Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (926)

Search Parameters:
Keywords = spatiotemporal change monitoring

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 4216 KiB  
Article
Sugarcane Phenology Retrieval in Heterogeneous Agricultural Landscapes Based on Spatiotemporal Fusion Remote Sensing Data
by Yingpin Yang, Zhifeng Wu, Dakang Wang, Cong Wang, Xiankun Yang, Yibo Wang, Jinnian Wang, Qiting Huang, Lu Hou, Zongbin Wang and Xu Chang
Agriculture 2025, 15(15), 1578; https://doi.org/10.3390/agriculture15151578 - 23 Jul 2025
Viewed by 60
Abstract
Accurate phenological information on sugarcane is crucial for guiding precise cultivation management and enhancing sugar production. Remote sensing offers an efficient approach for large-scale phenology retrieval, but most studies have primarily focused on staple crops. The methods for retrieving the sugarcane phenology—the germination, [...] Read more.
Accurate phenological information on sugarcane is crucial for guiding precise cultivation management and enhancing sugar production. Remote sensing offers an efficient approach for large-scale phenology retrieval, but most studies have primarily focused on staple crops. The methods for retrieving the sugarcane phenology—the germination, tillering, elongation, and maturity stages—remain underexplored. This study addresses the challenge of accurately monitoring the sugarcane phenology in complex terrains by proposing an optimized strategy integrating spatiotemporal fusion data. Ground-based validation showed that the change detection method based on the Double-Logistic curve significantly outperformed the threshold-based approach, with the highest accuracy for the elongation and maturity stages achieved at the maximum slope points of the ascending and descending phases, respectively. For the germination and tillering stages with low canopy cover, a novel time-windowed change detection method was introduced, using the first local maximum of the third derivative curve (denoted as Point A) to establish a temporal buffer. The optimal retrieval models were identified as 25 days before and 20 days after Point A for germination and tillering, respectively. Among the six commonly used vegetation indices, the NDVI (normalized difference vegetation index) performed the best across all the phenological stages. Spatiotemporal fusion using the ESTARFM (Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model) significantly improved the monitoring accuracy in heterogeneous agricultural landscapes, reducing the RMSE (root-mean-squared error) by 21–46%, with retrieval errors decreasing from 18.25 to 12.97 days for germination, from 8.19 to 4.41 days for tillering, from 19.17 to 10.78 days for elongation, and from 19.02 to 15.04 days for maturity, highlighting its superior accuracy. The findings provide a reliable technical solution for precision sugarcane management in heterogeneous landscapes. Full article
Show Figures

Figure 1

34 pages, 26037 KiB  
Article
Remote Sensing-Based Analysis of the Coupled Impacts of Climate and Land Use Changes on Future Ecosystem Resilience: A Case Study of the Beijing–Tianjin–Hebei Region
by Jingyuan Ni and Fang Xu
Remote Sens. 2025, 17(15), 2546; https://doi.org/10.3390/rs17152546 - 22 Jul 2025
Viewed by 224
Abstract
Urban and regional ecosystems are increasingly challenged by the compounded effects of climate change and intensive land use. In this study, a predictive assessment framework for ecosystem resilience in the Beijing–Tianjin–Hebei region was developed by integrating multi-source remote sensing data, with the aim [...] Read more.
Urban and regional ecosystems are increasingly challenged by the compounded effects of climate change and intensive land use. In this study, a predictive assessment framework for ecosystem resilience in the Beijing–Tianjin–Hebei region was developed by integrating multi-source remote sensing data, with the aim of quantitatively evaluating the coupled effects of climate change and land use change on future ecosystem resilience. In the first stage of the study, the SD-PLUS coupled modeling framework was employed to simulate land use patterns for the years 2030 and 2060 under three representative combinations of Shared Socioeconomic Pathways and Representative Concentration Pathways (SSP1-2.6, SSP2-4.5, and SSP5-8.5). Building upon these simulations, ecosystem resilience was comprehensively evaluated and predicted on the basis of three key attributes: resistance, adaptability, and recovery. This enabled a quantitative investigation of the spatio-temporal dynamics of ecosystem resilience under each scenario. The results reveal the following: (1) Temporally, ecosystem resilience exhibited a staged pattern of change. From 2020 to 2030, an increasing trend was observed only under the SSP1-2.6 scenario, whereas, from 2030 to 2060, resilience generally increased in all scenarios. (2) In terms of scenario comparison, ecosystem resilience typically followed a gradient pattern of SSP1-2.6 > SSP2-4.5 > SSP5-8.5. However, in 2060, a notable reversal occurred, with the highest resilience recorded under the SSP5-8.5 scenario. (3) Spatially, areas with high ecosystem resilience were primarily distributed in mountainous regions, while the southeastern plains and coastal zones consistently exhibited lower resilience levels. The results indicate that climate and land use changes jointly influence ecosystem resilience. Rainfall and temperature, as key climate drivers, not only affect land use dynamics but also play a crucial role in regulating ecosystem services and ecological processes. Under extreme scenarios such as SSP5-8.5, these factors may trigger nonlinear responses in ecosystem resilience. Meanwhile, land use restructuring further shapes resilience patterns by altering landscape configurations and recovery mechanisms. Our findings highlight the role of climate and land use in reshaping ecological structure, function, and services. This study offers scientific support for assessing and managing regional ecosystem resilience and informs adaptive urban governance in the face of future climate and land use uncertainty, promotes the sustainable development of ecosystems, and expands the applicability of remote sensing in dynamic ecological monitoring and predictive analysis. Full article
Show Figures

