Assessing Changes in Grassland Species Distribution at the Landscape Scale Using Hyperspectral Remote Sensing
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. General Methodological Approach
2.3. In Situ Vegetation Data Collection
2.4. Hyperspectral Datasets
2.5. Hyperspectral Imagery and Preprocessing
2.6. UAV Data
2.7. Endmember and Spectral Signature Extraction
2.8. Linear Spectral Unmixing
2.8.1. Implementation of LSU in Google Earth Engine
2.8.2. Temporal Trend Analysis
2.8.3. Categorization of Fractional Abundance Maps Using ArcGIS Pro
2.9. Accuracy Assessment
2.10. Statistical Analysis
3. Results
3.1. Linear Spectral Unmixing and Fractional Abundance
3.2. Trend Analysis
3.3. Histogram Analysis
3.4. Area Estimates of Vegetation and Bare Soil Classes
3.5. Statistical Analysis Results
3.6. Classification Accuracy Results
4. Discussion
4.1. Method Effectiveness
4.2. Comparison with Previous Hyperspectral LSU Studies
4.3. Ecological Significance
4.4. Research Limitations and Future Directions
5. Conclusions
- Integration of UAV-based endmember selection with NEON imagery, reducing spectral confusion and improving unmixing precision across heterogeneous grasslands.
- Coupling LSU with slope-based temporal trend and histogram analyses, extending conventional LSU outputs beyond static fractional estimates to capture vegetation redistribution and early degradation signals at the pixel scale.
- Application to a multi-year dataset within a semi-arid rangeland, providing one of the few longitudinal assessments of vegetation dynamics in this ecosystem type.
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Theobald, D.M.; Oakleaf, J.R.; Moncrieff, G.; Voigt, M.; Kiesecker, J.; Kennedy, C.M. Global extent and change in human modification of terrestrial ecosystems from 1990 to 2022. Sci. Data 2025, 12, 606. [Google Scholar] [CrossRef] [PubMed]
- Friedlingstein, P.; Jones, M.W.; O’Sullivan, M.; Andrew, R.M.; Bakker, D.C.E.; Hauck, J. Global carbon budget 2022. Earth Syst. Sci. Data 2022, 14, 1917–2005. [Google Scholar] [CrossRef]
- Piao, S.; Wang, X.; Park, T.; Chen, C.; Lian, X.; He, Y.; Bjerke, J.W.; Chen, A.; Ciais, P.; Tømmervik, H.; et al. Characteristics, drivers, and feedbacks of global greening. Nat. Rev. Earth Environ. 2020, 1, 14–27. [Google Scholar] [CrossRef]
- Bakker, J.D.; Price, J.N.; Henning, J.A.; Batzer, E.E.; Ohlert, T.J.; Wainwright, C.E.; Adler, P.B.; Alberti, J.; Arnillas, C.A.; Biederman, L.A.; et al. Compositional variation in grassland plant communities. Ecosphere 2023, 14, e4542. [Google Scholar] [CrossRef]
- Sun, Q.; Zhang, P.; Jiao, X.; Lin, X.; Duan, W.; Ma, S.; Pan, Q.; Chen, L.; Zhang, Y.; You, S.; et al. global estimate of monthly vegetation and soil fractions from spatiotemporally adaptive spectral mixture analysis during 2001–2022, Earth Syst. Sci. Data 2024, 16, 1333–1351. [Google Scholar] [CrossRef]
- Forster, E.J.; Healey, J.R.; Dymond, C.; Styles, D. Commercial afforestation can deliver effective climate change mitigation under multiple decarbonisation pathways. Nat. Commun. 2021, 12, 3831. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations (FAO). Global Deforestation Slowing but Tropical Rainforests Remain Under Threat, Key FAO Report Shows; FAO: Washington, DC, USA, 2022. [Google Scholar]
- Liu, X.; Sun, B.; Pan, T.; Zhao, Y. Global cropland expansion enhances cropping potential and reduces its inequality among countries. Earth Syst. Dyn. 2024, 15, 817–832. [Google Scholar] [CrossRef]
- Qin, Y.; Xiao, X.; Wigneron, J.P.; Ciais, P.; Brandt, M.; Fan, L.; Li, X.; Crowell, S.; Wu, X.; Doughty, R.; et al. Carbon loss from forest degradation exceeds that from deforestation in the Brazilian Amazon. Nat. Clim. Change 2021, 11, 442–448. [Google Scholar] [CrossRef]
- Li, H.; Cai, W.; Chen, H.; Ma, X. Remote carbon cycle changes are overlooked impacts of land cover and land management changes. Earth Syst. Dyn. 2025, 16, 631–647. [Google Scholar] [CrossRef]
- Zhu, Z.; Feng, M.; Wang, S.; Liu, X.; Yu, L.; Ma, H.; Liu, J.; Pan, Y. GLC_FCS30D: A. global 30 m land-cover dynamics monitoring dataset with a fine classification system for 1985–2022. Earth Syst. Sci. Data 2024, 16, 1353–1374. [Google Scholar]
- Pazúr, R.; Price, B.; Atkinson, P.M. Fine temporal resolution satellite sensors with global coverage: An opportunity for landscape ecologists. Landsc. Ecol. 2021, 36, 2199–2213. [Google Scholar] [CrossRef]
- Lin, Y.; Li, S.; Duan, S.; Ye, Y.; Li, B.; Li, G.; Lyv, D.; Jin, L.; Bian, C.; Liu, J. Methodological evolution of potato yield prediction: A comprehensive review. Front. Plant Sci. 2023, 14, 1214006. [Google Scholar] [CrossRef]
- Feldman, M.J.; Imbeau, L.; Marchand, P.; Mazerolle, M.J.; Darveau, M.; Fenton, N.J. Trends and gaps in the use of citizen science-derived data as input for species distribution models: A quantitative review. PLoS ONE 2021, 16, e0234587. [Google Scholar] [CrossRef]
- Samhan, A.; AlHajHassan, S.; Dabaa’t, S.A.; Elrashidi, A. A Review of AI-Assisted Impact Analysis for Software Requirements Change: Challenges and Future Directions. In Proceedings of the 2024 25th International Arab Conference on Information Technology (ACIT); Zarqa, Jordan, 10–12 December 2024, IEEE: New York, NY, USA; pp. 1–13.
