Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,399)

Search Parameters:
Keywords = spectroscopy and calorimetry

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 2396 KiB  
Article
Helical Airflow Synthesis of Quinoxalines: A Continuous and Efficient Mechanochemical Approach
by Jiawei Zhang, Zeli Xiao, Qi Huang, Yang Zhao, Bo Jin and Rufang Peng
Chemistry 2025, 7(4), 121; https://doi.org/10.3390/chemistry7040121 - 29 Jul 2025
Viewed by 213
Abstract
In this work, we report a novel mechanochemical synthesis method for the synthesis of quinoxaline derivatives—a spiral gas–solid two-phase flow approach, which enables the efficient preparation of quinoxaline compounds. Compared to conventional synthetic methods, this approach eliminates the need for heating or solvents [...] Read more.
In this work, we report a novel mechanochemical synthesis method for the synthesis of quinoxaline derivatives—a spiral gas–solid two-phase flow approach, which enables the efficient preparation of quinoxaline compounds. Compared to conventional synthetic methods, this approach eliminates the need for heating or solvents while significantly reducing reaction time. The structures of the synthesized compounds were characterized using nuclear magnetic resonance (NMR), Fourier-transform infrared spectroscopy (FT-IR), ultraviolet-visible (UV–Vis) absorption spectroscopy, powder X-ray diffraction (XRD), differential scanning calorimetry (DSC), and high-performance liquid chromatography (HPLC). Using the synthesis of 2,3-diphenylquinoxaline (1) as a model reaction, the synthetic process was investigated with UV–Vis spectroscopy. The results demonstrate that when the total feed amount was 2 g with a carrier gas pressure of 0.8 MPa, the reaction completed within 2 min, achieving a yield of 93%. Furthermore, kinetic analysis of the reaction mechanism was performed by monitoring the UV–Vis spectra of the products at different time intervals. The results indicate that the synthesis of 1 follows the A4 kinetic model, which describes a two-dimensional diffusion-controlled product growth process following decelerated nucleation. Full article
Show Figures

Figure 1

16 pages, 2285 KiB  
Article
Evaluating the Heat of Hydration, Conductivity, and Microstructural Properties of Cement Composites with Recycled Concrete Powder
by Damir Barbir, Pero Dabić, Miće Jakić and Ivana Weber
Buildings 2025, 15(15), 2613; https://doi.org/10.3390/buildings15152613 - 23 Jul 2025
Viewed by 209
Abstract
This study investigates the effects of incorporating recycled concrete powder (RCP) as a supplementary cementitious material in Portland cement composites at replacement levels of 5–30% by weight. A comprehensive characterization using isothermal calorimetry, electrical conductivity measurements, thermogravimetric analysis, FT-IR spectroscopy, and scanning electron [...] Read more.
This study investigates the effects of incorporating recycled concrete powder (RCP) as a supplementary cementitious material in Portland cement composites at replacement levels of 5–30% by weight. A comprehensive characterization using isothermal calorimetry, electrical conductivity measurements, thermogravimetric analysis, FT-IR spectroscopy, and scanning electron microscopy revealed that RCP modified the hydration behavior and microstructural development. The results showed a linear 16.5% reduction in the total heat of hydration (from 145.38 to 121.44 J/g) at 30% RCP content, accompanied by a 26.5% decrease in peak electrical conductivity (19.16 to 14.08 mS/cm) and delayed reaction kinetics. Thermal analysis demonstrated an increased stability of hydration products, with portlandite decomposition temperatures rising by up to 10.8 °C. Microstructural observations confirmed the formation of denser but more amorphous C–S–H phases alongside increased interfacial porosity at higher RCP contents. The study provides quantitative evidence of RCP’s dual functionality as both an inert filler and a nucleation agent, identifying an optimal 20–25% replacement range that balances performance and sustainability. These findings advance the understanding of construction waste utilization in cementitious materials and provide practical solutions for developing more sustainable building composites while addressing circular economy objectives in the construction sector. Full article
(This article belongs to the Special Issue Advances and Applications of Recycled Concrete in Green Building)
Show Figures