Figure 1

27 pages, 21494 KiB  
Article
Deep Learning and Transformer Models for Groundwater Level Prediction in the Marvdasht Plain: Protecting UNESCO Heritage Sites—Persepolis and Naqsh-e Rustam
by Peyman Heidarian, Franz Pablo Antezana Lopez, Yumin Tan, Somayeh Fathtabar Firozjaee, Tahmouras Yousefi, Habib Salehi, Ava Osman Pour, Maria Elena Oscori Marca, Guanhua Zhou, Ali Azhdari and Reza Shahbazi
Remote Sens. 2025, 17(14), 2532; https://doi.org/10.3390/rs17142532 - 21 Jul 2025
Viewed by 298
Abstract
Groundwater level monitoring is crucial for assessing hydrological responses to climate change and human activities, which pose significant threats to the sustainability of semi-arid aquifers and the cultural heritage they sustain. This study presents an integrated remote sensing and transformer-based deep learning framework [...] Read more.
Groundwater level monitoring is crucial for assessing hydrological responses to climate change and human activities, which pose significant threats to the sustainability of semi-arid aquifers and the cultural heritage they sustain. This study presents an integrated remote sensing and transformer-based deep learning framework that combines diverse geospatial datasets to predict spatiotemporal variations across the plain near the Persepolis and Naqsh-e Rustam archaeological complexes—UNESCO World Heritage Sites situated at the plain’s edge. We assemble 432 synthetic aperture radar (SAR) scenes (2015–2022) and derive vertical ground motion rates greater than −180 mm yr−1, which are co-localized with multisource geoinformation, including hydrometeorological indices, biophysical parameters, and terrain attributes, to train transformer models with traditional deep learning methods. A sparse probabilistic transformer (ConvTransformer) trained on 95 gridded variables achieves an out-of-sample R2 = 0.83 and RMSE = 6.15 m, outperforming bidirectional deep learning models by >40%. Scenario analysis indicates that, in the absence of intervention, subsidence may exceed 200 mm per year within a decade, threatening irreplaceable Achaemenid stone reliefs. Our results indicate that attention-based networks, when coupled to synergistic geodetic constraints, enable early-warning quantification of groundwater stress over heritage sites and provide a scalable template for sustainable aquifer governance worldwide. Full article
Show Figures