- Reinermann, S.; Asam, S.; Kuenzer, C. Remote Sensing of Grassland Production and Management—A. Review. Remote Sens. 2020, 12, 1949. [Google Scholar] [CrossRef]
- Ramírez, F.; Sbragaglia, V.; Soacha, K.; Coll, M.; Piera, J. Challenges for marine ecological assessments: Completeness of findable, accessible, interoperable, and reusable biodiversity data in European seas. Front. Mar. Sci. 2022, 8, 802235. [Google Scholar] [CrossRef]
- Yeiser, J.M.; Morgan, J.J.; Baxley, D.L.; Chandler, R.B.; Martin, J.A. Optimizing conservation in species-specific agricultural landscapes. Conserv. Biol. 2021, 35, 1871–1881. [Google Scholar] [CrossRef] [PubMed]
- Rocchini, D.; Balkenhol, N.; Carter, G.A.; Foody, G.M.; Gillespie, T.W.; He, K.S.; Kark, S.; Levin, N.; Lucas, K.; Luoto, M.; et al. Remotely sensed spectral heterogeneity as a proxy of species diversity: Recent advances and open challenges. Ecol. Inform. 2010, 5, 318–329. [Google Scholar] [CrossRef]
- Almalki, R.; Khaki, M.; Saco, P.M.; Rodriguez, J.F. Monitoring and mapping vegetation cover changes in arid and semi-arid areas using remote sensing technology: A review. Remote Sens. 2022, 14, 5143. [Google Scholar] [CrossRef]
- Wang, C.; Vera-Vélez, R.; Lamb, E.G.; Wu, J.; Ren, F. Global pattern and associated drivers of grassland productivity sensitivity to precipitation change. Sci. Total Environ. 2022, 806, 151224. [Google Scholar] [CrossRef] [PubMed]
- Wilson, A.; Anwar, M.R. The Future of Adaptive Machine Learning Algorithms in High-Dimensional Data Processing. Int. Trans. Artif. Intell. 2024, 3, 97–107. [Google Scholar] [CrossRef]
- Pawlik, Ł.; Harrison, S.P. Modelling and prediction of wind damage in forest ecosystems of the Sudety Mountains, SW Poland. Sci. Total Environ. 2022, 815, 151972. [Google Scholar] [CrossRef]
- Sabat-Tomala, A.; Raczko, E.; Zagajewski, B. Airborne hyperspectral images and machine learning algorithms for the Identification of Lupine Invasive Species in Natura 2000 Meadows. Remote Sens. 2024, 16, 580. [Google Scholar] [CrossRef]
- Liu, R.; Malik, I.; Wistuba, M.; Guo, Z.; Lu, Y.; Ding, X.; Li, C. A Study of Explainable Machine Learning Method to Explore Grassland Resilience in the Arid Ecosystem. Authored 2025, 18, 1–34. [Google Scholar]
- Gaffney, R.; Augustine, D.J.; Kearney, S.P.; Porensky, L.M. Using Hyperspectral Imagery to Characterize Rangeland Vegetation Composition at Process-Relevant Scales. Remote Sens. 2021, 13, 4603. [Google Scholar] [CrossRef]
- Li, Y.; Wang, H.; Li, X.B. Fractional vegetation cover estimation based on an improved selective endmember spectral mixture model. PLoS ONE 2015, 10, e0124608. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ghasemi, M.; Latifi, H.; Shafeian, E.; Naghavi, H.; Pourhashemi, M. A novel linear spectral unmixing-based method for tree decline monitoring by fusing UAV-RGB and optical space-borne data. Int. J. Remote Sens. 2024, 45, 1079–1109. [Google Scholar] [CrossRef]
- Mizutani, T. Endmember Extraction from Hyperspectral Images Using Self-Dictionary Approach with Linear Programming. arXiv 2025, arXiv:2404.13098. [Google Scholar] [CrossRef]
- Qie, G.; Ye, J.; Wang, G.; Wang, M. Enhancing Urban Above-Ground Vegetation Carbon Density Mapping: An Integrated Approach Incorporating De-Shadowing, Spectral Unmixing, and Machine Learning. Forests 2024, 15, 480. [Google Scholar] [CrossRef]
- Wang, P.; Xie, L.; Qin, X.; Liu, R. Multiobjective multi-space collaboration model for addressing spectral variability in hyperspectral image unmixing. Appl. Soft Comput. 2025, 170, 12679. [Google Scholar] [CrossRef]
- Price, J.C. How unique are spectral signature. Remote Sens. Environ. 1994, 49, 181–186. [Google Scholar] [CrossRef]
- Yang, Y.; Meng, Z.; Zu, J.; Cai, W.; Wang, J.; Su, H.; Yang, J. Fine-Scale Mangrove Species Classification Based on UAV Multispectral and Hyperspectral Remote Sensing Using Machine Learning. Remote Sens. 2024, 16, 3093. [Google Scholar] [CrossRef]
- Hamada, Y.; Douglas, A.; Stow Lloyd, L.; Coulter Jim, C.; Jafolla Leif, W. Hendricks, Detecting Tamarisk species (Tamarix spp.) in riparian habitats of Southern California using high spatial resolution hyperspectral imagery. Remote Sens. Environ. 2007, 109, 237–248. [Google Scholar] [CrossRef]