Figure 1

19 pages, 4349 KiB  
Article
Thermoresponsive Behavior, Degradation, and Bioactivity of Nanohydroxyapatite on Graphene Oxide Nanoscroll-Enhanced Poly(N-isopropylacrylamide)-Based Scaffolds
by Lillian Tsitsi Mambiri, Riley Guillory and Dilip Depan
Polymers 2025, 17(15), 2014; https://doi.org/10.3390/polym17152014 - 23 Jul 2025
Viewed by 327
Abstract
Osteoarthritis and metastatic bone cancers create pathological oxidative environments characterized by elevated reactive oxygen species (ROS). ROS impair bone regeneration by degrading the scaffold and suppressing mineralization. To address these challenges, we fabricated thermoresponsive scaffolds based on poly(N-isopropylacrylamide) (PNIPAAm) incorporating in situ-grown nanohydroxyapatite [...] Read more.
Osteoarthritis and metastatic bone cancers create pathological oxidative environments characterized by elevated reactive oxygen species (ROS). ROS impair bone regeneration by degrading the scaffold and suppressing mineralization. To address these challenges, we fabricated thermoresponsive scaffolds based on poly(N-isopropylacrylamide) (PNIPAAm) incorporating in situ-grown nanohydroxyapatite on graphene oxide nanoscrolls (nHA-GONS) using stereolithography (SLA). Three scaffold formulations were studied: pure PNIPAAm (PNP), PNIPAAm with 5 wt.% nHA-GONS (P5G), and PNIPAAm with 5 wt.% nHA-GONS reinforced with polycaprolactone (PCL) microspheres (PN5GP). Each scaffold was evaluated for (i) swelling and lower critical solution temperature (LCST) using differential scanning calorimetry (DSC); (ii) oxidative degradation assessed using Fourier-transform infrared spectroscopy (FTIR), mass loss, and antioxidant assays; and (iii) mineralization and morphology via immersion in simulated body fluid followed by microscopy. The PN5GP and P5G scaffolds demonstrated reversible swelling, sustained antioxidant activity, and enhanced calcium deposition, which enable redox stability and mineralization under oxidative environments, critical for scaffold functionality in bone repair. PNP scaffolds exhibited copper accumulation, while PN5GP suffered from accelerated mass loss driven by the PCL phase. These findings identify the P5G formulation as a promising scaffold. This study introduces a quantitative framework that enables the predictive design of oxidation-resilient scaffolds. Full article
Show Figures

Figure 1

15 pages, 2393 KiB  
Article
Determination of Time and Concentration Conditions Affecting Polylactic Acid (Pla) Production
by Jorge Braulio Amaya and Gabriela Vaca
Polymers 2025, 17(15), 2009; https://doi.org/10.3390/polym17152009 - 23 Jul 2025
Viewed by 242
Abstract
Polylactic acid (PLA) is a renewable biopolymer that has attracted considerable interest due to its ability to replace petroleum-based synthetic polymers, thereby offering a more sustainable alternative to global environmental concerns. This study focused on evaluating the effect of catalyst concentration and reaction [...] Read more.
Polylactic acid (PLA) is a renewable biopolymer that has attracted considerable interest due to its ability to replace petroleum-based synthetic polymers, thereby offering a more sustainable alternative to global environmental concerns. This study focused on evaluating the effect of catalyst concentration and reaction time on the efficiency of PLA synthesis via the Ring-Opening Polymerization (ROP) technique. The process involved a lactic acid esterification stage (using 88% lactic acid) to obtain lactide, employing 40% and 60% (v/v) sulfuric acid concentrations, followed by polymerization at various reaction times (10, 15, 20, and 30 min). Analysis of variance (ANOVA) results revealed that the 40% catalyst concentration had a statistically significant effect on polymer yield (p = 0.032), whereas reaction time showed no statistical significance (p = 0.196), although the highest yields were recorded at 10 and 15 min. Fourier Transform Infrared Spectroscopy (FTIR) confirmed the presence of the characteristic functional groups of PLA, and Differential Scanning Calorimetry (DSC) revealed a semi-crystalline structure with a high melting temperature, indicating good thermal stability. These results validate the viability of PLA as a functional and sustainable biopolymer. Full article
(This article belongs to the Special Issue Advanced Polymer Materials: Synthesis, Structure, and Properties)
Show Figures