Figure 1

24 pages, 14887 KiB  
Article
Estimation and Change Analysis of Grassland AGB in the China–Mongolia–Russia Border Area Based on Multi-Source Geospatial Data
by Jiani Ma, Chao Zhang, Cong Ou, Chi Qiu, Cuicui Yang, Beibei Wang and Urtnasan Mandakh
Remote Sens. 2025, 17(14), 2527; https://doi.org/10.3390/rs17142527 - 20 Jul 2025
Viewed by 249
Abstract
Aboveground biomass (AGB) is a critical indicator for assessing carbon sequestration and ecosystem health in transboundary ecologically fragile areas. High-precision estimation and spatiotemporal inversion of AGB are the key to investigating transition zones. However, inadequate feature selection and complex parameter tuning limit accuracy [...] Read more.
Aboveground biomass (AGB) is a critical indicator for assessing carbon sequestration and ecosystem health in transboundary ecologically fragile areas. High-precision estimation and spatiotemporal inversion of AGB are the key to investigating transition zones. However, inadequate feature selection and complex parameter tuning limit accuracy and spatiotemporal representation in the estimation model. An AGB estimation model that integrates SHAP-based feature selection with a particle swarm optimization-enhanced random forest model (RF_PSO) was proposed. Then AGB trajectory clustering was used to characterize the grassland change pattern. The method was applied to grasslands across the China–Mongolia–Russia (CMR) border area from 2000 to 2020. The results show that (1) the SHAP-RF_PSO model achieved the highest accuracy (R2 = 0.87, RMSE = 45.8 g/m2), outperforming other estimation models. (2) AGB improvements were observed in 72.13% of the area, mainly in MN_EA, MN_CE, and CN_NMG, while 27.39% showed degradation, concentrated in CN_NMG and MN_CE. The stable area accounts for 0.48%, which is scattered in RU_BU and RU_ZA.CN_NMG. (3) Four change patterns, namely Fluctuating Low, Stable Low, Fluctuating High, and Stable High, were identified, with major shifts in 2007, 2012, and 2014. (4) Projections indicate that 80% of the region may maintain current trends, 13% may reverse, and 7% remain uncertain, requiring targeted interventions. This study offers a robust tool for high-precision AGB estimation and supports dynamic monitoring in the CMR border area. Full article
Show Figures

Figure 1

16 pages, 3372 KiB  
Article
Monitoring the Time-Lagged Response of Land Subsidence to Groundwater Fluctuations via InSAR and Distributed Fiber-Optic Strain Sensing
by Qing He, Hehe Liu, Lu Wei, Jing Ding, Heling Sun and Zhen Zhang
Appl. Sci. 2025, 15(14), 7991; https://doi.org/10.3390/app15147991 - 17 Jul 2025
Viewed by 188
Abstract
Understanding the time-lagged response of land subsidence to groundwater level fluctuations and subsurface strain variations is crucial for uncovering its underlying mechanisms and enhancing disaster early warning capabilities. This study focuses on Dangshan County, Anhui Province, China, and systematically analyzes the spatio-temporal evolution [...] Read more.
Understanding the time-lagged response of land subsidence to groundwater level fluctuations and subsurface strain variations is crucial for uncovering its underlying mechanisms and enhancing disaster early warning capabilities. This study focuses on Dangshan County, Anhui Province, China, and systematically analyzes the spatio-temporal evolution of land subsidence from 2018 to 2024. A total of 207 Sentinel-1 SAR images were first processed using the Small Baseline Subset Interferometric Synthetic Aperture Radar (SBAS-InSAR) technique to generate high-resolution surface deformation time series. Subsequently, the seasonal-trend decomposition using the LOESS (STL) model was applied to extract annual cyclic deformation components from the InSAR-derived time series. To quantitatively assess the delayed response of land subsidence to groundwater level changes and subsurface strain evolution, time-lagged cross-correlation (TLCC) analysis was performed between surface deformation and both groundwater level data and distributed fiber-optic strain measurements within the 5–50 m depth interval. The strain data was collected using a borehole-based automated distributed fiber-optic sensing system. The results indicate that land subsidence is primarily concentrated in the urban core, with annual cyclic amplitudes ranging from 10 to 18 mm and peak values reaching 22 mm. The timing of surface rebound shows spatial variability, typically occurring in mid-February in residential areas and mid-May in agricultural zones. The analysis reveals that surface deformation lags behind groundwater fluctuations by approximately 2 to 3 months, depending on local hydrogeological conditions, while subsurface strain changes generally lead surface subsidence by about 3 months. These findings demonstrate the strong predictive potential of distributed fiber-optic sensing in capturing precursory deformation signals and underscore the importance of integrating InSAR, hydrological, and geotechnical data for advancing the understanding of subsidence mechanisms and improving monitoring and mitigation efforts. Full article
Show Figures

