted a comprehensive theoretical and numerical analysis of the acoustic characteristics associated with such leakage events. A coupled flow–acoustic simulation framework was developed, integrating gas compressibility via the realizable k-ε and Large Eddy Simulation (LES) turbulence models, the Peng–Robinson equation of state, a broadband noise source model, and the Ffowcs Williams–Hawkings (FW-H) acoustic analogy. The effects of pipeline operating pressure (2–10 MPa), leakage hole diameter (1–6 mm), soil type (sandy, loam, and clay), and leakage orientation on the flow field, acoustic source behavior, and sound field distribution were systematically investigated. The results indicate that the leakage hole size and soil medium exert significant influence on both flow dynamics and acoustic propagation, while the pipeline pressure mainly affects the strength of the acoustic source. The leakage direction was found to have only a minor impact on the overall results. The leakage noise is primarily composed of dipole sources arising from gas–solid interactions and quadrupole sources generated by turbulent flow, with the frequency spectrum concentrated in the low-frequency range of 0–500 Hz. This research elucidates the acoustic characteristics of pipeline leakage under various conditions and provides a theoretical foundation for optimal sensor deployment and accurate localization in buried pipeline leak detection systems. Full article
(This article belongs to the Special Issue Design, Inspection and Repair of Oil and Gas Pipelines)
Show Figures

Figure 1

18 pages, 2702 KiB  
Article
Real-Time Depth Monitoring of Air-Film Cooling Holes in Turbine Blades via Coherent Imaging During Femtosecond Laser Machining
by Yi Yu, Ruijia Liu, Chenyu Xiao and Ping Xu
Photonics 2025, 12(7), 668; https://doi.org/10.3390/photonics12070668 - 2 Jul 2025
Viewed by 336
Abstract
Given the exceptional capabilities of femtosecond laser processing in achieving high-precision ablation for air-film cooling hole fabrication on turbine blades, it is imperative to develop an advanced monitoring methodology that enables real-time feedback control to automatically terminate the laser upon complete penetration detection, [...] Read more.
Given the exceptional capabilities of femtosecond laser processing in achieving high-precision ablation for air-film cooling hole fabrication on turbine blades, it is imperative to develop an advanced monitoring methodology that enables real-time feedback control to automatically terminate the laser upon complete penetration detection, thereby effectively preventing backside damage. To tackle this issue, a spectrum-domain coherent imaging technique has been developed. This innovative approach adapts the fundamental principle of fiber-based Michelson interferometry by integrating the air-film hole into a sample arm configuration. A broadband super-luminescent diode with a 830 nm central wavelength and a 26 nm spectral bandwidth serves as the coherence-optimized illumination source. An optimal normalized reflectivity of 0.2 is established to maintain stable interference fringe visibility throughout the drilling process. The system achieves a depth resolution of 11.7 μm through Fourier transform analysis of dynamic interference patterns. With customized optical path design specifically engineered for through-hole-drilling applications, the technique demonstrates exceptional sensitivity, maintaining detection capability even under ultralow reflectivity conditions (0.001%) at the hole bottom. Plasma generation during laser processing is investigated, with plasma density measurements providing optical thickness data for real-time compensation of depth measurement deviations. The demonstrated system represents an advancement in non-destructive in-process monitoring for high-precision laser machining applications. Full article
(This article belongs to the Special Issue Advances in Laser Measurement)
Show Figures

Figure 1

28 pages, 372 KiB  
Review
A Survey of Performance Metrics for Spectrum Sensing and Spectrum Hole Geolocation for Wireless Spectrum Access
by Dayan Adionel Guimarães
Sensors 2025, 25(12), 3770; https://doi.org/10.3390/s25123770 - 17 Jun 2025
Viewed by 389
Abstract
This paper presents a survey of performance metrics applicable to spectrum sensing and spectrum hole geolocation within the context of dynamic spectrum access (DSA) in cognitive radio networks. While grounded in binary hypothesis testing, the review emphasizes metrics specialized for sensing reliability, interference [...] Read more.
This paper presents a survey of performance metrics applicable to spectrum sensing and spectrum hole geolocation within the context of dynamic spectrum access (DSA) in cognitive radio networks. While grounded in binary hypothesis testing, the review emphasizes metrics specialized for sensing reliability, interference risk, spatial accuracy, and network efficiency. The work also highlights trade-offs among metrics and provides guidelines for their practical application. A key contribution of this work is to provide researchers and practitioners with a comprehensive set of evaluation tools, extending well beyond the applicability of the conventional probabilities of detection and false alarm. Full article
(This article belongs to the Special Issue Sensors for Enabling Wireless Spectrum Access)
Show Figures

