Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (504)

Search Parameters:
Keywords = spectral data mixing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 451 KB  
Communication
A Century of General Lichtenecker Equation: Between Stringency and Empiricism, Accuracy and Approximability
by Anatoliy V. Goncharenko and Vyacheslav M. Silkin
Materials 2025, 18(24), 5562; https://doi.org/10.3390/ma18245562 - 11 Dec 2025
Viewed by 166
Abstract
The general Lichtenecker equation, with exponent values in the range 1k1, is widely used to describe and predict the effective macroscopic electrical, magnetic, thermal and optical properties of various heterogeneous media. Although it sometimes fits experimental data [...] Read more.
The general Lichtenecker equation, with exponent values in the range 1k1, is widely used to describe and predict the effective macroscopic electrical, magnetic, thermal and optical properties of various heterogeneous media. Although it sometimes fits experimental data well, in most cases, however, it is physically incorrect and its predictive ability is often overestimated. Using a rigorous spectral representation, we show that for isotropic composites, except for the trivial one-dimensional case, only two specific forms of this equation, the logarithmic (k=0) and Landau-Lifshitz-Looyenga (k=1/3) mixing laws, are dimensionally consistent, corresponding to spatial dimensions d=2 and d=3, respectively. Furthermore, the requirement of phase-interchange symmetry severely restricts the applicability of the Lichtenecker equation, rendering it unsuitable for most real composite systems. Full article
(This article belongs to the Section Materials Physics)
Show Figures

Figure 1

36 pages, 17317 KB  
Article
Spectral Unmixing of Coastal Dune Plant Species from Very High Resolution Satellite Imagery
by Katerina Kombiadou, Susana Costas, Juan Bautista Gallego-Fernández, Zhicheng Yang, Luisa Bon de Sousa and Sonia Silvestri
Remote Sens. 2025, 17(24), 3991; https://doi.org/10.3390/rs17243991 - 10 Dec 2025
Viewed by 159
Abstract
While improvements in the spectral and spatial resolution of satellite imagery have opened up new prospects for large-scale environmental monitoring, this potential has remained largely unrealised in dune ecogeomorphology. This is especially true for Mediterranean coastal dunes, where the highly mixed and sparse [...] Read more.
While improvements in the spectral and spatial resolution of satellite imagery have opened up new prospects for large-scale environmental monitoring, this potential has remained largely unrealised in dune ecogeomorphology. This is especially true for Mediterranean coastal dunes, where the highly mixed and sparse vegetation requires high resolution satellites and spectral unmixing techniques. To achieve this aim, we employed random forest regressors to predict the fractional cover of dune plant species in two of the sandy barriers of Ria Formosa (S. Portugal) from WorldView-2 imagery (June 2024). The algorithm, tested with spatially upscaled multispectral drone data and satellite imagery, detected the fractional cover of major species (most abundant classes and bushy vegetation) with reasonable to very good accuracy (coefficient of determination, CoD: 0.4 to 0.8) for the former and reasonable to good accuracy (CoD: 0.4 to 0.6) for the latter. Additional tests showed that (a) including the distance to the shoreline can increase model accuracy (CoD by ~0.1); (b) the grouping of species resulted in an insignificant increase in model skill; and (c) testing over independent dune plots showed generalisation beyond the training set and low risk of overfitting or noise. Overall, the approach showed promising results for large-scale observations in highly mixed coastal dunes. Full article
(This article belongs to the Topic Recent Advances in Iberian Coastal Geomorphology)
Show Figures

