Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (675)

Search Parameters:
Keywords = spatial gridding approach

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 16565 KB  
Article
Multi-Scale Spatiotemporal Dynamics of Ecosystem Services and Detection of Their Driving Mechanisms in Southeast Coastal China
by Haoran Zhang, Xin Fu, Jin Huang, Zhenghe Xu and Yu Wu
Land 2025, 14(11), 2101; https://doi.org/10.3390/land14112101 - 22 Oct 2025
Abstract
Intensive human interference has severely disrupted the natural and ecological environments of coastal areas, threatening ecosystem services (ESs). Meanwhile, the relationships between ESs exhibit certain variations across different spatial scales. Therefore, identifying the scale effects of interrelationships among ESs and their underlying driving [...] Read more.
Intensive human interference has severely disrupted the natural and ecological environments of coastal areas, threatening ecosystem services (ESs). Meanwhile, the relationships between ESs exhibit certain variations across different spatial scales. Therefore, identifying the scale effects of interrelationships among ESs and their underlying driving mechanisms will better support scientific decision-making for the hierarchical and sustainable management of coastal ecosystems. Therefore, employing the Integrated Valuation of ESs and Tradeoffs (InVEST) model combined with GIS spatial visualization techniques, this investigation systematically examined the spatiotemporal distribution of four ESs across three scales (grid, county, and city) during 2000–2020. Complementary statistical approaches (Spearman’s correlation analysis and bivariate Moran’s I) were integrated to systematically quantify evolving ES trade-off/synergy patterns and reveal their spatial self-correlation characteristics. The geographical detector model (GeoDetector) was used to identify the main driving factors affecting ESs at different scales, and combined with bivariate Moran’s I to further visualize the spatial differentiation patterns of these key drivers. The results indicated that: (1) ESs (except for Water yield) generally increased from coastal regions to inland areas, and their spatial distribution tended to become more clustered as the scale increased. (2) Relationships between ESs became stronger at larger scales across all three study levels. These ESs connections showed stronger links at the middle scale (county). (3) Natural factors had the greatest impact on ESs than anthropogenic factors, with both demonstrating increased explanatory power as the scale enlarges. The interactions between factors of the same type generally yield stronger explanatory power than any single factor alone. (4) The spatial aggregation patterns of ESs with different driving factors varied significantly, while the spatial aggregation patterns of ESs with the same driving factor were highly similar across different spatial scales. These findings confirm that natural and social factors exhibit scale dependency and spatial heterogeneity, emphasizing the need for policies to be tailored to specific scales and adapted to local conditions. It provides a basis for future research on multi-scale and region-specific precision regulation of ecosystems. Full article
Show Figures

Figure 1

23 pages, 4351 KB  
Article
Upscaling of Soil Moisture over Highly Heterogeneous Surfaces and Validation of SMAP Product
by Jiakai Qin, Zhongli Zhu, Qingxia Wu, Julong Ma, Shaomin Liu, Linna Chai and Ziwei Xu
Land 2025, 14(10), 2098; https://doi.org/10.3390/land14102098 - 21 Oct 2025
Viewed by 123
Abstract
Soil moisture (SM) is a critical component of the global water cycle, profoundly influencing carbon fluxes and energy exchanges between the land surface and the atmosphere. NASA’s Soil Moisture Active/Passive (SMAP) mission provides soil moisture products at the global scale; however, validation of [...] Read more.
Soil moisture (SM) is a critical component of the global water cycle, profoundly influencing carbon fluxes and energy exchanges between the land surface and the atmosphere. NASA’s Soil Moisture Active/Passive (SMAP) mission provides soil moisture products at the global scale; however, validation of SMAP faces significant challenges due to scale mismatches between in situ measurements and satellite pixels, particularly in highly heterogeneous regions such as the Qinghai–Tibet Plateau. This study leverages high-spatiotemporal-resolution Harmonized Landsat–Sentinel-2 (HLS v2.0) data and the QLB-NET observation network, employing multiple machine learning models to generate pixel-scale ground-truth soil moisture from in situ measurements. The results indicate that XGBoost performs best (R = 0.941, RMSE = 0.047 m3/m3), and SHAP analysis identifies elevation and DOY as the primary drivers of the spatial patterns and dynamics of soil moisture. The XGBoost-upscaled soil moisture was employed as a validation benchmark to assess the accuracy of the SMAP 9 km and 36 km products, with the following key findings: (1) the proposed upscaling method effectively bridges the scale gap, yielding a correlation of 0.858 between the 36 km SMAP product and the pixel-scale soil moisture reference derived from XGBoost, surpassing the 0.818 correlation obtained using the traditional in situ averaging approach; (2) descending-orbit data generally outperform ascending-orbit data. In the 9 km SMAP product, 15 descending-orbit grids meet the scientific standard, compared to 10 ascending-orbit grids. For the 36 km product, only descending orbits satisfy the scientific standard. Full article
Show Figures