Figure 1

23 pages, 4811 KiB  
Article
In2S3/C3N4 Nanocomposite and Its Photoelectric Properties in the Broadband Light Spectrum Range
by Xingfa Ma, Xintao Zhang, Mingjun Gao, Ruifen Hu, You Wang and Guang Li
Coatings 2025, 15(6), 718; https://doi.org/10.3390/coatings15060718 - 14 Jun 2025
Viewed by 376
Abstract
To extend the spectral utilisation of In2S3, an In2S3/C3N4 nanocomposite was prepared. The effects of different sulphur sources, electrodes, and bias voltages on the optoelectronic performance were examined. Photoelectric properties in response [...] Read more.
To extend the spectral utilisation of In2S3, an In2S3/C3N4 nanocomposite was prepared. The effects of different sulphur sources, electrodes, and bias voltages on the optoelectronic performance were examined. Photoelectric properties in response to light sources with wavelengths of 405, 532, 650, 780, 808, 980, and 1064 nm were investigated using Au electrodes and the carbon electrodes with 5B pencil drawings. This study shows that the aggregation states of the In2S3/C3N4 nanocomposite possess photocurrent switching responses in the broadband region of the light spectrum. Combining two types of partially visible light-absorbing material extends utilisation to the near-infrared region. Impurities or defects embody an electron-donating effect. Since the energy levels of defects or impurities with an electron-donating effect are close to the conduction band, low-energy lights (especially NIR) can be utilised. The non-equilibrium carrier concentration (photogenerated electrons) of the nanocomposites increases significantly under NIR photoexcitation conditions. Thus, photoconductive behaviour is manifested. A good photoelectric signal was still measured when zero bias was applied. This demonstrates self-powered photoelectric response characteristics. Different sulphur sources significantly affect the photoelectric performance, suggesting that they create different defects that affect charge transport and base current noise. It is believed that interfacial interactions in the In2S3/C3N4 nanocomposite create a built-in electric field that enhances the separation and transfer of electrons and holes produced by light stimulation. The presence of the built-in electric field also leads to energy band bending, which facilitates the utilisation of the light with longer wavelengths. This study provides a reference for multidisciplinary applications. Full article
Show Figures

Figure 1

19 pages, 5214 KiB  
Article
Application of Spread-Spectrum Induced Polarization (SSIP) Technology in W-Sn Mineral Exploration (Xitian Mining District, SE China)
by Xiaoqiang Li, Haifei Liu, Yingjie Zhao, Yuhao Zhang and Daowei Zhu
Appl. Sci. 2025, 15(12), 6480; https://doi.org/10.3390/app15126480 - 9 Jun 2025
Viewed by 362
Abstract
As strategic critical metals, tungsten (W) and tin (Sn) require efficient exploration methods for effective resource development. This study implemented an advanced spread-spectrum induced polarization (SSIP) method in the Xitian mining district of southern China. Through optimized survey system configuration (maximum current electrode [...] Read more.
As strategic critical metals, tungsten (W) and tin (Sn) require efficient exploration methods for effective resource development. This study implemented an advanced spread-spectrum induced polarization (SSIP) method in the Xitian mining district of southern China. Through optimized survey system configuration (maximum current electrode spacing of 5200 m, 12-channel acquisition, and five discrete frequency points), we achieved significant advancements: (1) a penetration depth of 1200 m, and (2) three- to five-times higher data acquisition efficiency compared to conventional symmetrical quadrupole arrays. Inversion results of resistivity and chargeability profiles from two parallel survey lines (total length 2.4 km) demonstrated an 85% spatial correlation between resistivity and chargeability anomalies, successfully identifying three mineralized veins. Drill-hole verification confirmed the presence of greisen veins (characterized by low resistivity <100 Ωm and high chargeability > 3%) and skarn veins (moderate resistivity 150–200 Ωm and chargeability 1.5–2%). The method exhibits a detection sensitivity of 0.5% chargeability contrast for deep-seated W-Sn polymetallic deposits, providing quantitative technical references for similar deposit exploration. Full article
(This article belongs to the Section Earth Sciences)
Show Figures