Figure 1

17 pages, 2940 KiB  
Article
Evaluation Methods for Stability and Analysis of Underlying Causes of Instability in Form I Atorvastatin Calcium Drug Substance
by Bo Chen, Zhilong Tang, Zhenxing Zhu, Yang Xiao, Guangyao Mei and Xingchu Gong
Chemosensors 2025, 13(7), 265; https://doi.org/10.3390/chemosensors13070265 - 21 Jul 2025
Viewed by 260
Abstract
Stability assessments of drug substances and the detection of crystalline forms are critical for ensuring drug quality and medication safety. Atorvastatin calcium drug substance samples were characterized using powder X-ray diffraction (PXRD) and differential scanning calorimetry (DSC). DSC results demonstrated a precise discrimination [...] Read more.
Stability assessments of drug substances and the detection of crystalline forms are critical for ensuring drug quality and medication safety. Atorvastatin calcium drug substance samples were characterized using powder X-ray diffraction (PXRD) and differential scanning calorimetry (DSC). DSC results demonstrated a precise discrimination of the stability of samples. An analysis of PXRD characteristic peaks and DSC melting data suggested that instability likely stems from the presence of the amorphous phase. To validate this hypothesis, blended samples containing controlled ratios of amorphous phase and crystalline Form I were prepared. Quantitative models based on PXRD, DSC, and near-infrared spectroscopy (NIRS) data were developed to predict amorphous content, and classification accuracy was evaluated. Experimental results confirmed that all three models achieved classification accuracy values exceeding 70% in the stability prediction of the two groups of samples, which included “stable” and “unstable” samples, substantiating the hypothesis. Among them, the modeling method based on NIRS data was not only non-destructive and rapid but also demonstrates a superior discrimination accuracy value reaching 100% (n = 11), showing potential for promotion and application in industrial sample detection. The quantitative correlation between amorphous content and stability was successfully established in this study, offering a novel method for a quality stability assessment of atorvastatin calcium drug substances. Full article
(This article belongs to the Special Issue Spectroscopic Techniques for Chemical Analysis)
Show Figures

Figure 1

14 pages, 2050 KiB  
Article
Electrospun PANI/PEO-Luffa Cellulose/TiO2 Nanofibers: A Sustainable Biocomposite for Conductive Applications
by Gözde Konuk Ege, Merve Bahar Okuyucu and Özge Akay Sefer
Polymers 2025, 17(14), 1989; https://doi.org/10.3390/polym17141989 - 20 Jul 2025
Viewed by 497
Abstract
Herein, electrospun nanofibers composed of polyaniline (PANI), polyethylene oxide (PEO), and Luffa cylindrica (LC) cellulose, reinforced with titanium dioxide (TiO2) nanoparticles, were synthesized via electrospinning to investigate the effect of TiO2 nanoparticles on PANI/PEO/LC nanocomposites and the effect of conductivity [...] Read more.
Herein, electrospun nanofibers composed of polyaniline (PANI), polyethylene oxide (PEO), and Luffa cylindrica (LC) cellulose, reinforced with titanium dioxide (TiO2) nanoparticles, were synthesized via electrospinning to investigate the effect of TiO2 nanoparticles on PANI/PEO/LC nanocomposites and the effect of conductivity on nanofiber morphology. Cellulose extracted from luffa was added to the PANI/PEO copolymer solution, and two different ratios of TiO2 were mixed into the PANI/PEO/LC biocomposite. The morphological, vibrational, and thermal characteristics of biocomposites were systematically investigated using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). As anticipated, the presence of TiO2 enhanced the electrical conductivity of biocomposites, while the addition of Luffa cellulose further improved the conductivity of the cellulose-based nanofibers. FTIR analysis confirmed chemical interactions between Luffa cellulose and PANI/PEO matrix, as evidenced by the broadening of the hydroxyl (OH) absorption band at 3500–3200 cm−1. Additionally, the emergence of characteristic peaks within the 400–1000 cm−1 range in the PANI/PEO/LC/TiO2 spectra signified Ti–O–Ti and Ti–O–C vibrations, confirming the incorporation of TiO2 into the biocomposite. SEM images of the biocomposites reveal that the thickness of nanofibers decreases by adding Luffa to PANI/PEO nanofibers because of the nanofibers branching. In addition, when blending TiO2 nanoparticles with the PANI/PEO/LC biocomposite, this increment continued and obtained thinner and smother nanofibers. Furthermore, the incorporation of cellulose slightly improved the crystallinity of the nanofibers, while TiO2 contributed to the enhanced crystallinity of the biocomposite according to the XRD and DCS results. Similarly, the TGA results supported the DSC results regarding the increasing thermal stability of the biocomposite nanofibers with TiO2 nanoparticles. These findings demonstrate the potential of PANI/PEO/LC/TiO2 nanofibers for advanced applications requiring conductive and structurally optimized biomaterials, e.g., for use in humidity or volatile organic compound (VOC) sensors, especially where flexibility and environmental sustainability are required. Full article
Show Figures