- Phuong, D.; Dao, A.A.; He, Y. Mapping native and invasive grassland species and characterizing topography-driven species dynamics using high spatial resolution hyperspectral imagery. Int. J. Appl. Earth Obs. Geoinf. 2021, 104, 102542. [Google Scholar] [CrossRef]
- Lawrence, R.L.; Wood, S.D.; Sheley, R.L. Mapping invasive plants using hyperspectral imagery and Breiman Cutler classifications (RandomForest). Remote Sens. Environ. 2006, 100, 356–362. [Google Scholar] [CrossRef]
- Anderson, K.; Gaston, K.J. Lightweight unmanned aerial vehicles will revolutionize spatial ecology. Front. Ecol. Environ. 2013, 11, 138–146. [Google Scholar] [CrossRef]
- Kamal, M.; Phinn, S. Hyperspectral Data for Mangrove Species Mapping: A. Comparison of Pixel-Based and Object-Based Approach. Remote Sens. 2011, 3, 2222–2242. [Google Scholar] [CrossRef]
- Lopatin, J.; Fassnacht, F.E.; Kattenborn, T.; Schmidtlein, S. Mapping plant species in mixed grassland communities using close-range imaging spectroscopy. Remote Sens. Environ. 2017, 201, 12–23. [Google Scholar] [CrossRef]
- Zaka, M.M.; Samat, A. Advances in Remote Sensing and Machine Learning Methods for Invasive Plants Study: A Comprehensive Review. Remote Sens. 2024, 16, 3781. [Google Scholar] [CrossRef]
- Magnani, M.; Baneschi, I.; Giamberini, M.; Mosca, P.; Raco, B.; Provenzale, A. Drivers of carbon fluxes in Alpine tundra: A comparison of three empirical model approaches. Sci. Total Environ. 2020, 732, 139139. [Google Scholar] [CrossRef]
- Wei, J.; Wang, X. An Overview on Linear Unmixing of Hyperspectral Data. Math. Probl. Eng. 2020, 2020, 3735403. [Google Scholar] [CrossRef]
- Cavalli, R.M. Spatial Validation of Spectral Unmixing Results: A Systematic Review. Remote Sens. 2023, 15, 2822. [Google Scholar] [CrossRef]
- Celik, B. QLSU (QGIS Linear Spectral Unmixing) Plugin: An open source linear spectral unmixing tool for hyperspectral & multispectral remote sensing imagery. Environ. Model. Softw. 2023, 168, 105782. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, Q.; Atkinson, P.M. Unsupervised object-based spectral unmixing for subpixel mapping. Remote Sens. Environ. 2025, 318, 114514. [Google Scholar] [CrossRef]
- Borsoi, R.A.; Imbiriba, T.; Bermudez, J.C.M.; Richard, C.; Chanussot, J.; Drumetz, L.; Tourneret, J.-Y.; Zare, A.; Jutten, C. Spectral Variability in Hyperspectral Data Unmixing: A comprehensive review. IEEE Geosci. Remote Sens. Mag. 2021, 9, 223–270. [Google Scholar] [CrossRef]
- Cruz, C.; Blanco, A.C.; Babaan, J.; Cruz, J.A.; Ana, R.R.S.; Paringit, E. Linear Spectral Unmixing of Sentinel-3 Imagery for Urban Land Cover—Land Surface Temperature (Lst) Analysis: A. Case Study of Metro Manila, Philippines. Isprs—International Archives of the Photogrammetry. Remote Sens. Spat. Inf. Sci. 2019, 42, 141–148. [Google Scholar] [CrossRef]
- Kumar, U.; Ganguly, S.; Nemani, R.R.; Raja, K.S.; Milesi, C.; Sinha, R.; Michaelis, A.; Votava, P.; Hashimoto, H.; Li, S.; et al. Exploring Subpixel Learning Algorithms for Estimating Global Land Cover Fractions from Satellite Data Using High Performance Computing. Remote Sens. 2017, 9, 1105. [Google Scholar] [CrossRef]
- Chen, F.; Wang, K.; Van de Voorde, T.; Tang, T.F. Mapping urban land cover from high spatial resolution hyperspectral data: An approach based on simultaneously unmixing similar pixels with jointly sparse spectral mixture analysis. Remote Sens. Environ. 2017, 196, 324–342. [Google Scholar] [CrossRef]
- Pang, Y.; Räsänen, A.; Lindholm, V.; Aurela, M.; Virtanen, T. Detecting peatland vegetation patterns with multi-temporal field spectroscopy. GIScience Remote Sens. 2022, 59, 2111–2126. [Google Scholar] [CrossRef]
- Thornley, R.H.; Gerard, F.F.; White, K.; Verhoef, A. Prediction of Grassland Biodiversity Using Measures of Spectral Variance: A Meta-Analytical Review. Remote Sens. 2023, 15, 668. [Google Scholar] [CrossRef]
- Iqbal, I.M.; Balzter, H.; Shabbir, A. Identifying the Spectral Signatures of Invasive and Native Plant Species in Two Protected Areas of Pakistan through Field Spectroscopy. Remote Sens. 2021, 13, 4009. [Google Scholar] [CrossRef]