Figure 1

28 pages, 10262 KiB  
Article
Driving Forces and Future Scenario Simulation of Urban Agglomeration Expansion in China: A Case Study of the Pearl River Delta Urban Agglomeration
by Zeduo Zou, Xiuyan Zhao, Shuyuan Liu and Chunshan Zhou
Remote Sens. 2025, 17(14), 2455; https://doi.org/10.3390/rs17142455 - 15 Jul 2025
Viewed by 455
Abstract
The remote sensing monitoring of land use changes and future scenario simulation hold crucial significance for accurately characterizing urban expansion patterns, optimizing urban land use configurations, and thereby promoting coordinated regional development. Through the integration of multi-source data, this study systematically analyzes the [...] Read more.
The remote sensing monitoring of land use changes and future scenario simulation hold crucial significance for accurately characterizing urban expansion patterns, optimizing urban land use configurations, and thereby promoting coordinated regional development. Through the integration of multi-source data, this study systematically analyzes the spatiotemporal trajectories and driving forces of land use changes in the Pearl River Delta urban agglomeration (PRD) from 1990 to 2020 and further simulates the spatial patterns of urban land use under diverse development scenarios from 2025 to 2035. The results indicate the following: (1) During 1990–2020, urban expansion in the Pearl River Delta urban agglomeration exhibited a “stepwise growth” pattern, with an annual expansion rate of 3.7%. Regional land use remained dominated by forest (accounting for over 50%), while construction land surged from 6.5% to 21.8% of total land cover. The gravity center trajectory shifted southeastward. Concurrently, cropland fragmentation has intensified, accompanied by deteriorating connectivity of ecological lands. (2) Urban expansion in the PRD arises from synergistic interactions between natural and socioeconomic drivers. The Geographically and Temporally Weighted Regression (GTWR) model revealed that natural constraints—elevation (regression coefficients ranging −0.35 to −0.05) and river network density (−0.47 to −0.15)—exhibited significant spatial heterogeneity. Socioeconomic drivers dominated by year-end paved road area (0.26–0.28) and foreign direct investment (0.03–0.11) emerged as core expansion catalysts. Geographic detector analysis demonstrated pronounced interaction effects: all factor pairs exhibited either two-factor enhancement or nonlinear enhancement effects, with interaction explanatory power surpassing individual factors. (3) Validation of the Patch-generating Land Use Simulation (PLUS) model showed high reliability (Kappa coefficient = 0.9205, overall accuracy = 95.9%). Under the Natural Development Scenario, construction land would exceed the ecological security baseline, causing 408.60 km2 of ecological space loss; Under the Ecological Protection Scenario, mandatory control boundaries could reduce cropland and forest loss by 3.04%, albeit with unused land development intensity rising to 24.09%; Under the Economic Development Scenario, cross-city contiguous development zones along the Pearl River Estuary would emerge, with land development intensity peaking in Guangzhou–Foshan and Shenzhen–Dongguan border areas. This study deciphers the spatiotemporal dynamics, driving mechanisms, and scenario outcomes of urban agglomeration expansion, providing critical insights for formulating regionally differentiated policies. Full article
Show Figures

Figure 1

21 pages, 10296 KiB  
Article
Spatiotemporal Mechanical Effects of Framework–Slope Systems Under Frost Heave Conditions
by Wendong Li, Xiaoqiang Hou, Jixian Ren and Chaoyang Wu
Appl. Sci. 2025, 15(14), 7877; https://doi.org/10.3390/app15147877 - 15 Jul 2025
Viewed by 209
Abstract
To investigate the slope instability caused by differential frost heaving mechanisms from the slope crest to the toe during frost heave processes, this study takes a typical silty clay slope in Xinjiang, China, as the research object. Through indoor triaxial consolidated undrained shear [...] Read more.
To investigate the slope instability caused by differential frost heaving mechanisms from the slope crest to the toe during frost heave processes, this study takes a typical silty clay slope in Xinjiang, China, as the research object. Through indoor triaxial consolidated undrained shear tests, eight sets of natural and frost-heaved specimens were prepared under confining pressure conditions ranging from 100 to 400 kPa. The geotechnical parameters of the soil in both natural and frost-heaved states were obtained, and a spatiotemporal thermo-hydro-mechanical coupled numerical model was established to reveal the dynamic evolution law of anchor rod axial forces and the frost heave response mechanism between the frame and slope soil. The analytical results indicate that (1) the frost heave process is influenced by slope boundaries, resulting in distinct spatial variations in the temperature field response across the slope surface—namely pronounced responses at the crest and toe but a weaker response in the mid-slope. (2) Under the coupled drive of the water potential gradient and gravitational potential gradient, the ice content in the toe area increases significantly, and the horizontal frost heave force exhibits exponential growth, reaching its peak value of 92 kPa at the toe in February. (3) During soil freezing, the reverse stress field generated by soil arching shows consistent temporal variation trends with the temperature field. Along the height of the soil arch, the intensity of the reverse frost heave force field displays a nonlinear distribution characteristic of initial strengthening followed by attenuation. (4) By analyzing the changes in anchor rod axial forces during frost heaving, it was found that axial forces during the frost heave period are approximately 1.3 times those under natural conditions, confirming the frost heave period as the most critical condition for frame anchor design. Furthermore, through comparative analysis with 12 months of on-site anchor rod axial force monitoring data, the reliability and accuracy of the numerical simulation model were validated. These research outcomes provide a theoretical basis for the design of frame anchor support systems in seasonally frozen regions. Full article
Show Figures