Figure 1

30 pages, 14942 KB  
Article
Study on the Retrieval of Leaf Area Index for Summer Maize Based on Hyperspectral Data
by Wenping Huang, Huixin Liu, Tian Zhang and Liusong Yang
AgriEngineering 2025, 7(12), 418; https://doi.org/10.3390/agriengineering7120418 - 4 Dec 2025
Viewed by 241
Abstract
Global climate change has led to frequent extreme weather events such as high temperatures and droughts, severely threatening the heat and water balance during the growing season of summer maize. To adapt to these changes, adjusting planting dates to optimize crop development has [...] Read more.
Global climate change has led to frequent extreme weather events such as high temperatures and droughts, severely threatening the heat and water balance during the growing season of summer maize. To adapt to these changes, adjusting planting dates to optimize crop development has become a key agronomic measure for mitigating climate stress and ensuring yield. Against this backdrop, precise monitoring of leaf area index (LAI) is crucial for evaluating the effectiveness of planting date regulation and achieving precision management. To reveal the impact of planting date variations on summer maize LAI inversion and address the limitations of single data sources in comprehensively reflecting complex environmental conditions affecting crop growth, this study examined summer maize at different planting dates across the North China Plain. Through stepwise regression analysis (SRA), multiple vegetation indices (VIs) and 0–2nd order fractional order derivatives (FODs), spectral parameters were dynamically screened. These were then integrated with effective accumulated temperature (EAT) to optimize model inputs. Partial Least Squares Regression (PLSR), Random Forest (RF), Support Vector Regression (SVR), and Adaptive Boosting Regression (AdaBoot) algorithms were employed to construct LAI inversion models for summer maize across different planting dates and mixed planting dates. Results indicate that, compared to empirical VIs and “tri-band” parameters, randomly selected dual-band combination VIs exhibit the strongest correlation with summer maize LAI. Key bands identified through SRA screening concentrated in the 0.7–1.2 order range, primarily distributed across the red edge and near-infrared bands. Multi-feature models incorporating EAT significantly improved retrieval accuracy compared to single-feature models. Optimal models and feature combinations varied across planting dates. Overall, the VIs + EAT combination exhibited the highest stability across all models. Ensemble learning algorithms RF and AdaBoost performed exceptionally well, achieving average R2 values of 0.93 and 0.92, respectively. The model accuracy for the 20-day delayed planting (S4) decreased significantly, with an average R2 of 0.62, while the average R2 for other planting dates exceeded 0.90. This indicates that the altered environmental conditions during the later growth stages of LAI due to delayed planting hindered LAI estimation. This study provides an effective method for estimating summer maize LAI across different planting dates under climate change, offering scientific basis for optimizing adaptive cultivation strategies for maize in the North China Plain. Full article
(This article belongs to the Section Remote Sensing in Agriculture)
Show Figures

Figure 1

34 pages, 2582 KB  
Article
Integrating UAV Multi-Temporal Imagery and Machine Learning to Assess Biophysical Parameters of Douro Grapevines
by Pedro Marques, Leilson Ferreira, Telmo Adão, Joaquim J. Sousa, Raul Morais, Emanuel Peres and Luís Pádua
Remote Sens. 2025, 17(23), 3915; https://doi.org/10.3390/rs17233915 - 3 Dec 2025
Viewed by 333
Abstract
The accurate estimation of grapevine biophysical parameters is important for decision support in precision viticulture. This study addresses the use of unmanned aerial vehicle (UAV) multispectral data and machine learning (ML) techniques to estimate leaf area index (LAI), pruning wood biomass, and yield, [...] Read more.
The accurate estimation of grapevine biophysical parameters is important for decision support in precision viticulture. This study addresses the use of unmanned aerial vehicle (UAV) multispectral data and machine learning (ML) techniques to estimate leaf area index (LAI), pruning wood biomass, and yield, across mixed-variety vineyards in the Douro Region of Portugal. Data were collected at three phenological stages, from veraison to maturation and two modeling approaches were tested: one using only spectral features, and another combining spectral and geometric features derived from photogrammetric elevation data. Multiple linear regression (MLR) and five ML algorithms were applied, with feature selection performed using both forward and backward selection procedures. Logarithmic transformations were used to mitigate data skewness. Overall, ML algorithms provided better predictive performance than MLR, particularly when geometric features were included. At harvest-ready, Random Forest achieved the highest accuracy for LAI (R2 = 0.83) and yield (R2 = 0.75), while MLR produced the most accurate estimates for pruning wood biomass (R2 = 0.83). Among geometric variables, canopy area was the most informative. For spectral data, the Modified Soil-Adjusted Vegetation Index (MSAVI) and the Soil-Adjusted Vegetation Index (SAVI) were the most relevant. The models performed well across grapevine varieties, indicating that UAV-based monitoring can serve as a practical, non-invasive, and scalable approach for vineyard management in heterogeneous vineyards. Full article
(This article belongs to the Special Issue Retrieving Leaf Area Index Using Remote Sensing)
Show Figures