- Zhao, X.; Guo, M.; Liu, Y.; Zhang, J.; Wu, L. Response of Reduced Grassland Degradation Index to Climate and Anthropogenic Impacts in Northern China. Agronomy 2023, 14, 1554. [Google Scholar]
- He, Y.; Yang, J.; Guo, X. Green Vegetation Cover Dynamics in a Heterogeneous Grassland: Spectral Unmixing of Landsat Time Series from 1999 to 2014. Remote Sens. 2020, 12, 3826. [Google Scholar] [CrossRef]
- Fernández-García, V.; Marcos, E.; Fernández-Guisuraga, J.M.; Fernández-Manso, A.; Quintano, C.; Suárez-Seoane, S.; Calvo, L. Multiple Endmember Spectral Mixture Analysis (MESMA) Applied to the Study of Habitat Diversity in the Fine-Grained Landscapes of the Cantabrian Mountains. Remote Sens. 2021, 13, 979. [Google Scholar] [CrossRef]
- Cao, S.; Yu, Q.; Sanchez-Azofeifa, A.; Feng, J.; Rivard, B.; Gu, Z. Mapping tropical dry forest succession using multiple criteria spectral mixture analysis. ISPRS J. Photogramm. Remote Sens. 2015, 109, 17–29. [Google Scholar] [CrossRef]
- Cunnick, H.; Ramage, J.M.; Magness, D.; Peters, S.C. Mapping Fractional Vegetation Coverage across Wetland Classes of Sub-Arctic Peatlands Using Combined Partial Least Squares Regression and Multiple Endmember Spectral Unmixing. Remote Sens. 2023, 15, 1440. [Google Scholar] [CrossRef]
- Morley, T.; Kemph, C. NEON Site-Level Plot Summary, Klemme Research Station (OAES); National Ecological Observatory Network (NEON); Battelle, Boulder, CO, USA. 2019. Available online: https://data.neonscience.org/documents/10179/2361410/OAES_Soil_SiteSummary/cc20887d-b0fc-0fbc-3a01-5a38b99d193e (accessed on 12 December 2024).
- Saha, S.; Mridha, N.; Chakraborty, D.; Chatterjee, D.; Nanda, M.K.; Dhanya, M.S.; Banerjee, K. Monitoring and impact assessment of climate change: Eddy covariance technique. In Climate Change Impacts on Soil-Plant-Atmosphere Continuum; Springer Nature: Singapore, 2024; pp. 595–630. [Google Scholar]
- Zhang, Y.; Liu, X.; Jiao, W.; Wu, X.; Zeng, X.; Zhao, L.; Wang, L.; Guo, J.; Xing, X.; Hong, Y. Spatial heterogeneity of vegetation resilience changes to different drought types. Earth’s Future 2023, 11, e2022EF003108. [Google Scholar] [CrossRef]
- National Ecological Observatory Network (NEON). (n.d.). In Marvin Klemme Experimental Rangeland (OAES); NEON: Boulder, CO, USA; Available online: https://www.neonscience.org/field-sites/oaes (accessed on 13 October 2025).
- Clasen, A.; Somers, B.; Pipkins, K.; Tits, L.; Segl, K.; Brell, M.; Kleinschmit, B.; Spengler, D.; Lausch, A.; Förster, M. Spectral Unmixing of Forest Crown Components at Close Range, Airborne and Simulated Sentinel-2 and EnMAP Spectral Imaging Scale. Remote Sens. 2015, 7, 15361–15387. [Google Scholar] [CrossRef]
- Laamrani, A.; Joosse, P.; McNairn, H.; Berg, A.A.; Hagerman, J.; Powell, K.; Berry, M. Assessing Soil Cover Levels during the Non-Growing Season Using Multitemporal Satellite Imagery and Spectral Unmixing Techniques. Remote Sens. 2020, 12, 1397. [Google Scholar] [CrossRef]
- Zhang, W.; Li, K.; Zhang, F.; Li, Y.; Yue, G.; Jiang, J. Triple shadow multilinear unmixing for near-ground hyperspectral vegetation canopy shadow removal. Comput. Electron. Agric. 2024, 219, 108815. [Google Scholar] [CrossRef]
- Hosseinpour-Zarnaq, M.; Omid, M.; Sarmadian, F.; Ghasemi-Mobtaker, H.; Alimardani, R.; Bohlol, P. Exploring the capabilities of hyperspectral remote sensing for soil texture evaluation. Ecol. Inform. 2025, 90, 103336. [Google Scholar] [CrossRef]
- Cilento, B. Quantifying Landscape Change Using Different Spectrometers, Spectral Unmixing, and UAS Imagery; Rochester Institute of Technology: Rochester, NY, USA, 2024. [Google Scholar]
- Congalton, R.G.; Gu, J.; Yadav, K.; Thenkabail, P.; Ozdogan, M. Global Land Cover Mapping: A Review and Uncertainty Analysis. Remote Sens. 2014, 6, 12070–12093. [Google Scholar] [CrossRef]
- Karpowitz, B.; Kampe, T. NEON National Ecological Observatory Network—Imaging Spectrometer Radiance to Reflectance Algorithm Theoretical Document. 2014. Available online: https://data.neonscience.org/api/v0/documents/NEON.DOC.001288vA (accessed on 12 December 2024).