Figure 1

14 pages, 2997 KiB  
Article
The Development of a Multilayer Transdermal Patch Platform Based on Electrospun Nanofibers for the Delivery of Caffeine
by Jorge Teno, Zoran Evtoski, Cristina Prieto and Jose M. Lagaron
Pharmaceutics 2025, 17(7), 921; https://doi.org/10.3390/pharmaceutics17070921 - 16 Jul 2025
Viewed by 380
Abstract
Background/Objectives: The work presented herein focused on the development and characterization of a transdermal caffeine platform fabricated from ultrathin micro- and submicron fibers produced via electrospinning. Methods: The formulations incorporated caffeine encapsulated in a polyethylene oxide (PEO) matrix, combined with various [...] Read more.
Background/Objectives: The work presented herein focused on the development and characterization of a transdermal caffeine platform fabricated from ultrathin micro- and submicron fibers produced via electrospinning. Methods: The formulations incorporated caffeine encapsulated in a polyethylene oxide (PEO) matrix, combined with various permeation enhancers. A backing layer made of annealed electrospun polycaprolactone (PCL) facilitated the lamination of the two layers to form the final multilayer patch. Comprehensive characterization was conducted, utilizing scanning electron microscopy (SEM) to assess the fiber morphology, attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) for chemical detection and to assess the stability of the caffeine, and differential scanning calorimetry (DSC) along with wide-angle X-ray scattering (WAXS) to analyze the physical state of the caffeine within the fibers of the active layer. Additionally, Franz cell permeation studies were performed using both synthetic membranes (Strat-M) and ex vivo human stratum corneum (SC) to evaluate and model the permeation kinetics. Results: These experiments demonstrated the significant role of enhancers in modulating the caffeine permeation rates provided by the patch, achieving permeation rates of up to 0.73 mg/cm2 within 24 h. Conclusions: This work highlights the potential of using electro-hydrodynamic processing technology to develop innovative transdermal delivery systems for drugs, offering a promising strategy for enhancing efficacy and innovative therapeutic direct plasma administration. Full article
(This article belongs to the Special Issue Dermal and Transdermal Drug Delivery Systems)
Show Figures

Figure 1

24 pages, 3919 KiB  
Article
High Drug Loading of Amorphous Solid Dispersion by Hot Melt Extrusion: The Role of Magnesium Aluminometasilicate (Neusilin® US2)
by Nithin Vidiyala, Pavani Sunkishala, Prashanth Parupathi, Preethi Mandati, Srujan Kumar Mantena, Raghu Rami Reddy Kasu and Dinesh Nyavanandi
Sci. Pharm. 2025, 93(3), 30; https://doi.org/10.3390/scipharm93030030 - 16 Jul 2025
Viewed by 225
Abstract
The objective of the current research is to investigate the role of Neusilin US2 as a porous carrier for improving the drug loading and stability of Ezetimibe (EZB) by hot melt extrusion (HME). The amorphous solid dispersions (ASDs) were developed from 10–40% of [...] Read more.
The objective of the current research is to investigate the role of Neusilin US2 as a porous carrier for improving the drug loading and stability of Ezetimibe (EZB) by hot melt extrusion (HME). The amorphous solid dispersions (ASDs) were developed from 10–40% of drug loading using Kollidon VA 64 (Copovidone) as a polymer matrix and Neusilin US2 as a porous carrier. The solid-state characterization of EZB was studied using differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD), and Fourier transform infrared spectroscopy (FTIR). The formulation blends were characterized for flow properties, and CTC (compressibility, tabletability, compactibility) profile. The in-vitro drug release profiles were studied in 0.1 N HCl (pH 1.2). The incorporation of Neusilin US2 has facilitated the development of ASDs up to 40% of drug loading. The CTC profile has demonstrated excellent tabletability for the ternary (EZB, copovidone and Neusilin) dispersions over binary dispersion (EZB and copovidone) formulations. The tablet formulations with binary (20%) and ternary (30% and 40%) dispersions have demonstrated complete dissolution of the drug in 30 min in 0.1 N HCl (pH 1.2). The incorporation of copovidone has prevented the recrystallization of the drug in the solution state. Upon storage of formulations at accelerated conditions, the stability of ternary dispersion tablets was preserved attributing to the entrapment of the drug within Neusilin pores thereby inhibiting molecular mobility. Based on the observations, the current research concludes that it is feasible to incorporate Neusilin US2 to improve the drug loading and stability of ASD systems. Full article
Show Figures