Figure 1

24 pages, 5563 KB  
Article
Using K-Means-Derived Pseudo-Labels and Machine Learning Classification on Sentinel-2 Imagery to Delineate Snow Cover Ratio and Snowline Altitude: A Case Study on White Glacier from 2019 to 2024
by Wai Yin (Wilson) Cheung and Laura Thomson
Remote Sens. 2025, 17(23), 3872; https://doi.org/10.3390/rs17233872 - 29 Nov 2025
Viewed by 246
Abstract
Accurate equilibrium-line altitude (ELA) estimates are a valuable proxy for evaluating glacier mass balance conditions and interpreting climate-driven change in the Canadian high Arctic, where sustained in situ observations are limited. A scalable remote-sensing framework is evaluated to extract the snow cover ratio [...] Read more.
Accurate equilibrium-line altitude (ELA) estimates are a valuable proxy for evaluating glacier mass balance conditions and interpreting climate-driven change in the Canadian high Arctic, where sustained in situ observations are limited. A scalable remote-sensing framework is evaluated to extract the snow cover ratio (SCR) and snowline altitude (SLA) on White Glacier (Axel Heiberg Island, Nunavut) and to assess the agreement with in situ ELA measurements. Ten-metre Sentinel-2 imagery (2019–2024) is processed with a hybrid pipeline comprising the principal component analysis (PCA) of four bands (B2, B3, B4, and B8), unsupervised K-means for pseudo-label generation, and a Random Forest (RF) classifier for snow/ice/ground mapping. SLA is defined based on the date of seasonal minimum SCR using (i) a snowline pixel elevation histogram (SPEH; mode) and (ii) elevation binning with SCR thresholds (0.5 and 0.8). Validation against field-derived ELAs (2019–2023) is performed; formal SLA precision from DEM and binning is quantified (±4.7 m), and associations with positive degree days (PDDs) at Eureka are examined. The RF classifier reproduces the spectral clustering structure with >99.9% fidelity. Elevation binning at SCR0.8 yields SLAs closely matching field ELAs (Pearson r=0.994, p=0.0006; RMSE =30 m), whereas SPEH and lower-threshold binning are less accurate. Interannual variability is pronounced as follows: minimum SCR spans 0.46–0.76 and co-varies with SLA; correlations with PDDs are positive but modest. Results indicate that high-threshold elevation-bin filtering with machine learning provides a reliable proxy for ELA in clean-ice settings, with potential transferability to other data-sparse Arctic sites, while underscoring the importance of image timing and mixed-pixel effects in residual SLA–ELA differences. Full article
(This article belongs to the Special Issue AI-Driven Mapping Using Remote Sensing Data)
Show Figures

Figure 1

19 pages, 18637 KB  
Article
Improved Data Processing and a Prior Profile Generation Method for Precise Retrieval of Atmospheric CO2 Based on a Laser Heterodyne Radiometer
by Nianna Fu, Zhao Chen, Kun Liu, Xiaoming Gao and Guishi Wang
Remote Sens. 2025, 17(23), 3791; https://doi.org/10.3390/rs17233791 - 21 Nov 2025
Viewed by 348
Abstract
The laser heterodyne radiometer (LHR) is a promising technique for atmospheric remote sensing due to its exceptionally high spectral resolution and sensitivity. A model based on a random forest algorithm is proposed to generate highly accurate prior atmospheric profiles using real-time meteorological parameters. [...] Read more.
The laser heterodyne radiometer (LHR) is a promising technique for atmospheric remote sensing due to its exceptionally high spectral resolution and sensitivity. A model based on a random forest algorithm is proposed to generate highly accurate prior atmospheric profiles using real-time meteorological parameters. In addition, a locally weighted scatter plot smoothing (LOWESS) method is applied for baseline correction during data preprocessing. An inversion algorithm is implemented using the Py4CAtS radiative transfer model, in which quadratic baseline parameters are included in the iterative process. Continuous measurements of the atmospheric CO2 absorption spectrum were made in our laboratory (Hefei, China, 31.9°N, 117.16°E), and the dry mixing ratio (XCO2) was obtained after data processing and inversion. The results demonstrate that this research improves the accuracy of LHR signal inversion. The implemented Python-based framework shows potential for real-time atmospheric CO2 monitoring. Full article
Show Figures