- Chi, J.; Crawford, M. Spectral Unmixing-Based Crop Estimation Using Hyperspectral Remote Sensing Data: A Case Study at Purdue University. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 2531–2539. [Google Scholar] [CrossRef]
- Roberts, D.A.; Adams, J.B.; Smith, M.O. Discriminating green vegetation, nonphotosynthetic vegetation, and soils in AVIRIS data. Remote Sens. Environ. 1993, 44, 255–269. [Google Scholar] [CrossRef]
- Harrison, X.A.; Donaldson, L.; Correa-Cano, M.E.; Evans, J.; Fisher, D.N.; Goodwin, C.E.D.; Robinson, B.S.; Hodgson, D.J.; Inger, R. A brief introduction to mixed effects modelling and multi-model inference in ecology. PeerJ. 2018, 6, e4794. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sonnentag, O.; Chen, J.; Roberts, D.; Talbot, J.; Halligan, K.; Govind, A. Mapping tree and shrub leaf area indices in an ombrotrophic peatland through multiple endmember spectral unmixing. Remote Sens. Environ. 2007, 109, 342–360. [Google Scholar] [CrossRef]
- Coulibaly, L.K.; Guan, Q.; Assoma, T.V.; Fan, X.; Coulibaly, N. Coupling linear spectral unmixing and RUSLE2 to model soil erosion in the Boubo coastal watershed, Côte d’Ivoire. Ecol. Indic. 2021, 130, 108092. [Google Scholar] [CrossRef]
- Bioucas-Dias, J.M.; Plaza, A.; Dobigeon, N.; Parente, M.; Du, Q.; Gader, P.; Chanussot, J. Hyperspectral unmixing overview: Geometrical, statistical, and sparse regression-based approaches. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2012, 5, 354–379. [Google Scholar] [CrossRef]
- Hannula, H.-R.; Heinilä, K.; Böttcher, K.; Mattila, O.-P.; Salminen, M.; Pulliainen, J. Laboratory, field, mast-borne and airborne spectral reflectance measurements of boreal landscape during spring. Earth Syst. Sci. Data 2020, 12, 719–740. [Google Scholar] [CrossRef]
- Chen, Y.; Huang, X.; Huang, J.; Liu, S.; Lu, D.; Zhao, S. Fractional monitoring of desert vegetation degradation, recovery, and greening using optimized multi-endmembers spectral mixture analysis in a dryland basin of Northwest China. GIScience Remote Sens. 2021, 58, 300–321. [Google Scholar] [CrossRef]
- Meerdink, S.K.; Roberts, D.A.; Roth, K.L.; King, J.Y.; Gader, P.D.; Koltunov, A. Classifying California plant species temporally using airborne hyperspectral imagery. Remote Sens. Environ. 2019, 232, 111308. [Google Scholar] [CrossRef]
- Delgado, R.; Xavier-Andoni, T. Why Cohen’s Kappa should be avoided as performance measure in classification. PLoS ONE 2019, 14, e0222916. [Google Scholar] [CrossRef]
- Fick, S.E.; Day, N.; Duniway, M.C.; Hoy-Skubik, S.; Barger, N.N. Microsite enhancements for soil stabilization and rapid biocrust colonization in degraded drylands. Restor. Ecol. 2019, 28, S139–S149. [Google Scholar] [CrossRef]
- Sheng, Q.; Dong, L.; Liu, Z. Driving forces of herbaceous species diversity in natural broadleaf forests from in Maoershan from Northeast China. Front. Plant Sci. 2024, 15, 1449421. [Google Scholar] [CrossRef]
- Vogel, B.; Molina, L.; Rostagno, C.M.; La Manna, L. Effects of Grazing and Shrub Management on Species Composition and Soil Properties in Patagonian Grasslands. Grasses 2024, 3, 205–220. [Google Scholar] [CrossRef]
- Teague, W.R.; Dowhower, S.L.; Baker, S.A.; Haile, N.; DeLaune, P.B.; Conover, D.M. Conover Grazing management impacts on vegetation, soil biota, and soil chemical, physical, and hydrological properties in tall grass prairie. Agric. Ecosyst. Environ. 2011, 141, 3–4. [Google Scholar] [CrossRef]
- Summers, R.; Hovland, M.; Gibson, Y.; Mata-González, R. Climate-mediated shifts toward bunchgrass dominance 40 years after grazing cessation in Saguaro National Park, Arizona, USA. Appl. Veg. Sci. 2021, 24, e12623. [Google Scholar] [CrossRef]
- Geissler, K.; Hahn, C.; Joubert, D.; Blaum, N. Functional responses of the herbaceous plant community explain ecohydrological impacts of savanna shrub encroachment. Perspect. Plant Ecol. Evol. Syst. 2019, 39, 125458. [Google Scholar] [CrossRef]