Figure 1

11 pages, 4787 KiB  
Article
From Type II to Z-Scheme: A DFT Study of Enhanced Water Splitting in the SGa2Se/TeMoS Heterojunction
by Fan Yang, Marie-Christine Record and Pascal Boulet
Crystals 2025, 15(5), 442; https://doi.org/10.3390/cryst15050442 - 7 May 2025
Viewed by 507
Abstract
Harnessing solar energy for photocatalytic water splitting and hydrogen fuel production necessitates the development of advanced photocatalysts with broad solar spectrum absorption and efficient electron-hole separation. In this study, we systematically explore the potential of the SGa2Se/TeMoS heterojunction as a water-splitting [...] Read more.
Harnessing solar energy for photocatalytic water splitting and hydrogen fuel production necessitates the development of advanced photocatalysts with broad solar spectrum absorption and efficient electron-hole separation. In this study, we systematically explore the potential of the SGa2Se/TeMoS heterojunction as a water-splitting photocatalyst using first-principles calculations. Our results indicate that while the heterojunction exhibits type-II band alignment, its band edge positions are inadequate for initiating water redox reactions. To overcome this limitation, we successfully engineered a Z-scheme SGa2Se/Zr/TeMoS heterojunction by incorporating a Zr layer to modulate the charge transfer mechanism between the SGa2Se and TeMoS layers. The potential positions of the HER and OER in this Z-scheme heterojunction overcome the limitation of the bandgap on water decomposition, allowing the optimized heterojunction to exhibit suitable band edge positions for water splitting across a wide pH range (0 ≤ pH ≤ 11.3), from acidic to weakly basic conditions. Additionally, the heterojunction exhibits exceptional light absorption capabilities across the entire spectrum, particularly in the infrared and visible regions, which greatly enhances the utilization of solar energy and highlights its potential as an efficient broad-spectrum photocatalyst for water splitting. Full article
(This article belongs to the Special Issue Advanced Materials for Applications in Water Splitting)
Show Figures

Figure 1

15 pages, 6801 KiB  
Article
TiN-Only Metasurface Absorber for Solar Energy Harvesting
by Hongfu Liu, Jijun Li, Hua Yang, Junqiao Wang, Boxun Li, Han Zhang and Yougen Yi
Photonics 2025, 12(5), 443; https://doi.org/10.3390/photonics12050443 - 3 May 2025
Cited by 28 | Viewed by 864
Abstract
With global energy demand surging and traditional energy resources diminishing, the solar absorber featuring optimized design shows substantial potential in areas like power generation. This study proposes a solar absorber that is insensitive to wide-angle incidence and polarization. It has a cylindrical structure [...] Read more.
With global energy demand surging and traditional energy resources diminishing, the solar absorber featuring optimized design shows substantial potential in areas like power generation. This study proposes a solar absorber that is insensitive to wide-angle incidence and polarization. It has a cylindrical structure with square holes, which is constructed from titanium nitride (TiN). The calculation results indicate that, for plane waves, the average absorption of this solar absorber across the wavelength range of 300–2500 nm reaches 92.4%. Moreover, its absorption rate of the solar spectrum corresponding to AM1.5 reaches 94.8%. The analysis of the characteristics within the electric and magnetic field profiles indicates that the superior absorption properties arise from a cooperative resonance effect. This effect originates from the interaction among surface plasmon resonance, guided-mode resonance, and cavity resonance. In this study, the geometric parameters of the solar absorber’s structure significantly influence its absorption performance. Therefore, we optimized these parameters to obtain the optimal values. Even at a large incident angle, this absorber maintains high absorption performance and shows insensitivity to the polarization angle. The findings expected from this study are likely to be of considerable practical importance within the realm of solar photothermal conversion. Full article
(This article belongs to the Special Issue Photonics Metamaterials: Processing and Applications)
Show Figures