Figure 1

22 pages, 5143 KB  
Article
Geological Map of the Proclus Crater: A Study Case to Integrate Composition and Morpho-Stratigraphic Mapping on the Moon
by Cristian Carli, Lorenza Giacomini, Giovanna Serventi and Maria Sgavetti
Remote Sens. 2025, 17(23), 3786; https://doi.org/10.3390/rs17233786 - 21 Nov 2025
Viewed by 369
Abstract
Planetary mapping has progressively evolved due to the increasing availability of high-quality data and advancements in analytical techniques applied to both surface and subsurface features. In particular, the enhanced spatial resolution and broader coverage provided by cameras and spectrometers aboard orbiting spacecraft around [...] Read more.
Planetary mapping has progressively evolved due to the increasing availability of high-quality data and advancements in analytical techniques applied to both surface and subsurface features. In particular, the enhanced spatial resolution and broader coverage provided by cameras and spectrometers aboard orbiting spacecraft around planetary bodies, now enable the production of more detailed geostratigraphic maps. Which maps go beyond the traditional planetary approach, with mineralogical data contributing significantly to the development of more comprehensive final products. Proclus crater is a fresh crater, 28 km in diameter, located on the northwest rim of the Crisium basin, where crystalline plagioclase, as well as pyroxenes and olivine, have been detected. Here, preliminarily, the geomorphological map showed the different surface textures and lineaments of the crater, and a spectral unit map highlighted the different spectral units present in the area. The spectral unit map has been produced by using supervised classification, where the spectral endmembers were extracted by the mean of an automatic tool. The mineralogical interpretation retrieved from spectral endmembers supports the definition of six main spectral units and, moreover, indicates how two of them could be divided into subunits. Those subunits show the systematic variation in plagioclase, low-Ca and high-Ca pyroxene, and their relative abundances. Finally, the geostratigraphic maps associate compositional heterogeneity with different units of the crater, suggesting that this crater was originally characterized by lithologies rich in plagioclase, but mixed with variable low amounts of mafic phases. Since Proclus is a relatively small crater and the units better exposing the mineral’s original heterogeneity are principally distributed in the walls, the spectral units seem to suggest the presence of magma traps during the plagioclase floating during the lunar primary crust formation and constitute heterogeneous terrains within the Highland. Full article
Show Figures