Figure 1

24 pages, 6577 KiB  
Article
Mapping Spatial Interconnections with Distances for Evaluating the Development Value of Eco-Tourism Resources
by Wenqi Zhang, Huanfeng Cui, Xiaoyuan Huang, Ruliang Zhou and Yanxia Wang
Sustainability 2025, 17(14), 6430; https://doi.org/10.3390/su17146430 - 14 Jul 2025
Viewed by 238
Abstract
The sustainable development of eco-tourism is significantly influenced by multiple conditions within spatiotemporally continuous geographic scenarios. However, existing evaluations of the development value of eco-tourism resources (Eco-TRDVs) are non-spatial and do not sensitively represent their complex relationships. This study proposed a GIS approach [...] Read more.
The sustainable development of eco-tourism is significantly influenced by multiple conditions within spatiotemporally continuous geographic scenarios. However, existing evaluations of the development value of eco-tourism resources (Eco-TRDVs) are non-spatial and do not sensitively represent their complex relationships. This study proposed a GIS approach for evaluating regional Eco-TRDVs by mapping the complex interconnections with spatial distances. Inherent and external conditions for evaluating Eco-TRDVs were classified under three indicators and digitized using GIS and remote sensing technologies. Then, the analytic hierarchy process and GIS cost distance analysis were introduced to define the initial values and cumulate Eco-TRDVs with distances. Taking the Taihang Honggu National Forest Park, China, as the case area, the Eco-TRDVs over the entire area in 2017 and 2020 were mapped. The results present a continuous spatial variability of Eco-TRDVs and comprehensively reflect the complex interconnections of constraint elements with spatial distances. The evaluation is sensitive to the intrinsic value of poles, as evidenced by the high development values and high-density distribution of their contours. Source additions improve the evaluation considerably, with transportation networks having a greater impact than economic development zones and urban elements. Furthermore, aggravated fragmentation of the price flow field increases spatial heterogeneity. The development value shows a negative linear correlation with distance. The proposed approach handles the spatially oriented relationships of the multi-conditions, and supports future planning and monitoring of spatial-temporal changes in eco-tourism development. Full article
Show Figures

Figure 1

28 pages, 18279 KiB  
Article
From the Past to the Future: Unveiling the Impact of Extreme Climate on Vegetation Dynamics in Northern China Through Historical Trends and Future Projections
by Yuxuan Zhang, Xiaojun Yao, Juan Zhang and Qin Ma
Land 2025, 14(7), 1456; https://doi.org/10.3390/land14071456 - 13 Jul 2025
Viewed by 251
Abstract
Over the past few decades, occurrences of extreme climatic events have escalated significantly, with severe repercussions for global ecosystems and socio-economics. northern China (NC), characterized by its complex topography and diverse climatic conditions, represents a typical ecologically vulnerable region where vegetation is highly [...] Read more.
Over the past few decades, occurrences of extreme climatic events have escalated significantly, with severe repercussions for global ecosystems and socio-economics. northern China (NC), characterized by its complex topography and diverse climatic conditions, represents a typical ecologically vulnerable region where vegetation is highly sensitive to climate change. Therefore, monitoring vegetation dynamics and analyzing the influence of extreme climatic events on vegetation are crucial for ecological conservation efforts in NC. Based on extreme climate indicators and the Normalized Difference Vegetation Index (NDVI), this study employed trend analysis, Ensemble Empirical Mode Decomposition, all subsets regression analysis, and random forest to quantitatively investigate the spatiotemporal variations in historical and projected future NDVI trends in NC, as well as their responses to extreme climatic conditions. The results indicate that from 1982 to 2018, the NDVI in NC generally exhibited a recovery trend, with an average growth rate of 0.003/a and a short-term variation cycle of approximately 3 years. Vegetation restoration across most areas was primarily driven by short-term high temperatures and long-term precipitation patterns. Future projections under different emission scenarios (SSP245 and SSP585) suggest that extreme climate change will continue to follow historical trends. However, increased radiative forcing is expected to constrain both the rate of vegetation growth and its spatial expansion. These findings provide a scientific basis for mitigating the impacts of climate anomalies and improving ecological quality in NC. Full article
(This article belongs to the Special Issue Vegetation Cover Changes Monitoring Using Remote Sensing Data)
Show Figures