Figure 1

27 pages, 7611 KB  
Article
4D BIM-Based Enriched Voxel Map for UAV Path Planning in Dynamic Construction Environments
by Ashkan Golpour, Moslem Sheikhkhoshkar, Mostafa Khanzadi, Morteza Rahbar and Saeed Banihashemi
Systems 2025, 13(10), 917; https://doi.org/10.3390/systems13100917 - 18 Oct 2025
Viewed by 195
Abstract
Unmanned Aerial Vehicles (UAVs) are increasingly integral to construction site management, supporting monitoring, inspection, and data collection tasks. Effective UAV path planning is essential for maximizing operational efficiency, particularly in complex and dynamic construction environments. While previous BIM-based approaches have explored representation models [...] Read more.
Unmanned Aerial Vehicles (UAVs) are increasingly integral to construction site management, supporting monitoring, inspection, and data collection tasks. Effective UAV path planning is essential for maximizing operational efficiency, particularly in complex and dynamic construction environments. While previous BIM-based approaches have explored representation models such as space graphs, grid patterns, and voxel models, each has limitations. Space graphs, though common, rely on predefined spatial spaces, making them less suitable for projects still under construction. Voxel-based methods, considered well-suited for 3D indoor navigation, suffer from three key challenges: (1) a disconnect between the BIM and voxel models, limiting data integration; (2) the computational cost and time required for voxelization, hindering real-time application; and (3) inadequate support for 4D BIM integration during active construction phases. This research introduces a novel framework that bridges the BIM–voxel gap via an enriched voxel map, eliminates the need for repeated voxelization, and incorporates 4D BIM and additional model data such as defined workspaces and safety buffers around fragile components. The framework’s effectiveness is demonstrated through path planning simulations on BIM models from two real-world construction projects under varying scenarios. Results indicate that the enriched voxel map successfully creates a connection between BIM model and voxel model, while covering every timestamp of the project and element attributes during path planning without requiring additional voxel map creation. Full article
Show Figures

Figure 1

36 pages, 1536 KB  
Review
A Visual and Strategic Framework for Integrated Renewable Energy Systems: Bridging Technological, Economic, Environmental, Social, and Regulatory Dimensions
by Kenneth Chukwuma Nwala, Moses Jeremiah Barasa Kabeyi and Oludolapo Akanni Olanrewaju
Energies 2025, 18(20), 5468; https://doi.org/10.3390/en18205468 - 17 Oct 2025
Viewed by 538
Abstract
Renewable energy integration is no longer a solely technical endeavor; it necessitates a multidimensional transformation that spans technological, economic, environmental, social, and regulatory dimensions. This review presents a visual and strategic framework for addressing the complex challenges of integrating solar, wind, hydro, geothermal, [...] Read more.
Renewable energy integration is no longer a solely technical endeavor; it necessitates a multidimensional transformation that spans technological, economic, environmental, social, and regulatory dimensions. This review presents a visual and strategic framework for addressing the complex challenges of integrating solar, wind, hydro, geothermal, and biomass energy systems. The objective is to redefine traditional approaches by linking specific integration barriers to tailored strategies and measurable outcomes. The study uses comparative analysis, regional case studies, and a variety of visual tools—such as flowcharts, spider charts, and challenge–strategy–outcome maps—to spatially express interdependencies and trade-offs. These tools enable stakeholders to determine the best integration pathways based on performance measures, regional restrictions, and system synergies. The results reveal that visual mapping not only clarifies complex system dynamics, but also enhances stakeholder collaboration by translating technical data into accessible formats. The framework supports adaptive planning, smart grid adoption, and community-centered microgrid development. In conclusion, the study provides a forward-looking strategy for developing resilient, inclusive, and intelligent renewable energy systems. It highlights that future energy resilience will be built on integrated, regionally informed, and socially inclusive design, with technology, policy, and community engagement combined to drive sustainable energy transitions. Full article
Show Figures