Figure 1

17 pages, 10990 KB  
Article
Study of Intelligent Identification of Radionuclides Using a CNN–Meta Deep Hybrid Model
by Xiangting Meng, Ziyi Wang, Yu Sun, Zhihao Dong, Xiaoliang Liu, Huaiqiang Zhang and Xiaodong Wang
Appl. Sci. 2025, 15(22), 12285; https://doi.org/10.3390/app152212285 - 19 Nov 2025
Viewed by 367
Abstract
The rapid and accurate identification of radionuclides and the quantitative analysis of their activities have long been key research areas in the field of nuclear spectrum data processing. Traditional nuclear spectrum analysis methods heavily rely on manual feature extraction, making them highly susceptible [...] Read more.
The rapid and accurate identification of radionuclides and the quantitative analysis of their activities have long been key research areas in the field of nuclear spectrum data processing. Traditional nuclear spectrum analysis methods heavily rely on manual feature extraction, making them highly susceptible to interference from factors such as energy resolution, calibration drift, and spectral peak overlap when dealing with complex mixed-radionuclide spectra, ultimately leading to degraded identification performance and accuracy. Based on multi-nuclide energy spectral data acquired via Geant4 simulation, this study compares the performance of partial least squares regression (PLSR), random forest (RF), a convolutional neural network (CNN), and a hybrid CNN–Meta model for radionuclide identification and quantitative activity analysis under conditions of raw energy spectra, Z-score normalization, and min-max normalization. To maximize the potential of each model, principal component selection, Bayesian hyperparameter optimization, iteration tuning, and meta-learning optimization were employed. Model performance was comprehensively evaluated using the coefficient of determination (R2), root mean square error (RMSE), mean relative error (MRE), and computational time. The results demonstrate that deep learning models can effectively capture nonlinear relationships within complex energy spectra, enabling accurate radionuclide identification and activity quantification. Specifically, the CNN achieved a globally optimal test RMSE of 0.00566 and an R2 of 0.999 with raw energy spectra. CNN–Meta exhibited superior adaptability and generalization under min-max normalization, reducing test error by 70.8% compared to RF, while requiring only 49% of the total computation time of the CNN model. RF was relatively insensitive to preprocessing but yielded higher absolute errors, whereas PLSR was limited by its linear nature and failed to capture the nonlinear characteristics of complex energy spectra. In conclusion, the CNN–Meta hybrid model demonstrates superior performance in both accuracy and efficiency, providing a reliable and effective approach for the rapid identification of radionuclides and quantitative analysis of activity in complex energy spectra. Full article
Show Figures

Figure 1

29 pages, 5594 KB  
Article
Assessing Changes in Grassland Species Distribution at the Landscape Scale Using Hyperspectral Remote Sensing
by Obumneke Ohiaeri, Carlos Portillo-Quintero and Haydee Laza
Sensors 2025, 25(22), 6821; https://doi.org/10.3390/s25226821 - 7 Nov 2025
Viewed by 655
Abstract
The advancement of hyperspectral remote sensing technology has enhanced the ability to assess and characterize land cover in complex ecosystems. In this study, a linear spectral unmixing algorithm was applied to NEON hyperspectral imagery in 2018 and 2022 to quantify the fractional abundance [...] Read more.
The advancement of hyperspectral remote sensing technology has enhanced the ability to assess and characterize land cover in complex ecosystems. In this study, a linear spectral unmixing algorithm was applied to NEON hyperspectral imagery in 2018 and 2022 to quantify the fractional abundance of dominant land cover classes, namely herbaceous vegetation, mixed forbs, and bare soil, across the Marvin Klemme Experimental Rangeland in Oklahoma. UAV imagery acquired during the 2023 field campaign provided high resolution reference data for model training. The LSU results revealed a decline in herbaceous cover from 16.02 ha to 11.56 ha and an expansion of bare soil from 3.37 ha to 6.39 ha, while mixed forb cover remained relatively stable (12.38 ha to 13.82 ha). Accuracy assessment using the UAV-derived validation points yielded overall accuracy of 84% and 60% at fractional thresholds of 50% and 75%, respectively. Although statistical tests indicated no significant change in mean fractional abundance (p > 0.05), slope-based trend maps captured localized vegetation loss and regrowth patterns. These findings demonstrate the effectiveness of integrating LSU with UAV data for detecting subtle yet ecologically meaningful shifts in semi-arid grassland composition. Full article
(This article belongs to the Special Issue Hyperspectral Sensing: Imaging and Applications)
Show Figures