- Okujeni, A.; Kowalski, K.; Lewińska, K.E.; Schneidereit, S.; Hostert, P. Multidecadal grassland fractional cover time series retrieval for Germany from the Landsat and Sentinel-2 archives. Remote Sens. Environ. 2024, 302, 113980. [Google Scholar] [CrossRef]
- Daleo, P.; Alberti, J.; Chaneton, E.J.; Iribarne, O.; Tognetti, P.M.; Bakker, J.D.; Borer, E.T.; Bruschetti, M.; MacDougall, A.S.; Pascual, J.; et al. Environmental heterogeneity modulates the effect of plant diversity on the spatial variability of grassland biomass. Nat. Commun. 2023, 14, 1809. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhang, N.; Zhang, A.; Tang, J.; Li, Z.; Nie, Z. Changes in grassland vegetation based on spatiotemporal variation in vegetation growth and spatial configuration dynamics of bare lands. Ecol. Inform. 2024, 80, 102473. [Google Scholar] [CrossRef]
- Amputu, V.; Tielbörger, K.; Knox, N. Assessment of rangeland condition in a dryland system using UAV-based multispectral imagery. In Proceedings of the International Grassland Congress, Nairobi, Kenya, 23–29 October 2021. [Google Scholar] [CrossRef]
- Adrienn, G.; László, B.; Cseperke, C.A.; Melinda, H.; Miklós, K.; György, K.D.; Fruzsina, N.A.; Gábor, Ó.; Ildikó, O.; Tamás, R.; et al. Nearby woody patches and microtopography reduce grass dieback during extreme drought. Glob. Ecol. Conserv. 2025, 60, e03596. [Google Scholar] [CrossRef]
- Rohde, M.M.; Stella, J.C.; Singer, M.B.; Roberts, D.A.; Caylor, K.K.; Albano, C.M. Establishing ecological thresholds and targets for groundwater management. Nat. Water 2024, 2, 312–323. [Google Scholar] [CrossRef]
- Rojas-Botero, S.; Teixeira, L.H.; Prucker, P.; Kloska, V.; Kollmann, J.; Le Stradic, S. Root traits of grasslands rapidly respond to climate change, while community biomass mainly depends on functional composition. Funct. Ecol. 2023, 37, 1841–1855. [Google Scholar] [CrossRef]
- Shermin, N. Advancing Rangeland Vegetation Mapping Through Integrated Uav and Satellite Imagery: A Comparative Machine Learning Framework for Fractional Cover Classification. Bachelor’s Thesis, Mississippi State University, Starkville, MS, USA, 2025. [Google Scholar]
- Paura, V.; Marcinkevičius, V. Hyperspectral Unmixing of Agricultural Images taken from UAV Using Adapted U-Net Architecture. arXiv 2024, arXiv:2409.19701. [Google Scholar] [CrossRef]
- Chakraborty, R.; Thiele, S.; Naik, P.; Kirsch, M.; Gloaguen, R. Integrating Airborne and Satellite Hyperspectral Data for Enhanced Spectral Unmixing. In Proceedings of the 2024 14th Workshop on Hyperspectral Imaging and Signal Processing: Evolution in Remote Sensing (WHISPERS), Helsinki, Finland, 9–11 December 2024; pp. 1–5. [Google Scholar] [CrossRef]
- Yang, C.; Everitt, J.H.; Bradford, J.M. Airborne hyperspectral imagery and linear spectral unmixing for mapping variation in crop yield. Precis. Agric. 2007, 8, 279–296. [Google Scholar] [CrossRef]
- Karami, A.; Heylen, R.; Scheunders, P. Hyperspectral image noise reduction and its effect on spectral unmixing. In Proceedings of the 6th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), Lausanne, Switzerland, 24–27 June 2014; pp. 1–4. [Google Scholar] [CrossRef]
- Siebels, K.; Goïta, K.; Germain, M. A semi-empirical approach to quantify and handle the effect of moisture on spectral unmixing. Int. J. Appl. Earth Obs. Geoinf. 2021, 96, 102259. [Google Scholar] [CrossRef]
- Derakhshani, R.; Zhang, Y.; Momeni, M. Spectral band selection for hyperspectral data using water absorption band removal and endmember separability analysis. Remote Sens. 2016, 8, 646. [Google Scholar]
- Cerra, D.; Müller, R.; Reinartz, P. Noise reduction in hyperspectral images through spectral unmixing. IEEE Geosci. Remote Sens. Lett. 2012, 9, 1026–1030. [Google Scholar] [CrossRef]
- Yu, H.; Zhu, L.; Chen, Y.; Yue, Z.; Zhu, Y. Improving grassland classification accuracy using optimal spectral-phenological-topographic features in combination with machine learning algorithm. Ecol. Indic. 2024, 158, 111392. [Google Scholar] [CrossRef]