Figure 1

27 pages, 5279 KB  
Article
Concept-Guided Exploration: Building Persistent, Actionable Scene Graphs
by Noé José Zapata Cornejo, Gerardo Pérez, Alejandro Torrejón, Pedro Núñez and Pablo Bustos
Appl. Sci. 2025, 15(20), 11084; https://doi.org/10.3390/app152011084 - 16 Oct 2025
Viewed by 196
Abstract
The perception of 3D space by mobile robots is rapidly moving from flat metric grid representations to hybrid metric-semantic graphs built from human-interpretable concepts. While most approaches first build metric maps and then add semantic layers, we explore an alternative, concept-first architecture in [...] Read more.
The perception of 3D space by mobile robots is rapidly moving from flat metric grid representations to hybrid metric-semantic graphs built from human-interpretable concepts. While most approaches first build metric maps and then add semantic layers, we explore an alternative, concept-first architecture in which spatial understanding emerges from asynchronous concept agents that directly instantiate and manage semantic entities. Our robot employs two spatial concepts—room and door—implemented as autonomous processes within a cognitive distributed architecture. These concept agents cooperatively build a shared scene graph representation of indoor layouts through active exploration and incremental validation. The key architectural principle is hierarchical constraint propagation: Room instantiation provides geometric and semantic priors to guide and support door detection within wall boundaries. The resulting structure is maintained by a complementary functional principle based on prediction-matching loops. This approach is designed to yield an actionable, human-interpretable spatial representation without relying on any pre-existing global metric map, supporting scalable operation and persistent, task-relevant understanding in structured indoor environments. Full article
(This article belongs to the Special Issue Advances in Cognitive Robotics and Control)
Show Figures

Figure 1

31 pages, 8374 KB  
Article
Distributed Photovoltaic Short-Term Power Forecasting Based on Seasonal Causal Correlation Analysis
by Zhong Wang, Mao Yang, Jianfeng Che, Wei Xu, Wei He and Kang Wu
Appl. Sci. 2025, 15(20), 11063; https://doi.org/10.3390/app152011063 - 15 Oct 2025
Viewed by 193
Abstract
In recent years, with the development of distributed photovoltaic (PV) systems, their impact on power grids has become increasingly significant. However, the complexity of meteorological variations makes the prediction of distributed PV power challenging and often ineffective. This study proposes a short-term power [...] Read more.
In recent years, with the development of distributed photovoltaic (PV) systems, their impact on power grids has become increasingly significant. However, the complexity of meteorological variations makes the prediction of distributed PV power challenging and often ineffective. This study proposes a short-term power forecasting method for distributed photovoltaics that can identify seasonal characteristics matching weather types, enabling a deeper analysis of complex meteorological changes. First, historical power data is decomposed seasonally using the adaptive noise complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN). Next, each component is reconstructed based on a characteristic similarity approach, and a two-stage feature selection process is applied to identify the most relevant features for reconstruction, addressing the issue of nonlinear variable selection. A CNN-LSTM-KAN model with multi-dimensional spatial representation is then proposed to model different weather types obtained by the K-shape clustering method, enabling the segmentation of weather processes. Finally, the proposed method is applied to a case study of distributed PV users in a certain province for short-term power prediction. The results indicate that, compared to traditional methods, the average RMSE decreases by 8.93%, the average MAE decreases by 4.82%, and the R2 increases by 9.17%, demonstrating the effectiveness of the proposed method. Full article
Show Figures