Figure 1

10 pages, 2230 KB  
Proceeding Paper
Bayesian Functional Data Analysis in Astronomy
by Thomas Loredo, Tamás Budavári, David Kent and David Ruppert
Phys. Sci. Forum 2025, 12(1), 12; https://doi.org/10.3390/psf2025012012 - 4 Nov 2025
Viewed by 296
Abstract
Cosmic demographics—the statistical study of populations of astrophysical objects—has long relied on tools from multivariate statistics for analyzing data comprising fixed-length vectors of properties of objects, as might be compiled in a tabular astronomical catalog (say, with sky coordinates, and brightness measurements in [...] Read more.
Cosmic demographics—the statistical study of populations of astrophysical objects—has long relied on tools from multivariate statistics for analyzing data comprising fixed-length vectors of properties of objects, as might be compiled in a tabular astronomical catalog (say, with sky coordinates, and brightness measurements in a fixed number of spectral passbands). But beginning with the emergence of automated digital sky surveys, ca. 2000, astronomers began producing large collections of data with more complex structures: light curves (brightness time series) and spectra (brightness vs. wavelength). These comprise what statisticians call functional data—measurements of populations of functions. Upcoming automated sky surveys will soon provide astronomers with a flood of functional data. New methods are needed to accurately and optimally analyze large ensembles of light curves and spectra, accumulating information both along individual measured functions and across a population of such functions. Functional data analysis (FDA) provides tools for statistical modeling of functional data. Astronomical data presents several challenges for FDA methodology, e.g., sparse, irregular, and asynchronous sampling, and heteroscedastic measurement error. Bayesian FDA uses hierarchical Bayesian models for function populations, and is well suited to addressing these challenges. We provide an overview of astronomical functional data and some key Bayesian FDA modeling approaches, including functional mixed effects models, and stochastic process models. We briefly describe a Bayesian FDA framework combining FDA and machine learning methods to build low-dimensional parametric models for galaxy spectra. Full article
Show Figures

Figure 1

19 pages, 3395 KB  
Article
Drone-Derived Nearshore Bathymetry: A Comparison of Spectral and Video-Based Inversions
by Isaac P. Goessling and Javier X. Leon
Drones 2025, 9(11), 761; https://doi.org/10.3390/drones9110761 - 3 Nov 2025
Viewed by 771
Abstract
Accurate nearshore bathymetry is an essential dataset for coastal modelling and coastal hazard management, but traditional surveys are expensive and dangerous to conduct in energetic surf zones. Remotely piloted aircraft (RPA) offer a flexible way to collect high spatial and temporal resolution bathymetric [...] Read more.
Accurate nearshore bathymetry is an essential dataset for coastal modelling and coastal hazard management, but traditional surveys are expensive and dangerous to conduct in energetic surf zones. Remotely piloted aircraft (RPA) offer a flexible way to collect high spatial and temporal resolution bathymetric data. This study applies deliberately simple workflows with accessible instrumentation to compare video-based and spectral inversion techniques at two contrasting coastal settings: an exposed open beach with relative higher wave energy and turbidity, and a sheltered embayed beach with lower energy conditions. The video-based (UBathy) approach achieved lower errors (0.22–0.41 m RMSE) than the spectral approach (Stumpf) (0.30–0.71 m RMSE), confirming its strength in semi-turbid, low- to moderate-energy settings. Stumpf’s accuracy matched prior findings (~0.5 m errors in clear water) but declined with depth. Areas with sun glint areas and breaking waves are challenging but UBathy performed better in mixed wave conditions. While these errors are higher than traditional hydrographic surveys, they fall within expected RPA-derived ranges presenting opportunities for use in specific coastal management applications. Future improvements may come from reducing reliance on ground control and advancing deep learning-based hybrid methods to filter outliers and improve prediction accuracy on sub-optimal imagery caused by environmental conditions. Full article
Show Figures