Figure 1

27 pages, 50073 KiB  
Article
A Spatiotemporal Analysis of Drought Conditions Framework in Vast Paddy Cultivation Areas of Thung Kula Ronghai, Thailand
by Pariwate Varnakovida, Nathapat Punturasan, Usa Humphries, Anisara Tibkaew and Sornkitja Boonprong
Agriculture 2025, 15(14), 1503; https://doi.org/10.3390/agriculture15141503 - 12 Jul 2025
Viewed by 319
Abstract
This study presents an integrated spatiotemporal assessment of drought conditions in the Thung Kula Ronghai region of Northeastern Thailand from 2001 to 2023. Multiple satellite-derived drought indices, including SPI, SPEI, RDI, and AI, together with NDVI anomalies, were used to detect seasonal and [...] Read more.
This study presents an integrated spatiotemporal assessment of drought conditions in the Thung Kula Ronghai region of Northeastern Thailand from 2001 to 2023. Multiple satellite-derived drought indices, including SPI, SPEI, RDI, and AI, together with NDVI anomalies, were used to detect seasonal and long-term drought dynamics affecting rainfed Hom Mali rice production. The results show that dry season droughts now affect up to 17 percent of the region’s agricultural land in some years, while severe drought zones persist across more than 2.5 million hectares over the 20-year period. In the most recent 5 years, approximately 50 percent of cultivated areas experienced moderate to severe drought conditions. The RDI showed the strongest correlation with NDVI anomalies (r = 0.22), indicating its relative value for assessing vegetation response to moisture deficits. The combined index approach delineated high-risk sub-regions, particularly in central Thung Kula Ronghai and lower Surin, where drought frequency and severity have intensified. These findings underscore the region’s increasing exposure to dry-season water stress and highlight the need for site-specific irrigation development and adaptive cropping strategies. The methodological framework demonstrated here provides a practical basis for improving drought monitoring and early warning systems to support the resilience of Thailand’s high-value rice production under changing climate conditions. Full article
(This article belongs to the Section Ecosystem, Environment and Climate Change in Agriculture)
Show Figures

Figure 1

14 pages, 5551 KiB  
Article
Analysis of CO2 Concentration and Fluxes of Lisbon Portugal Using Regional CO2 Assimilation Method Based on WRF-Chem
by Jiuping Jin, Yongjian Huang, Chong Wei, Xinping Wang, Xiaojun Xu, Qianrong Gu and Mingquan Wang
Atmosphere 2025, 16(7), 847; https://doi.org/10.3390/atmos16070847 - 11 Jul 2025
Viewed by 161
Abstract
Cities house more than half of the world’s population and are responsible for more than 70% of the world anthropogenic CO2 emissions. Therefore, quantifications of emissions from major cities, which are only less than a hundred intense emitting spots across the globe, [...] Read more.
Cities house more than half of the world’s population and are responsible for more than 70% of the world anthropogenic CO2 emissions. Therefore, quantifications of emissions from major cities, which are only less than a hundred intense emitting spots across the globe, should allow us to monitor changes in global fossil fuel CO2 emissions in an independent, objective way. The study adopted a high-spatiotemporal-resolution regional assimilation method using satellite observation data and atmospheric transport model WRF-Chem/DART to assimilate CO2 concentration and fluxes in Lisbon, a major city in Portugal. It is based on Zhang’s assimilation method, combined OCO-2 XCO2 retrieval data, ODIAC 1 km anthropogenic CO2 emissions and Ensemble Adjustment Kalman Filter Assimilation. By employing three two-way nested domains in WRF-Chem, we refined the spatial resolution of the CO2 concentrations and fluxes over Lisbon to 3 km. The spatiotemporal distribution characteristics and main driving factors of CO2 concentrations and fluxes in Lisbon and its surrounding cities and countries were analyzed in March 2020, during the period affected by COVID-19 pandemic. The results showed that the monthly average CO2 and XCO2 concentrations in Lisbon were 420.66 ppm and 413.88 ppm, respectively, and the total flux was 0.50 Tg CO2. From a wider perspective, the findings provide a scientific foundation for urban carbon emission management and policy-making. Full article
Show Figures