- Bartold, M.; Kluczek, M.; Wróblewski, K.; Dąbrowska-Zielińska, K.; Goliński, P.; Golińska, B. Mapping management intensity types in grasslands with synergistic use of Sentinel-1 and Sentinel-2 satellite images. Sci. Rep. 2024, 14, 32066. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Huang, T.; Olsoy, P.J.; Glenn, N.F.; Cattau, M.E.; Roser, A.V.; Boehm, A.; Clark, P.E. Quantifying rangeland fractional cover in the Northern Great Basin sagebrush steppe communities using high-resolution unoccupied aerial systems (UAS) imagery. Landsc. Ecol. 2024, 39, 196. [Google Scholar] [CrossRef]
- Röder, A.; Udelhoven, T.; Hill, J.; del Barrio, G.; Tsiourlis, G. Trend analysis of Landsat-TM and -ETM+ imagery to monitor grazing impact in a rangeland ecosystem in Northern Greece. Remote Sens. Environ. 2008, 112, 2863–2875. [Google Scholar] [CrossRef]
- Costa, D.P.; Vasconcelos, R.N.; Duverger, S.G.; Herrmann, S.M.; Franca Rocha, W.J.S.; Santos, N.A.; Souza, D.T.M.; Cunha Lima, A.T.; Lentini, C.A.D. Revealing Unproductive Areas in the Caatinga Biome: A Remote Sensing Approach to Monitoring Land Degradation in Drylands. Earth 2025, 6, 96. [Google Scholar] [CrossRef]
- Sun, Q.; Zhang, P.; Jiao, X.; Lun, F.; Dong, S.; Lin, X.; Li, X.; Sun, D. A Remotely Sensed Framework for Spatially-Detailed Dryland Soil Organic Matter Mapping: Coupled Cross-Wavelet Transform with Fractional Vegetation and Soil-Related Endmember Time Series. Remote Sens. 2022, 14, 1701. [Google Scholar] [CrossRef]
- Abdollahzadeh, S.; Sepehr, A.; Rashki, A. Detecting degraded, prone and transition ecosystems by environmental thresholds and spectral functions. Remote Sens. Appl. Soc. Environ. 2021, 22, 100503. [Google Scholar] [CrossRef]
- Kleinhesselink, A.R.; Kachergis, E.J.; McCord, S.E.; Shirley, J.; Hupp, N.R.; Walker, J.; Carlson, J.C.; Morford, S.L.; Jones, M.O.; Smith, J.T.; et al. Long-Term Trends in Vegetation on Bureau of Land Management Rangelands in the Western United States. Rangel. Ecol. Manag. 2023, 87, 1–12. [Google Scholar] [CrossRef]
- Yan, Z.; Gao, Z.; Sun, B.; Ding, X.; Gao, T.; Li, Y. Global degradation trends of grassland and their driving factors since 2000. Int. J. Digit. Earth 2023, 16, 1661–1684. [Google Scholar] [CrossRef]
- Jiang, K.; Teuling, A.J.; Chen, X.; Huang, N.; Wang, J.; Zhang, Z.; Gao, R.; Men, J.; Zhang, Z.; Wu, Y.; et al. Global land degradation hotspots based on multiple methods and indicators. Ecol. Indic. 2024, 158, 111462. [Google Scholar] [CrossRef]
- Netsianda, A.; Mhangara, P.; Gidey, E. Grassland biome fragmentation analysis using Sentinel-2 images and support vector machine learning model in South Africa. Discov. Sustain. 2024, 5, 455. [Google Scholar] [CrossRef]
- Harkort, L.; Okujeni, A.; Amputu, V.; Mahler, J.; Nill, L.; Pflugmacher, D.; Röder, A.; Hostert, P. Mapping fractional vegetation cover in Sub-Saharan rangelands using phenological feature spaces. Remote Sens. Environ. 2025, 319, 114646. [Google Scholar] [CrossRef]
- Taylor, K.; Derner, J.D.; Liptzin, D.; Porensky, L.M.; Lavallee, J.M.; Augustine, D.J.; Hoover, D.L. Soil health responses to long-term grazing intensity gradients in two semiarid rangelands. Agriculture. Ecosyst. Environ. 2025, 385, 109548. [Google Scholar] [CrossRef]
- Shi, W.; Bao, J.; Wang, M.; Chen, Z.; Yu, J.; Chen, H.; Song, W.; Xin, Y. A modified CSLE for soil loss prediction under different vegetation patterns at slope scale in China. Int. Soil Water Conserv. Res. 2025, in press. [Google Scholar] [CrossRef]
- Zhang, Q.; Xiao, J.; Meng, X.; Ma, J.; He, P. Spatial heterogeneity analysis of the driving mechanisms and threshold responses of vegetation at different regional scales in Hunan Province. Forests 2025, 16, 515. [Google Scholar] [CrossRef]
- Derner, J.D.; Budd, B.; Grissom, G.; Kachergis, E.J.; Augustine, D.J.; Wilmer, H.; Scasta, J.D.; Ritten, J.P. Adaptive grazing management in semiarid rangelands: An outcome-driven focus. Rangelands 2022, 44, 111–118. [Google Scholar] [CrossRef]