Figure 1

21 pages, 3299 KB  
Article
CHIRTS Gridded Air Temperature Downscaling Integrating MODIS Land Surface Temperature Estimates in Machine-Learning Models
by Elvis Uscamayta-Ferrano, Frédéric Satgé, Ramiro Pillco-Zolá, Henrique Roig, Diego Tola-Aguilar, Mayra Perez-Flores, Lautaro Bustillos, Fara. P. M. Rakotomandrindra, Zo Rabefitia and Simon. D. Carrière
Atmosphere 2025, 16(10), 1188; https://doi.org/10.3390/atmos16101188 - 15 Oct 2025
Viewed by 170
Abstract
Due to its sensitivity to topographic and land use land cover features, air temperature (maximum, minimum, and mean—Tx, Tn, and Tmean) is extremely variable in space and time. The sparse and unevenly distributed meteorological stations observed across [...] Read more.
Due to its sensitivity to topographic and land use land cover features, air temperature (maximum, minimum, and mean—Tx, Tn, and Tmean) is extremely variable in space and time. The sparse and unevenly distributed meteorological stations observed across remote regions cannot monitor such variability. Freely available, gridded temperature datasets (T-datasets) are positioned as an opportunity to overcome this issue. Still, their coarse spatial resolution (i.e., ≥5 km) does not allow for the observation of air temperature variations on a fine spatial scale. In this context, a set of variables that have a close relationship with daily air temperature (MODIS maximum, minimum, and mean Land Surface Temperature—LSTx, LSTn, and LSTmean; MODIS NDVI; SRTM topographic features—elevation, slope, and aspect) are integrated in three regression machine-learning models (Random Forest—RF, eXtreme Gradient Boosting—XGB, Multiple Linear Regression—MLR) to propose a T-dataset estimates (Tx, Tn, and Tmean) spatial resolution downscaling framework. The approach consists of two main steps: firstly, the machine-learning models are trained at the native 5 km spatial resolution of the studied T-dataset (i.e., CHIRTS); secondly, the application of the trained machine-learning models at a 1 km spatial resolution to downscale CHIRTS from 5 km to 1 km. The results show that the method not only improves the spatial resolution of the CHIRTS dataset, but also its accuracy, with higher improvements for Tn than for Tx and Tmean. Among the considered models, RF performs the best, with an R2, RMSE, and MAE improvement of 2.6% (0%), 47.1% (6.1%), and 55.3% (7%) for Tn (Tx). These results will support air temperature monitoring and related extreme events such as heat and cold waves, which are of prime importance in the actual climate change context. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

22 pages, 1358 KB  
Article
Research on Load Forecasting of County Power Grid Planning Based on Dual-Period Evaluation Function
by Jingyan Chen, Jingchun Feng, Xu Chen and Song Xue
Sustainability 2025, 17(20), 9141; https://doi.org/10.3390/su17209141 - 15 Oct 2025
Viewed by 172
Abstract
Load forecasting is a key component of power network planning and an essential approach to achieving the efficient cooperative optimization of integrated economic energy services. To improve the accuracy of the power load prediction and ensure the stable dispatch of power grid, this [...] Read more.
Load forecasting is a key component of power network planning and an essential approach to achieving the efficient cooperative optimization of integrated economic energy services. To improve the accuracy of the power load prediction and ensure the stable dispatch of power grid, this paper takes County A as a case study. The fish bone diagram method is applied to analyze the influence of four categories of factors on the county’s power load, and stepwise regression, the unit energy consumption method, and an optimized grey model are adopted to forecast and analyze the planned load of the county over the past 5 years. In addition, the spatial load density method, the optimized grey prediction model, and the General Regression Neural Network (GRNN) are used to predict and analyze the county’s planned power grid load based on data from the past ten years. The Ordered Weighted Averaging (OWA) operator is then applied to integrate the results, and the predictive performance of different methods is assessed with an evaluation function. The results show that this combined multi-method approach achieves a higher accuracy. It also accounts for the evolving political, economic, and social conditions of the country, making the predictions more useful for power grid planning. Based on these findings, corresponding countermeasures and suggestions are proposed to support the improvement of spatial planning for electric power facilities in County A. Full article
Show Figures

Figure 1

19 pages, 8605 KB  
Article
A Bayesian Grid-Free Framework with Global Optimization for Three-Dimensional Acoustic Source Imaging
by Daofang Feng, Kuncheng Wang, Youtai Shi, Liang Yu and Min Li
Appl. Sci. 2025, 15(20), 11028; https://doi.org/10.3390/app152011028 - 14 Oct 2025
Viewed by 172
Abstract
A common challenge in traditional three-dimensional grid-free localization is the struggle to balance computational efficiency with localization accuracy. To address this trade-off, a Bayesian grid-free framework with global optimization (BGG) for three-dimensional acoustic source imaging is proposed. In this method, a Bayesian inference [...] Read more.
A common challenge in traditional three-dimensional grid-free localization is the struggle to balance computational efficiency with localization accuracy. To address this trade-off, a Bayesian grid-free framework with global optimization (BGG) for three-dimensional acoustic source imaging is proposed. In this method, a Bayesian inference model is established based on equivalent source theory, where the negative log-posterior of the equivalent source positions serves as the fitness function. This function is minimized using a global optimization algorithm to estimate the source locations. Subsequently, the source strengths and noise variances are inferred via fixed-point iteration and projection-based estimation. Through both simulations and experiments with spatially distributed sources, a superior balance of computational efficiency and localization accuracy is demonstrated by the proposed BGG algorithm when compared to other state-of-the-art grid-free approaches. Full article
(This article belongs to the Special Issue Machine Learning in Vibration and Acoustics (3rd Edition))
Show Figures