Figure 1

18 pages, 577 KiB  
Article
Predicting Noise and User Distances from Spectrum Sensing Signals Using Transformer and Regression Models
by Myke Valadão, Diego Amoedo, André Costa, Celso Carvalho and Waldir Sabino
Appl. Sci. 2025, 15(8), 4296; https://doi.org/10.3390/app15084296 - 13 Apr 2025
Cited by 1 | Viewed by 475
Abstract
Frequency spectrum allocation has been a subject of dispute in recent years. Cognitive radio dynamically allocates users to spectrum holes using various sensing techniques. Noise levels and distances between users can significantly impact the efficiency of cognitive radio systems. Designing robust communication systems [...] Read more.
Frequency spectrum allocation has been a subject of dispute in recent years. Cognitive radio dynamically allocates users to spectrum holes using various sensing techniques. Noise levels and distances between users can significantly impact the efficiency of cognitive radio systems. Designing robust communication systems requires accurate knowledge of these factors. This paper proposes a method for predicting noise levels and distances based on spectrum sensing signals using regression machine learning models. The proposed methods achieved correlation coefficients of over 0.98 and 0.82 for noise and distance predictions, respectively. Accurately estimating these parameters enables adaptive resource allocation, interference mitigation, and improved spectrum efficiency, ultimately enhancing the performance and reliability of cognitive radio networks. Full article
(This article belongs to the Special Issue Wireless Networking: Application and Development)
Show Figures

Figure 1

21 pages, 2681 KiB  
Review
Exploring Metal- and Porphyrin-Modified TiO2-Based Photocatalysts for Efficient and Sustainable Hydrogen Production
by Dimitrios Rafail Bitsos, Apostolos Salepis, Emmanouil Orfanos, Athanassios G. Coutsolelos, Ramonna I. Kosheleva, Athanassios C. Mitropoulos and Kalliopi Ladomenou
Inorganics 2025, 13(4), 121; https://doi.org/10.3390/inorganics13040121 - 11 Apr 2025
Cited by 2 | Viewed by 2213
Abstract
Photocatalytic H2 production is one of the most promising approaches for sustainable energy. The literature presents a plethora of carefully designed systems aimed at harnessing solar energy and converting it into chemical energy. However, the main drawback of the reported photocatalysts is [...] Read more.
Photocatalytic H2 production is one of the most promising approaches for sustainable energy. The literature presents a plethora of carefully designed systems aimed at harnessing solar energy and converting it into chemical energy. However, the main drawback of the reported photocatalysts is their stability. Thus, the development of a cost-effective and stable photocatalyst, suitable for real-world applications remains a challenge. An ideal photocatalyst for H2 production must possess appropriate band-edge energy positions, an effective sacrificial agent, and a suitable cocatalyst. Among the various photocatalysts studied, TiO2 stands out due to its stability, abundance, and non-toxicity. However, its efficiency in the visible spectrum is limited by its wide bandgap. Metal doping is an effective strategy to enhance electron–hole separation and improve light absorption efficiency, thereby boosting H2 synthesis. Common metal cocatalysts used as TiO2 dopants include platinum (Pt), gold (Au), copper (Cu), nickel (Ni), cobalt (Co), ruthenium (Ru), iron (Fe), and silver (Ag), as well as bimetallic combinations such as Ni-Fe, Ni-Cu, Nb-Ta, and Ni-Pt. In all cases, doped TiO2 exhibits higher H2 production performance compared to undoped TiO2, as metals provide additional reaction sites and enhance charge separation. The use of bimetallic dopants further optimizes the hydrogen evolution reaction. Additionally, porphyrins, with their strong visible light absorption and efficient electron transfer properties, have demonstrated potential in TiO2 photocatalysis. Their incorporation expands the photocatalyst’s light absorption range into the visible spectrum, enhancing H2 production efficiency. This review paper explores the principles and advancements in metal- and porphyrin-doped TiO2 photocatalysts, highlighting their potential for sustainable hydrogen production. Full article
(This article belongs to the Special Issue Featured Papers in Inorganic Materials 2025)
Show Figures