Figure 1

28 pages, 19566 KB  
Article
CResDAE: A Deep Autoencoder with Attention Mechanism for Hyperspectral Unmixing
by Chong Zhao, Jinlin Wang, Qingqing Qiao, Kefa Zhou, Jiantao Bi, Qing Zhang, Wei Wang, Dong Li, Tao Liao, Chao Li, Heshun Qiu and Guangjun Qu
Remote Sens. 2025, 17(21), 3622; https://doi.org/10.3390/rs17213622 - 31 Oct 2025
Viewed by 474
Abstract
Hyperspectral unmixing aims to extract pure spectral signatures (endmembers) and estimate their corresponding abundance fractions from mixed pixels, enabling quantitative analysis of surface material composition. However, in geological mineral exploration, existing unmixing methods often fail to explicitly identify informative spectral bands, lack inter-layer [...] Read more.
Hyperspectral unmixing aims to extract pure spectral signatures (endmembers) and estimate their corresponding abundance fractions from mixed pixels, enabling quantitative analysis of surface material composition. However, in geological mineral exploration, existing unmixing methods often fail to explicitly identify informative spectral bands, lack inter-layer information transfer mechanisms, and overlook the physical constraints intrinsic to the unmixing process. These issues result in limited directionality, sparsity, and interpretability. To address these limitations, this paper proposes a novel model, CResDAE, based on a deep autoencoder architecture. The encoder integrates a channel attention mechanism and deep residual modules to enhance its ability to assign adaptive weights to spectral bands in geological hyperspectral unmixing tasks. The model is evaluated by comparing its performance with traditional and deep learning-based unmixing methods on synthetic datasets, and through a comparative analysis with a nonlinear autoencoder on the Urban hyperspectral scene. Experimental results show that CResDAE consistently outperforms both conventional and deep learning counterparts. Finally, CResDAE is applied to GF-5 hyperspectral imagery from Yunnan Province, China, where it effectively distinguishes surface materials such as Forest, Grassland, Silicate, Carbonate, and Sulfate, offering reliable data support for geological surveys and mineral exploration in covered regions. Full article
(This article belongs to the Special Issue AI-Driven Hyperspectral Remote Sensing of Atmosphere and Land)
Show Figures

Figure 1

18 pages, 1819 KB  
Article
Speech Markers of Parkinson’s Disease: Phonological Features and Acoustic Measures
by Ratree Wayland, Rachel Meyer and Kevin Tang
Brain Sci. 2025, 15(11), 1162; https://doi.org/10.3390/brainsci15111162 - 29 Oct 2025
Viewed by 1014
Abstract
Background/Objectives: Parkinson’s disease (PD) affects both articulatory and phonatory subsystems, leading to characteristic speech changes known as hypokinetic dysarthria. However, few studies have jointly analyzed these subsystems within the same participants using interpretable deep-learning-based measures. Methods: Speech data from the PC-GITA corpus, [...] Read more.
Background/Objectives: Parkinson’s disease (PD) affects both articulatory and phonatory subsystems, leading to characteristic speech changes known as hypokinetic dysarthria. However, few studies have jointly analyzed these subsystems within the same participants using interpretable deep-learning-based measures. Methods: Speech data from the PC-GITA corpus, including 50 Colombian Spanish speakers with PD and 50 age- and sex-matched healthy controls were analyzed. We combined phonological feature posteriors—probabilistic indices of articulatory constriction derived from the Phonet deep neural network—with harmonics-to-noise ratio (HNR) as a laryngeal measure. Linear mixed-effects models tested how these measures related to disease severity (UPDRS, UPDRS-speech, and Hoehn and Yahr), age, and sex. Results: PD participants showed significantly higher [continuant] posteriors, especially for dental stops, reflecting increased spirantization and articulatory weakening. In contrast, [sonorant] posteriors did not differ from controls, indicating reduced oral constriction without a shift toward more open, approximant-like articulations. HNR was predicted by vowel height and sex but did not distinguish PD from controls, likely reflecting ON-medication recordings. Conclusions: These findings demonstrate that deep-learning-derived articulatory features can capture early, subphonemic weakening in PD speech—particularly for coronal consonants—while single-parameter laryngeal indices such as HNR are less sensitive under medicated conditions. By linking spectral energy patterns to interpretable phonological categories, this approach provides a transparent framework for detecting subtle articulatory deficits and developing feature-level biomarkers of PD progression. Full article
(This article belongs to the Section Behavioral Neuroscience)
Show Figures