Figure 1

26 pages, 6768 KiB  
Article
Historical Land Cover Dynamics and Projected Changes in the High Andean Zone of the Locumba Basin: A Predictive Approach Using Remote Sensing and Artificial Neural Network—Cellular Automata Model
by German Huayna, Victor Pocco, Edwin Pino-Vargas, Pablo Franco-León, Jorge Espinoza-Molina, Fredy Cabrera-Olivera, Bertha Vera-Barrios, Karina Acosta-Caipa, Lía Ramos-Fernández and Eusebio Ingol-Blanco
Land 2025, 14(7), 1442; https://doi.org/10.3390/land14071442 - 10 Jul 2025
Viewed by 256
Abstract
The conservation and monitoring of land cover represent crucial elements for sustainable regional development, especially in fragile high Andean ecosystems. This study evaluates the spatiotemporal changes in land use and land cover (LULC) in the Locumba basin over the period of 1984–2023. A [...] Read more.
The conservation and monitoring of land cover represent crucial elements for sustainable regional development, especially in fragile high Andean ecosystems. This study evaluates the spatiotemporal changes in land use and land cover (LULC) in the Locumba basin over the period of 1984–2023. A hybrid modeling approach combining artificial neural networks (ANN) and cellular automata (CA) was employed to project future changes for 2033, 2043, and 2053. The results reveal a significant reduction in glaciers and lagoons throughout the Locumba basin, with notable declines from 1984 to 2023, while vegetated areas, particularly grasslands and wetlands, experienced substantial expansion. Specifically, grasslands increased by 273.7% relative to their initial coverage, growing from 57.87 km2 in 1984 to over 220.31 km2 in 2023, with projections indicating continued growth to over 331.62 km2 by 2053. This multitemporal analysis provides crucial information for anticipating future land dynamics and underscores the urgent need for strategic conservation planning to mitigate the continued loss of strategic ecosystems in the high Andean region of Tacna. Full article
Show Figures

Figure 1

23 pages, 7709 KiB  
Article
Spatiotemporal Land Use Change Detection Through Automated Sampling and Multi-Feature Composite Analysis: A Case Study of the Ebinur Lake Basin
by Yi Yang, Liang Zhao, Ya Guo, Shihua Liu, Xiang Qin, Yixiao Li and Xiaoqiong Jiang
Sensors 2025, 25(14), 4314; https://doi.org/10.3390/s25144314 - 10 Jul 2025
Viewed by 166
Abstract
Land use change plays a pivotal role in understanding surface processes and environmental dynamics, exerting considerable influence on regional ecosystem management. Traditional monitoring approaches, which often rely on manual sampling and single spectral features, exhibit limitations in efficiency and accuracy. This study proposes [...] Read more.
Land use change plays a pivotal role in understanding surface processes and environmental dynamics, exerting considerable influence on regional ecosystem management. Traditional monitoring approaches, which often rely on manual sampling and single spectral features, exhibit limitations in efficiency and accuracy. This study proposes an innovative technical framework that integrates automated sample generation, multi-feature optimization, and classification model refinement to enhance the accuracy of land use classification and enable detailed spatiotemporal analysis in the Ebinur Lake Basin. By integrating Landsat data with multi-temporal European Space Agency (ESA) products, we acquired 14,000 pixels of 2021 land use samples, with multi-temporal spectral features enabling robust sample transfer to 12028 pixels in 2011 and 10,997 pixels in 2001. Multi-temporal composite data were reorganized and reconstructed to form annual and monthly feature spaces that integrate spectral bands, indices, terrain, and texture information. Feature selection based on the Gini coefficient and Out-Of-Bag Error (OOBE) reduced the original 48 features to 23. In addition, an object-oriented Gradient Boosting Decision Tree (GBDT) model was employed to perform accurate land use classification. A systematic evaluation confirmed the effectiveness of the proposed framework, achieving an overall accuracy of 93.17% and a Kappa coefficient of 92.03%, while significantly reducing noise in the classification maps. Based on land use classification results from three different periods, the spatial distribution and pattern changes of major land use types in the region over the past two decades were investigated through analyses of ellipses, centroid shifts, area changes, and transition matrices. This automated framework effectively enhances automation, offering technical support for accurate large-area land use classification. Full article
(This article belongs to the Special Issue Remote Sensing Technology for Agricultural and Land Management)
Show Figures