- Kearney, S. Monitoring standing herbaceous biomass and thresholds in semiarid rangelands from harmonized Landsat 8 and Sentinel-2 imagery to support within-season adaptive management. Remote Sens. Environ. 2022, 271, 112907. [Google Scholar] [CrossRef]












| Plant Group | No. of Training Points |
|---|---|
| Herbaceous | 50 |
| Mixed Forbs | 50 |
| Bare Soil | 50 |
| Vegetation Type | Scientific Name | Species Name |
|---|---|---|
| Herbaceous | Bromus arvensis | Field brome |
| Schizachyrium scoparium | Little bluestem | |
| Mixed Forbs | Opuntia humifusa | Prickly pear |
| Daucus pusillus | Rattlesnake weed | |
| Gutierrezia sarothrae | Broom snakeweed |
| Parameter | Description |
|---|---|
| Number of Bands | 426 |
| Wavelength Range (nm) | 380–2500 |
| Spectral Resolution (nm) | 5 |
| Spatial Resolution (nm) Imaging Mode Flight Altitude (m) Field of View (FOV) | 1 Push-broom 1000 36 degrees |
| Platform Year | NEON Airborne Observation Platform Data Acquisition 2018–2022 |
| Land Cover Class (Number of Pixels) | ||||||
|---|---|---|---|---|---|---|
| Abundance Range | Herb18 | Herb22 | Forb18 | Forb22 | Bare18 | Bare22 |
| 0–0.1 | 39,728 | 110,840 | 67,708 | 84,151 | 223,164 | 168,489 |
| 0.1–0.2 | 19,898 | 22,713 | 27,598 | 21,243 | 35,489 | 35,859 |
| 0.2–0.3 | 26,403 | 24,009 | 33,656 | 24,339 | 22,714 | 27,832 |
| 0.3–0.4 | 31,537 | 24,109 | 37,939 | 26,805 | 13,456 | 21,918 |
| 0.4–0.5 | 35,391 | 23,736 | 39,299 | 27,064 | 7478 | 17,256 |
| 0.5–0.6 | 36,291 | 22,718 | 35,959 | 26,365 | 4516 | 13,836 |
| 0.6–0.7 | 34,747 | 22,353 | 27,703 | 23,765 | 3129 | 10,770 |
| 0.7–0.8 | 32,547 | 20,907 | 19,619 | 20,275 | 2439 | 8032 |
| 0.8–0.9 | 30,098 | 19,823 | 12,790 | 16,726 | 1965 | 5188 |
| 0.9–1 | 172,720 | 168,152 | 157,089 | 188,627 | 145,010 | 150,180 |
| Median | 33,647 | 23,227 | 34,808 | 25,352 | 10,467 | 19,587 |
| Mean | 0.504 | 0.364 | 0.389 | 0.435 | 0.106 | 0.201 |
| Std. Dev. | 0.294 | 0.337 | 0.284 | 0.350 | 0.193 | 0.265 |
| Band Name | Mean | Std. Deviation |
|---|---|---|
| Herb 2018–2022 | 0.141 | 0.384 |
| Forb 2018–2022 | −0.045 | 0.398 |
| Bare 2018–2022 | −0.095 | 0.225 |
| Cover Type | W | p-Value |
|---|---|---|
| Herbaceous vegetation | 0.546 | 1.3 × 10−5 |
| Forbs | 0.824 | 0.029 |
| Bare Soil | 0.504 | 4.0 × 10−6 |
| Cover Type | V | p-Value |
|---|---|---|
| Herbaceous vegetation | 43 | 0.131 |
| Forbs | 33 | 0.625 |
| Bare Soil | 10 | 0.084 |
| Reference/Predicted | Bare Soil | Grasses | Mixed Forbs | Total | User’s Accuracy | Producer’s Accuracy |
|---|---|---|---|---|---|---|
| Bare Soil | 36 | 10 | 4 | 50 | 72% | 80% |
| Grasses | 9 | 41 | 0 | 50 | 82% | 79% |
| Mixed Forbs | 0 | 1 | 49 | 50 | 98% | 92% |
| Total | 45 | 52 | 53 | 150 |
| Reference/Predicted | Bare Soil | Grasses | Mixed Forbs | Total | User’s Accuracy | Producer’s Accuracy |
|---|---|---|---|---|---|---|
| Bare Soil | 26 | 24 | 0 | 50 | 52% | 72% |
| Grasses | 10 | 27 | 17 | 54 | 50% | 42% |
| Mixed Forbs | 0 | 13 | 37 | 50 | 74% | 68% |
| Total | 36 | 64 | 54 | 150 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ohiaeri, O.; Portillo-Quintero, C.; Laza, H. Assessing Changes in Grassland Species Distribution at the Landscape Scale Using Hyperspectral Remote Sensing. Sensors 2025, 25, 6821. https://doi.org/10.3390/s25226821
Ohiaeri O, Portillo-Quintero C, Laza H. Assessing Changes in Grassland Species Distribution at the Landscape Scale Using Hyperspectral Remote Sensing. Sensors. 2025; 25(22):6821. https://doi.org/10.3390/s25226821
Chicago/Turabian StyleOhiaeri, Obumneke, Carlos Portillo-Quintero, and Haydee Laza. 2025. "Assessing Changes in Grassland Species Distribution at the Landscape Scale Using Hyperspectral Remote Sensing" Sensors 25, no. 22: 6821. https://doi.org/10.3390/s25226821
APA StyleOhiaeri, O., Portillo-Quintero, C., & Laza, H. (2025). Assessing Changes in Grassland Species Distribution at the Landscape Scale Using Hyperspectral Remote Sensing. Sensors, 25(22), 6821. https://doi.org/10.3390/s25226821