Figure 1

32 pages, 6841 KB  
Article
Integration of UAV and Remote Sensing Data for Early Diagnosis and Severity Mapping of Diseases in Maize Crop Through Deep Learning and Reinforcement Learning
by Jerry Gao, Krinal Gujarati, Meghana Hegde, Padmini Arra, Sejal Gupta and Neeraja Buch
Remote Sens. 2025, 17(20), 3427; https://doi.org/10.3390/rs17203427 - 13 Oct 2025
Viewed by 612
Abstract
Accurate and timely prediction of diseases in water-intensive crops is critical for sustainable agriculture and food security. AI-based crop disease management tools are essential for an optimized approach, as they offer significant potential for enhancing yield and sustainability. This study centers on maize, [...] Read more.
Accurate and timely prediction of diseases in water-intensive crops is critical for sustainable agriculture and food security. AI-based crop disease management tools are essential for an optimized approach, as they offer significant potential for enhancing yield and sustainability. This study centers on maize, training deep learning models on UAV imagery and satellite remote-sensing data to detect and predict disease. The performance of multiple convolutional neural networks, such as ResNet-50, DenseNet-121, etc., is evaluated by their ability to classify maize diseases such as Northern Leaf Blight, Gray Leaf Spot, Common Rust, and Blight using UAV drone data. Remotely sensed MODIS satellite data was used to generate spatial severity maps over a uniform grid by implementing time-series modeling. Furthermore, reinforcement learning techniques were used to identify hotspots and prioritize the next locations for inspection by analyzing spatial and temporal patterns, identifying critical factors that affect disease progression, and enabling better decision-making. The integrated pipeline automates data ingestion and delivers farm-level condition views without manual uploads. The combination of multiple remotely sensed data sources leads to an efficient and scalable solution for early disease detection. Full article
Show Figures

Figure 1

18 pages, 4155 KB  
Article
Spatial–Temporal Patterns of Methane Emissions from Livestock in Xinjiang During 2000–2020
by Qixiao Xu, Yumeng Li, Yongfa You, Lei Zhang, Haoyu Zhang, Zeyu Zhang, Yuanzhi Yao and Ye Huang
Sustainability 2025, 17(20), 9021; https://doi.org/10.3390/su17209021 - 11 Oct 2025
Viewed by 301
Abstract
Livestock represent a significant source of methane (CH4) emissions, particularly in pastoral regions. However, in Xinjiang—a pivotal pastoral region of China—the spatiotemporal patterns of livestock CH4 emissions remain poorly characterized, constraining regional mitigation actions. Here, a detailed CH4 emissions [...] Read more.
Livestock represent a significant source of methane (CH4) emissions, particularly in pastoral regions. However, in Xinjiang—a pivotal pastoral region of China—the spatiotemporal patterns of livestock CH4 emissions remain poorly characterized, constraining regional mitigation actions. Here, a detailed CH4 emissions inventory for livestock in Xinjiang spanning the period 2000–2020 is compiled. Eight livestock categories were covered, gridded livestock maps were developed, and the dynamic emission factors were built by using the IPCC 2019 Tier 2 approaches. Results indicate that the CH4 emissions increased from ~0.7 Tg in 2000 to ~0.9 Tg in 2020, a 28.5% increase over the past twenty years. Beef cattle contributed the most to the emission increase (59.6% of total increase), followed by dairy cattle (35.7%), sheep (13.9%), and pigs (4.3%). High-emission hotspots were consistently located in the Ili River Valley, Bortala, and the northwestern margins of the Tarim Basin. Temporal trend analysis revealed increasing emission intensities in these regions, reflecting the influence of policy shifts, rangeland dynamics, and evolving livestock production systems. The high-resolution map of CH4 emissions from livestock and their temporal trends provides key insights into CH4 mitigation, with enteric fermentation showing greater potential for emission reduction. This study offers the first long-term, high-resolution CH4 emission inventory for Xinjiang, providing essential spatial insights to inform targeted mitigation strategies and enhance sustainable livestock management in arid and semi-arid ecosystems. Full article
(This article belongs to the Special Issue Geographical Information System for Sustainable Ecology)
Show Figures