Figure 1

15 pages, 3491 KiB  
Article
Development and Characterization of Composite Films of Potato Starch and Carboxymethylcellulose/Poly(ethylene oxide) Nanofibers
by Yenny Paola Cruz Moreno, Andres Felipe Rubiano-Navarrete, Erika Rocio Cely Rincón, Adriana Elizabeth Lara Sandoval, Alfredo Maciel Cerda, Edwin Yesid Gomez-Pachon and Ricardo Vera-Graziano
Eng 2025, 6(7), 160; https://doi.org/10.3390/eng6070160 - 15 Jul 2025
Viewed by 566
Abstract
This study aimed to develop and characterize biodegradable films based on potato starch reinforced with carboxymethylcellulose (CMC) and polyethylene oxide (PEO) nanofibers, with the goal of improving their mechanical and thermal properties for potential use in sustainable packaging. The films were prepared through [...] Read more.
This study aimed to develop and characterize biodegradable films based on potato starch reinforced with carboxymethylcellulose (CMC) and polyethylene oxide (PEO) nanofibers, with the goal of improving their mechanical and thermal properties for potential use in sustainable packaging. The films were prepared through the thermal gelatinization of starch extracted from tubers, combined with nanofibers obtained by electrospinning CMC synthesized from potato starch. Key electrospinning variables, including solution concentration, voltage, distance, and flow rate, were analyzed. The films were morphologically characterized using scanning electron microscopy (SEM) and chemically analyzed by Fourier Transform Infrared Spectroscopy (FTIR) and X-ray Diffraction (XRD), and their thermal properties were assessed by Thermogravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC). The results indicated an increase in tensile strength to 14.1 MPa in the reinforced films, compared to 13.6 MPa for pure starch and 7.1 MPa for the fiber-free CMC blend. The nanofibers had an average diameter of 63.3 nm and a porosity of 32.78%. A reduction in crystallinity and more stable thermal behavior were also observed in the composite materials. These findings highlight the potential of using agricultural waste as a functional reinforcement in biopolymers, providing a viable and environmentally friendly alternative to synthetic polymers. Full article
(This article belongs to the Section Materials Engineering)
Show Figures

Figure 1

19 pages, 6209 KiB  
Article
Structural and Thermal Effects of Beeswax Incorporation in Electrospun PVA Nanofibers
by Margarita P. Neznakomova, Fabien Salaün, Peter D. Dineff, Tsvetozar D. Tsanev and Dilyana N. Gospodinova
Materials 2025, 18(14), 3293; https://doi.org/10.3390/ma18143293 - 12 Jul 2025
Viewed by 381
Abstract
This study presents the development and characterization of electrospun nanofibers composed of polyvinyl alcohol (PVA) and natural beeswax (BW). A stable emulsion containing 9 wt% PVA and 5 wt% BW was successfully formulated and electrospun. The effects of beeswax incorporation on solution properties-viscosity, [...] Read more.
This study presents the development and characterization of electrospun nanofibers composed of polyvinyl alcohol (PVA) and natural beeswax (BW). A stable emulsion containing 9 wt% PVA and 5 wt% BW was successfully formulated and electrospun. The effects of beeswax incorporation on solution properties-viscosity, conductivity, and surface tension—were systematically evaluated. Electrospinning was performed at 30 kV and a working distance of 14.5 cm, yielding nanofibers with diameters between 125 and 425 nm. Scanning electron microscopy (SEM) revealed increased surface roughness and diameter variability in PVA/BW fibers compared to the PVA. Fourier transform infrared spectroscopy (FTIR) confirmed physical incorporation of BW without evidence of chemical bonding. Thermogravimetric and differential scanning calorimetry analyses (TGA/DSC) demonstrated altered behavior and an expanded profile of temperature transitions due to the waxy components. The solubility test of the nanofiber mat in saline indicated that BW slows dissolution and improves the structural integrity of the fibers. This study demonstrates, for the first time, the incorporation of beeswax into electrospun PVA nanofibers with improved structural and thermal properties, indicating potential for further exploration in biomedical material design. Full article
Show Figures