Graphical abstract

17 pages, 3636 KiB  
Article
DFT Investigation of a Direct Z-Scheme Photocatalyst for Overall Water Splitting: Janus Ga2SSe/Bi2O3 Van Der Waals Heterojunction
by Fan Yang, Pascal Boulet and Marie-Christine Record
Materials 2025, 18(7), 1648; https://doi.org/10.3390/ma18071648 - 3 Apr 2025
Viewed by 738
Abstract
Constructing van der Waals heterojunctions with excellent properties has attracted considerable attention in the field of photocatalytic water splitting. In this study, four patterns, coined A, B, C, and D of Janus Ga2SSe/Bi2O3 van der Waals (vdW) heterojunctions [...] Read more.
Constructing van der Waals heterojunctions with excellent properties has attracted considerable attention in the field of photocatalytic water splitting. In this study, four patterns, coined A, B, C, and D of Janus Ga2SSe/Bi2O3 van der Waals (vdW) heterojunctions with different stacking modes, were investigated using first-principles calculations. Their stability, electronic structure, and optical properties were analyzed in detail. Among these, patterns A and C heterojunctions demonstrate stable behavior and operate as direct Z-scheme photocatalysts, exhibiting band gaps of 1.83 eV and 1.62 eV. In addition, the suitable band edge positions make them effective for photocatalytic water decomposition. The built-in electric field across the heterojunction interface effectively inhibits electron-hole recombination, thereby improving the photocatalytic efficiency. The optical absorption coefficients show that patterns A and C heterojunctions exhibit higher light absorption intensity than Ga2SSe and Bi2O3 monolayers, spanning from the ultraviolet to visible range. Their corrected solar-to-hydrogen (STH) efficiencies are 13.60% and 12.08%, respectively. The application of hydrostatic pressure and biaxial tensile strain demonstrate distinct effects on photocatalytic performance: hydrostatic pressure preferentially enhances the hydrogen evolution reaction (HER), while biaxial tensile strain primarily improves the oxygen evolution reaction (OER). Furthermore, the heterojunctions exhibited enhanced optical absorption across the UV-visible spectrum with increasing hydrostatic pressure. Notably, a 1% tensile strain results in an improvement in visible light absorption efficiency. These results demonstrate that Ga2SSe/Bi2O3 heterojunctions hold great promise as direct Z-scheme photocatalysts for overall water splitting. Full article
Show Figures

Figure 1

18 pages, 3751 KiB  
Article
Synergistic Photocatalytic Oxidation and Reductive Activation of Peroxymonosulfate by Bi-Based Heterojunction for Highly Efficient Organic Pollutant Degradation
by Xiaopeng Zhao, Yang Wang, Fangning Liu, Xiaobin Ye, Shangxiong Wei, Yilin Sun and Jinghui He
Nanomaterials 2025, 15(6), 471; https://doi.org/10.3390/nano15060471 - 20 Mar 2025
Viewed by 549
Abstract
Organic pollutants present a substantial risk to both ecological systems and human well-being. Activation of peroxymonosulfate (PMS) have emerged as an effective strategy for the degradation of organic pollutants. Bi-based heterojunction is commonly used as a photocatalyst for reductively activating PMS, but single-component [...] Read more.
Organic pollutants present a substantial risk to both ecological systems and human well-being. Activation of peroxymonosulfate (PMS) have emerged as an effective strategy for the degradation of organic pollutants. Bi-based heterojunction is commonly used as a photocatalyst for reductively activating PMS, but single-component Bi-based heterojunction frequently underperforms due to its restricted absorption spectrum and rapid combination of photogenerated electron–hole pairs. Herein, BiVO4 was selected as the oxidative semiconductor to form an S-type heterojunction with CuBi2O4—x-CuBi2O4/BiVO4 (x = 0.2, 0.5, and 0.8) for PMS photoactivation. The built-in electric field (BEF) in x-CuBi2O4/BiVO4 promoted electron transfer to effectively activate PMS. The x-CuBi2O4/BiVO4 heterojunctions also demonstrate stronger adsorption of the polar PMS than pure CuBi2O4 or BiVO4. In addition, the BEF prompts photoelectrons able to reduce O2 to •O2 and photogenerated holes in the valence band of BiVO4 able to oxidize H2O to generate •OH. Therefore, under visible light irradiation, 95.1% of ciprofloxacin (CIP) can be degraded. The 0.5-CuBi2O4/BiVO4 demonstrated the best degradation efficiency and excellent stability in cyclic tests, as well as a broad applicability in degrading other common pollutants. The present work demonstrates the high-efficiency S-type heterojunctions in the coupled photocatalytic and PMS activation technology. Full article
(This article belongs to the Special Issue Nano-Enabled Materials for Clean Water and Energy Generation)
Show Figures