Figure 1

20 pages, 2682 KB  
Article
Inversion of Land Surface Temperature and Prediction of Geothermal Anomalies in the Gonghe Basin, Qinghai Province, Based on the Normalized Shade Vegetation Index
by Zongren Li, Rongfang Xin, Xing Zhang, Shengsheng Zhang, Delin Li, Xiaomin Li, Xin Zheng and Yuanyuan Fu
Remote Sens. 2025, 17(20), 3485; https://doi.org/10.3390/rs17203485 - 20 Oct 2025
Viewed by 481
Abstract
Against the backdrop of global energy transition, geothermal energy has emerged as a critical renewable resource, yet its exploration remains challenging due to uneven subsurface distribution and complex surface conditions. This study pioneers a novel framework integrating the Normalized Shaded Vegetation Index (NSVI) [...] Read more.
Against the backdrop of global energy transition, geothermal energy has emerged as a critical renewable resource, yet its exploration remains challenging due to uneven subsurface distribution and complex surface conditions. This study pioneers a novel framework integrating the Normalized Shaded Vegetation Index (NSVI) with radiative transfer-based land surface temperature inversion to detect geothermal anomalies in the Gonghe Basin, Qinghai Province. Using multi-source remote sensing data (GF5 B AHSI, ZY1–02D/E AHSI, and Landsat 9 TIRS), we first constructed NSVI, achieving 97.74% classification accuracy for shadowed vegetation/water bodies (Kappa = 0.9656). This effectively resolved spectral mixing issues in oblique terrain, enhancing emissivity calculations for land surface temperature retrieval. The radiative transfer equation method combined with NSVI-derived parameters yielded high-precision land surface temperature estimates (RMSE = 2.91 °C; R2 = 0.963 against Landsat 9 products), revealing distinct thermal stratification: bright vegetation (41.31 °C) > shadowed vegetation (38.43 °C) > water (33.56 °C). Geothermal anomalies were identified by integrating temperature thresholds (>45.80 °C), 7 km fault buffers, and concealed Triassic granite constraints, pinpointing high-potential zones covering 0.12% of the basin. These zones are concentrated in central Gonghe, northern Guinan, and central-northern Guide counties. The framework provides a replicable solution for geothermal prospecting in topographically complex regions, with implications for optimizing exploration across the Gonghe Basin. Full article
(This article belongs to the Special Issue Remote Sensing for Land Surface Temperature and Related Applications)
Show Figures

Graphical abstract

19 pages, 3532 KB  
Article
The AMEE-PPI Method to Extract Typical Outcrop Endmembers from GF-5 Hyperspectral Images
by Lin Hu, Jiankai Hu, Shu Gan, Xiping Yuan, Yu Lu, Hailong Zhao and Guang Han
Sensors 2025, 25(19), 6143; https://doi.org/10.3390/s25196143 - 4 Oct 2025
Viewed by 433
Abstract
Mixed pixels remain a central obstacle to reliable endmember extraction from hyperspectral imagery. We present AMEE–PPI, a hybrid method that embeds the Pure Pixel Index (PPI) within morphological structuring elements and propagates spectral purity via dilation/erosion, thereby coupling spatial context with spectral cues [...] Read more.
Mixed pixels remain a central obstacle to reliable endmember extraction from hyperspectral imagery. We present AMEE–PPI, a hybrid method that embeds the Pure Pixel Index (PPI) within morphological structuring elements and propagates spectral purity via dilation/erosion, thereby coupling spatial context with spectral cues while avoiding a user-fixed number of projections. On GaoFen-5 (GF-5) AHSI data from a geologically complex outcrop region, we benchmark AMEE–PPI against four widely used algorithms—PPI, OSP, VCA, and AMEE. The pipeline uses HySime for noise estimation and signal-subspace inference to set the endmember count prior to extraction and applies morphological elements spanning 3 × 3 to 15 × 15 to balance spatial support with local heterogeneity. Quantitatively, AMEE–PPI achieves the lowest spectral angle distance (SAD) for all outcrop types—purple–red: 0.135; yellow–brown: 0.316; gray: 0.191—surpassing the competing methods. It also attains the lowest spectral information divergence (SID)—purple–red: 0.028; yellow–brown: 0.184; gray: 0.055—confirming superior similarity to field reference spectra across materials. Visually, AMEE–PPI avoids the vegetation endmember leakage observed with several baselines on purple–red and gray outcrops, yielding cleaner, more representative endmembers. These results indicate that integrating spatial morphology with spectral purity improves robustness to illumination, mixing, and local variability in GF-5 imagery, with direct benefits for downstream unmixing, classification, and geological interpretation. Full article
(This article belongs to the Section Remote Sensors)
Show Figures

Figure 1

Back to TopTop