Graphical abstract

25 pages, 5298 KiB  
Article
Microstructural, Mechanical, Thermal, and Magnetic Properties of the Mechanically Alloyed and Consolidated Al–16 wt. % Mn–7 wt. % Cu Alloy
by Ahlem Saad Bekhouche, Safia Alleg, Abdelaziz Bouasla, Hacene Hachache and Joan José Sunol
Magnetochemistry 2025, 11(7), 59; https://doi.org/10.3390/magnetochemistry11070059 - 11 Jul 2025
Viewed by 395
Abstract
The effect of severe plastic deformation during milling and conventional and Spark Plasma Sintering (SPS) on the wt. % microstructural, structural, thermal, magnetic, and mechanical properties of the Al–16 wt. % Mn–7 wt. % Cu alloy was studied. A milling process for up [...] Read more.
The effect of severe plastic deformation during milling and conventional and Spark Plasma Sintering (SPS) on the wt. % microstructural, structural, thermal, magnetic, and mechanical properties of the Al–16 wt. % Mn–7 wt. % Cu alloy was studied. A milling process for up to 24 h (A24) leads to microstructure refinement and the presence of Al, Mn, and Cu solid solutions. The energy dispersive spectroscopy (EDS) analysis reveals the existence of Cu–Al, Mn–Al, and Al–Mn enriched particles. The powders exhibit weak ferromagnetism and an exchange bias (EB) behaviour that decreases with increasing milling time. The Ms values fitted using the law of approach to saturation (LAS) are comparable to the experimental values. The exothermic and endothermic peaks that appear in the differential scanning calorimetry (DSC) scans in the 500–900 °C range on heating/cooling are related to different phase transformations. The crystal structure of the A24 powders heated up to 900 °C (A24_900 °C) consists of a dual-phase microstructure of Al20Cu2Mn3 nanoprecipitates (~28%) and Al matrix (~72%). The sintering of the A24 powders at 500 °C for one hour (A24S) leads to the precipitation of Al6Mn, Al2Cu, and the Al20Cu2Mn3 T-phase into the Al-enriched matrix. In contrast, the consolidation by SPS (A24SPS) leads to a mixture of an Al solid solution, Al6Mn, T-phase, and α-Mn with an increased weight fraction of the T-phase and Al6Mn. The sintered samples exhibit the coexistence of a significant PM/AFM contribution to the M-H curves, with increasing Hc and decreasing EB. A higher microhardness value of about 581 HV is achieved for the A24SPS sample compared to those of the A24 (68 HV) and A24S (80 HV) samples. Full article
Show Figures

Figure 1

18 pages, 11863 KiB  
Article
Storage and Ripening Monitoring of Pecorino Cheese Through 2D 1H-NMR Relaxation and ANOVA Simultaneous Component Analysis (ASCA): A Comparison with DSC and ATR-FTIR Characterization
by Francesca Di Donato, Francesco Gabriele, Alessandra Biancolillo, Cinzia Casieri, Angelo Antonio D’Archivio and Nicoletta Spreti
Molecules 2025, 30(14), 2916; https://doi.org/10.3390/molecules30142916 - 10 Jul 2025
Viewed by 236
Abstract
In food processing, non-destructive and non-invasive characterization is a powerful tool for monitoring processes and controlling quality. Cheeses consist of a large variety of products whose nutritional and sensory properties depend on the source materials, cheesemaking procedures, and biochemical transformations occurring during maturation [...] Read more.
In food processing, non-destructive and non-invasive characterization is a powerful tool for monitoring processes and controlling quality. Cheeses consist of a large variety of products whose nutritional and sensory properties depend on the source materials, cheesemaking procedures, and biochemical transformations occurring during maturation and storage. In this study, proton magnetic resonance relaxation time correlation maps (2D 1H-NMR T1–T2) are used to investigate the effect of the ripening degree on Pecorino cheese and evaluate its evolution during storage in a refrigerator under vacuum-packaging conditions. NMR relaxometry has allowed for non-invasive monitoring of packaged Pecorino cheese slices, and the results were compared with those obtained with the two widely used techniques, i.e., Differential Scanning Calorimetry (DSC) and Attenuated Total Reflectance Fourier-Transform Infrared Spectroscopy (ATR-FTIR). The analysis of variance and simultaneous component analysis (ASCA), separately applied to 2D 1H-NMR T1–T2 correlation maps, DSC, and ATR-FTIR data, suggests that the results obtained with the NMR approach are consistent with those obtained using the two benchmark techniques. In addition, it can distinguish cheeses stored for different durations (storage time) irrespective of their original moisture content (ripening degree), and vice versa, without opening the vacuum-package, which could compromise the integrity of the samples. Full article
Show Figures