Figure 1

18 pages, 3224 KiB  
Article
Distributed Fiber Optic Sensing for Fracture Geometry Inversion Using All Time Steps Data
by Shaohua You, Geyitian Feng, Xiaojun Qian, Qinzhuo Liao, Zhengting Yan, Shuqi Sun, Xu Liu and Shirish Patil
Sensors 2025, 25(14), 4290; https://doi.org/10.3390/s25144290 - 9 Jul 2025
Viewed by 309
Abstract
As an advanced real-time monitoring technique, optic fiber downhole sensing has been widely applied in monitoring fracture propagation during hydraulic fracturing. However, existing fracture shape inversion methods face two main challenges: firstly, traditional methods struggle to accurately capture the dynamic changes in strain [...] Read more.
As an advanced real-time monitoring technique, optic fiber downhole sensing has been widely applied in monitoring fracture propagation during hydraulic fracturing. However, existing fracture shape inversion methods face two main challenges: firstly, traditional methods struggle to accurately capture the dynamic changes in strain rate and fracture shape during the propagation process, and secondly, they are computationally expensive. To address these issues, this study proposes a full-time-step fitting inversion method. By precisely fitting all time steps of fracture propagation, this method effectively overcomes the shape deviation problems often encountered in traditional methods and significantly reduces computational costs. Compared to conventional single-time-step inversion methods, our approach not only provides a more accurate representation of the spatiotemporal dynamics of fracture propagation but also avoids the risk of significant errors in fracture shape reconstruction. Therefore, the proposed inversion method holds substantial practical value and significance in fracture monitoring and sensing for oil and gas fields. Full article
(This article belongs to the Topic Distributed Optical Fiber Sensors)
Show Figures

Figure 1

18 pages, 22954 KiB  
Article
Spatiotemporal Analysis of Drought Variation from 2001 to 2023 in the China–Mongolia–Russia Transboundary Heilongjiang River Basin Based on ITVDI
by Weihao Zou, Juanle Wang, Congrong Li, Keming Yang, Denis Fetisov, Jiawei Jiang, Meng Liu and Yaping Liu
Remote Sens. 2025, 17(14), 2366; https://doi.org/10.3390/rs17142366 - 9 Jul 2025
Viewed by 315
Abstract
Drought impacts agricultural production and regional sustainable development. Accordingly, timely and accurate drought monitoring is essential for ensuring food security in rain-fed agricultural regions. Alternating drought and flood events frequently occur in the Heilongjiang River Basin, the largest grain-producing area in Far East [...] Read more.
Drought impacts agricultural production and regional sustainable development. Accordingly, timely and accurate drought monitoring is essential for ensuring food security in rain-fed agricultural regions. Alternating drought and flood events frequently occur in the Heilongjiang River Basin, the largest grain-producing area in Far East Asia. However, spatiotemporal variability in drought is not well understood, in part owing to the limitations of the traditional Temperature Vegetation Dryness Index (TVDI). In this study, an Improved Temperature Vegetation Dryness Index (ITVDI) was developed by incorporating Digital Elevation Model data to correct land surface temperatures and introducing a constraint line method to replace the traditional linear regression for fitting dry–wet boundaries. Based on MODIS (Moderate-resolution Imaging Spectroradiometer) normalized vegetation index and land surface temperature products, the Heilongjiang River Basin, a cross-border basin between China, Mongolia, and Russia, exhibited pronounced spatiotemporal variability in drought conditions of the growing season from 2001 to 2023. Drought severity demonstrated clear geographical zonation, with a higher intensity in the western region and lower intensity in the eastern region. The Mongolian Plateau and grasslands were identified as drought hotspots. The Far East Asia forest belt was relatively humid, with an overall lower drought risk. The central region exhibited variation in drought characteristics. From the perspective of cross-national differences, the drought severity distribution in Northeast China and Inner Mongolia exhibits marked spatial heterogeneity. In Mongolia, regional drought levels exhibited a notable trend toward homogenization, with a higher proportion of extreme drought than in other areas. The overall drought risk in the Russian part of the basin was relatively low. A trend analysis indicated a general pattern of drought alleviation in western regions and intensification in eastern areas. Most regions showed relatively stable patterns, with few areas exhibiting significant changes, mainly surrounding cities such as Qiqihar, Daqing, Harbin, Changchun, and Amur Oblast. Regions with aggravation accounted for 52.29% of the total study area, while regions showing slight alleviation account for 35.58%. This study provides a scientific basis and data infrastructure for drought monitoring in transboundary watersheds and for ensuring agricultural production security. Full article
Show Figures

Figure 1

Back to TopTop