Figure 1

28 pages, 13572 KiB  
Article
High-Redshift Quasars at z ≥ 3—III: Parsec-Scale Jet Properties from Very Long Baseline Interferometry Observations
by Shaoguang Guo, Tao An, Yuanqi Liu, Chuanzeng Liu, Zhijun Xu, Yulia Sotnikova, Timur Mufakharov and Ailing Wang
Universe 2025, 11(3), 91; https://doi.org/10.3390/universe11030091 - 8 Mar 2025
Cited by 1 | Viewed by 796
Abstract
High-redshift active galactic nuclei (AGN) provide key insights into early supermassive black hole growth and cosmic evolution. This study investigates the parsec-scale properties of 86 radio-loud quasars at z ≥ 3 using very long baseline interferometry (VLBI) observations. Our results show predominantly compact [...] Read more.
High-redshift active galactic nuclei (AGN) provide key insights into early supermassive black hole growth and cosmic evolution. This study investigates the parsec-scale properties of 86 radio-loud quasars at z ≥ 3 using very long baseline interferometry (VLBI) observations. Our results show predominantly compact core and core-jet morphologies, with 35% having unresolved cores, 59% with core–jet structures, and only 6% with core–double jet morphology. Brightness temperatures are generally lower than expected for highly radiative sources. The jets’ proper motions are surprisingly slow compared to those of lower-redshift samples. We observe a high fraction of young and/or confined peak-spectrum sources, providing insights into early AGN evolution in dense environments during early cosmic epochs. The observed trends may reflect genuine evolutionary changes in AGN structure over cosmic time, or selection effects favoring more compact sources at higher redshifts. These results stress the complexity of high-redshift radio-loud AGN populations and emphasize the need for multi-wavelength, high-resolution observations to fully characterize their properties and evolution through cosmic history. Full article
(This article belongs to the Special Issue Advances in Studies of Galaxies at High Redshift)
Show Figures

Figure 1

24 pages, 6808 KiB  
Article
Single-Particle Radiation Sensitivity of Ultrawide-Bandgap Semiconductors to Terrestrial Atmospheric Neutrons
by Daniela Munteanu and Jean-Luc Autran
Crystals 2025, 15(2), 186; https://doi.org/10.3390/cryst15020186 - 15 Feb 2025
Viewed by 549
Abstract
Semiconductors characterized by ultrawide bandgaps (UWBGs), exceeding the SiC bandgap of 3.2 eV and the GaN bandgap of 3.4 eV, are currently under focus for applications in high-power and radio-frequency (RF) electronics, as well as in deep-ultraviolet optoelectronics and extreme environmental conditions. These [...] Read more.
Semiconductors characterized by ultrawide bandgaps (UWBGs), exceeding the SiC bandgap of 3.2 eV and the GaN bandgap of 3.4 eV, are currently under focus for applications in high-power and radio-frequency (RF) electronics, as well as in deep-ultraviolet optoelectronics and extreme environmental conditions. These semiconductors offer numerous advantages, such as a high breakdown field, exceptional thermal stability, and minimized power losses. This study used numerical simulation to investigate, at the material level, the single-particle radiation response of various UWBG semiconductors, such as aluminum gallium nitride alloys (AlxGa1−xN), diamond, and β-phase gallium oxide (β-Ga2O3), when exposed to ground-level neutrons. Through comprehensive Geant4 simulations covering the entire spectrum of atmospheric neutrons at sea level, this study provides an accurate comparison of the neutron radiation responses of these UWBG semiconductors focusing on the interaction processes, the number and nature of secondary ionizing products, their energy distributions, and the production of electron–hole pairs at the origin of single-event effects (SEEs) in microelectronics devices. Full article
Show Figures