Figure 1

35 pages, 9217 KiB  
Article
Comparative Physicochemical and Pharmacotechnical Evaluation of Three Topical Gel-Cream Formulations
by Ramona Pârvănescu, Cristina Trandafirescu, Adina Magdalena Musuc, Emma Adriana Ozon, Daniela C. Culita, Raul-Augustin Mitran, Cristina-Ionela Stănciulescu and Codruța Șoica
Gels 2025, 11(7), 532; https://doi.org/10.3390/gels11070532 - 9 Jul 2025
Viewed by 532
Abstract
In the context of modern dermocosmetic development, multifunctional topical gel-cream formulations must be efficient for both therapeutic efficacy and cosmetic applications. This study presents a comparative physicochemical and pharmacotechnical analysis of three topical gel-cream formulations developed by Brand Chanand®: Acne Control [...] Read more.
In the context of modern dermocosmetic development, multifunctional topical gel-cream formulations must be efficient for both therapeutic efficacy and cosmetic applications. This study presents a comparative physicochemical and pharmacotechnical analysis of three topical gel-cream formulations developed by Brand Chanand®: Acne Control Cleanser (ACC), Acne Face Cream (AFC), and Gentle Cream Cleanser Serum Control, Regenerating, Hydrating, Calming (IRC). Each formulation is enriched with a specific blend of bioactive compounds, including botanical oils, vitamins, and proteins, designed to treat acne, to support skin regeneration, and to maintain the skin barrier. A multidisciplinary approach was used, including Fourier Transform Infrared Spectroscopy with Attenuated Total Reflectance (FTIR-ATR), differential scanning calorimetry (DSC), rheological evaluation, pH and density determination, spreadability analysis, and oxidative stability testing to evaluate the products. Antioxidant capacity was assessed through multiple in vitro assays. The results demonstrated that all three gel-cream formulations exhibit pseudoplastic rheological behaviour, suitable for topical application. AFC showed the highest oxidative stability and antioxidant activity, while IRC presented superior spreadability and cosmetic efficacy, likely due to its complex composition. ACC displayed faster absorption and was ideal for targeted use on oily or acne-prone skin. The differences observed in the stability and performance suggest that the ingredient synergy, base composition, and solubility profiles show notable variations in dermato-cosmetic formulations. These findings highlight the formulation–performance relationship in topical gel-cream formulations and support the development of new cosmetic products tailored for sensitive and acne-prone skin. Full article
(This article belongs to the Special Issue Hydrogel for Sustained Delivery of Therapeutic Agents (2nd Edition))
Show Figures

Figure 1

26 pages, 2441 KiB  
Article
Structure–Property Relationship in Isotactic Polypropylene Under Contrasting Processing Conditions
by Edin Suljovrujic, Dejan Milicevic, Katarina Djordjevic, Zorana Rogic Miladinovic, Georgi Stamboliev and Slobodanka Galovic
Polymers 2025, 17(14), 1889; https://doi.org/10.3390/polym17141889 - 8 Jul 2025
Viewed by 627
Abstract
Polypropylene (PP), with its good physical, thermal, and mechanical properties and excellent processing capabilities, has become one of the most used synthetic polymers. It is known that the overall properties of semicrystalline polymers, including PP, are governed by morphology, which is influenced by [...] Read more.
Polypropylene (PP), with its good physical, thermal, and mechanical properties and excellent processing capabilities, has become one of the most used synthetic polymers. It is known that the overall properties of semicrystalline polymers, including PP, are governed by morphology, which is influenced by the crystallization behavior of the polymer under specific conditions. The most important industrial PP remains the isotactic one, and it has been studied extensively for its polymorphic characteristics and crystallization behavior for over half a century. Due to its regular chain structure, isotactic polypropylene (iPP) belongs to the group of polymers with a high tendency for crystallization. The rapid quenching of molten iPP fails to produce a completely amorphous polymer but leads to an intermediate crystalline order. On the other hand, slow cooling yields a material with high crystalline content. The processing conditions that occur in practice and industry are between these two extremes and, in some cases, are even very close. Therefore, the study of limits in processability and the impact of extreme preparation conditions on morphology, structure, thermal, and mechanical properties fills a gap in the current understanding of how the processing conditions of iPP can be used to design the desired properties for specific applications and is in the focus of this research. The first set of samples (Q samples) was obtained by rapid quenching, while the second was prepared by very slow cooling from the melt to room temperature (SC samples). Testing of samples was performed by optical microscopy (OM), scanning electron microscopy (SEM), wide-angle X-ray diffraction (WAXD), Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), dynamic dielectric spectroscopy (DDS), and mechanical measurements. Characterization revealed that slowly cooled samples exhibited a significantly higher degree of crystallinity and larger crystallites (χ ≥ 55% and L(110) ≈ 20 nm), compared to quenched samples (χ < 30%, L(110) ≤ 3 nm). Mechanical testing showed a drastic contrast: quenched samples exhibited elongation at break > 500%, while slowly cooled samples broke below 15%, reflecting their brittle behavior. For the first time, DDS is applied to investigate molecular mobility differences between processing-dependent structural forms, specifically the mesomorphic (smectic) and α-monoclinic forms. In slowly cooled samples, α relaxation exhibited both enhanced intensity and an upward temperature shift, indicating stronger structural constraints due to a much higher crystalline phase content and significantly larger crystallite size, respectively. These findings provide novel insights into the structure–property–processing relationship, which is crucial for industrial applications. Full article
(This article belongs to the Special Issue Thermal and Elastic Properties of Polymer Materials)
Show Figures

Figure 1

13 pages, 3031 KiB  
Article
Impact of Aging and Pathologies on Human Oral Mucosa: Preliminary Investigation of Biophysical Markers from Thermal and Vibrational Analyses
by Valérie Samouillan, Camille Ober and Marie-Hélène Lacoste-Ferré
Biomolecules 2025, 15(7), 978; https://doi.org/10.3390/biom15070978 - 8 Jul 2025
Viewed by 357
Abstract
This study first examines the potential of using Fourier-transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC) to extract molecular and organizational markers from human oral mucosa. These indicators are then examined in relation to age and pathophysiological conditions. Oral mucosa biopsies were [...] Read more.
This study first examines the potential of using Fourier-transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC) to extract molecular and organizational markers from human oral mucosa. These indicators are then examined in relation to age and pathophysiological conditions. Oral mucosa biopsies were collected from 38 patients during surgical procedures and analyzed using FTIR and DSC-validated protocols. The patients were divided into two age groups, namely 20–40 and 70–90 years. Vibrational markers of the lamina propria and epithelium, including lipid-to-protein and collagen-to-protein ratios and lipid order, were extracted from the FTIR spectra of both layers. Hydration levels and collagen thermal stability were determined from DSC thermograms of the entire biopsy. The preliminary findings of this study, which will require further validation in a larger patient cohort, indicate a significant decrease in bound water content and collagen denaturation temperature in the older population. This suggests that oral mucosa undergoes structural dehydration and collagen destabilization with age. Further comparisons within the older group revealed links between biophysical markers of the oral mucosa and chronic or local pathologies. Patients with cardiovascular diseases exhibit altered collagen organization, while patients with diabetes display differences in the lipid-to-protein ratio and the order of lipid chains in the epithelium. Gingivitis is associated with variations in the collagen-to-protein ratio, which supports the role of inflammation in extracellular matrix remodeling. Full article
(This article belongs to the Section Molecular Biomarkers)
Show Figures

Graphical abstract

Back to TopTop