Graphical abstract

23 pages, 10686 KiB  
Article
Impact of Layer Materials, Their Thicknesses, and Their Reflectivities on Emission Color and NVIS Compatibility in OLED Devices for Avionic Display Applications
by Esin Uçar, Alper Ülkü, Halil Mert Kaya, Ramis Berkay Serin, Rifat Kaçar, Ahmet Yavuz Oral and Ebru Menşur
Micromachines 2025, 16(2), 191; https://doi.org/10.3390/mi16020191 - 7 Feb 2025
Viewed by 1799
Abstract
Organic Light Emitting Diode (OLED) technology is preferred in modern display applications due to its superior efficiency, color quality, and flexibility. It also carries a high potential of applicability in military displays where emission color tuning is required for MIL-STD-3009 Night Vision Imaging [...] Read more.
Organic Light Emitting Diode (OLED) technology is preferred in modern display applications due to its superior efficiency, color quality, and flexibility. It also carries a high potential of applicability in military displays where emission color tuning is required for MIL-STD-3009 Night Vision Imaging Systems (NVISs), as compatibility is critical. Herein, we report the effects of different OLED device layer materials and thicknesses such as the hole injection layer (HIL), hole transport layer (HTL), and electron transport layer (ETL) on the color coordinates, luminance, and efficiency of OLED devices designed for night vision (NVIS) compatibility. In this study, simulation tools like SETFOS® (Semi-conducting Emissive Thin Film Optics Simulator), MATLAB®, and LightTools® (Illumination Design Software) were used to verify and validate the luminance, luminance efficiency, and chromaticity coordinates of the proposed NVIS-OLED devices. We modeled the OLED device using SETFOS®, then the selection of materials for each layer for an optimal electron–hole balance was performed in the same tool. The effective reflectivity of multiple OLED layers was determined in MATLAB® in addition to an optimal device efficiency calculation in SETFOS®. The optical validation of output luminance and luminous efficiency was performed in LightTools®. Through a series of simulations for a green-emitting OLED device, we observed significant shifts in color coordinates, particularly towards the yellow spectrum, when the ETL materials and their thicknesses varied between 1 nm and 200 nm, whereas a change in the thickness of the HIL and HTL materials had a negligible impact on the color coordinates. While the critical role of ETL in color tuning and the emission characteristics of OLEDs is highlighted, our results also suggested a degree of flexibility in material selection for the HIL and HTL, as they minimally affected the color coordinates of emission. We validated via a combination of SETFOS®, MATLAB®, and LightTools® that when the ETL (3TPYMB) material thickness is optimized to 51 nm, the cathode reflectivity via the ETL-EIL stack became the minimum enabling output luminance of 3470 cd/m2 through our emissive layer within the Glass/ITO/MoO3/TAPC/(CBP:Ir(ppy)3)/3TPYMB/LiF/Aluminum OLED stack architecture, also yielding 34.73 cd/A of current efficiency under 10 mA/cm2 of current density. We infer that when stack layer thicknesses are optimized with respect to their reflectivity properties, better performances are achieved. Full article
Show Figures

Figure 1

15 pages, 12357 KiB  
Article
Fabrication of Polydopamine/hemin/TiO2 Composites with Enhanced Visible Light Absorption for Efficient Photocatalytic Degradation of Methylene Blue
by Zhuandong Zhu, Shengrong Zhou, Debin Tian, Guang-Zhao Li, Gang Chen, Dong Fang, Jiaxuan Cao, Fumei Wang, Wenyan Wang, Xuewei He and Wei Zhang
Polymers 2025, 17(3), 311; https://doi.org/10.3390/polym17030311 - 24 Jan 2025
Cited by 2 | Viewed by 881
Abstract
With the rapid progression of industrialization, water pollution has emerged as an increasingly critical issue, especially due to the release of organic dyes such as methylene blue (MB), which poses serious threats to both the environment and human health. Developing efficient photocatalysts to [...] Read more.
With the rapid progression of industrialization, water pollution has emerged as an increasingly critical issue, especially due to the release of organic dyes such as methylene blue (MB), which poses serious threats to both the environment and human health. Developing efficient photocatalysts to effectively degrade these pollutants is therefore of paramount importance. In this work, titanium dioxide (TiO2) was modified with the photosensitizer hemin and the hydroxyl-rich polymer polydopamine (PDA) to enhance its photocatalytic degradation performance. Hemin and PDA function as photosensitizers, extending the light absorption of TiO2 into the visible spectrum, reducing its bandgap energy, and effectively promoting separation of photogenerated electron–hole pairs through conjugated structures. Additionally, the strong adhesion of PDA enabled the rapid transfer and effective utilization of photogenerated electrons, while its abundant phenolic hydroxyls increased MB adsorption on the photocatalyst’s surface. Experimental results demonstrated a significant enhancement in photocatalytic activity, with the 1%PDA/3%hemin/TiO2 composite achieving degradation rates of 91.79% under UV light and 71.53% under visible light within 120 min, representing 2.22- and 2.05-fold increases compared to unmodified TiO2, respectively. This research presents an effective modification approach and provides important guidance for designing high-performance TiO2-based photocatalysts aimed at environmental remediation. Full article
Show Figures

Figure 1

Back to TopTop