Figure 1

20 pages, 16092 KB  
Article
Spatial Accessibility in the Urban Environment of a Medium-Sized City: A Case Study of Public Amenities in Odense, Denmark
by Irma Kveladze
Urban Sci. 2025, 9(10), 407; https://doi.org/10.3390/urbansci9100407 - 2 Oct 2025
Viewed by 416
Abstract
Spatial accessibility is a key principle in urban studies, shaping how people reach amenities and services across cities. While most research concentrates on large metropolitan areas and central urban services, small and medium-sized cities and their main amenities remain less studied. To bridge [...] Read more.
Spatial accessibility is a key principle in urban studies, shaping how people reach amenities and services across cities. While most research concentrates on large metropolitan areas and central urban services, small and medium-sized cities and their main amenities remain less studied. To bridge this gap, this study explores spatial accessibility to public amenities in relation to population density in Odense, a medium-sized city known for its compact layout and robust infrastructure supporting walking, cycling, and public transport. Despite Odense’s proactive planning and multimodal transport network, marked accessibility inequalities still exist, especially in peripheral neighbourhoods. This research uses a data-driven approach combining network-based travel time analysis with grid-cell-based spatial visualisation. Additionally, a multi-criteria accessibility scoring framework is introduced, including indicators such as amenity density, diversity of services, temporal thresholds for walking and cycling, and population distribution. The results show an uneven accessibility landscape, with significant gaps in outer districts, highlighting the limitations of uniform planning thresholds. By applying spatial analytical principles, the study uncovers embedded socio-spatial inequalities in everyday urban access. These insights offer practical guidance for planners and policymakers, underscoring the importance of context-sensitive multimodal infrastructure and decentralised service provision to support sustainable urban growth. Full article
Show Figures

Figure 1

25 pages, 26694 KB  
Article
Research on Wind Field Correction Method Integrating Position Information and Proxy Divergence
by Jianhong Gan, Mengjia Zhang, Cen Gao, Peiyang Wei, Zhibin Li and Chunjiang Wu
Biomimetics 2025, 10(10), 651; https://doi.org/10.3390/biomimetics10100651 - 1 Oct 2025
Viewed by 325
Abstract
The accuracy of numerical model outputs strongly depends on the quality of the initial wind field, yet ground observation data are typically sparse and provide incomplete spatial coverage. More importantly, many current mainstream correction models rely on reanalysis grid datasets like ERA5 as [...] Read more.
The accuracy of numerical model outputs strongly depends on the quality of the initial wind field, yet ground observation data are typically sparse and provide incomplete spatial coverage. More importantly, many current mainstream correction models rely on reanalysis grid datasets like ERA5 as the true value, which relies on interpolation calculation, which directly affects the accuracy of the correction results. To address these issues, we propose a new deep learning model, PPWNet. The model directly uses sparse and discretely distributed observation data as the true value, which integrates observation point positions and a physical consistency term to achieve a high-precision corrected wind field. The model design is inspired by biological intelligence. First, observation point positions are encoded as input and observation values are included in the loss function. Second, a parallel dual-branch DenseInception network is employed to extract multi-scale grid features, simulating the hierarchical processing of the biological visual system. Meanwhile, PPWNet references the PointNet architecture and introduces an attention mechanism to efficiently extract features from sparse and irregular observation positions. This mechanism reflects the selective focus of cognitive functions. Furthermore, this paper incorporates physical knowledge into the model optimization process by adding a learned physical consistency term to the loss function, ensuring that the corrected results not only approximate the observations but also adhere to physical laws. Finally, hyperparameters are automatically tuned using the Bayesian TPE algorithm. Experiments demonstrate that PPWNet outperforms both traditional and existing deep learning methods. It reduces the MAE by 38.65% and the RMSE by 28.93%. The corrected wind field shows better agreement with observations in both wind speed and direction, confirming the effectiveness of incorporating position information and a physics-informed approach into deep learning-based wind field correction. Full article
(This article belongs to the Special Issue Nature-Inspired Metaheuristic Optimization Algorithms 2025)
Show Figures

Figure 1

22 pages, 5899 KB  
Article
Research on Power Flow Prediction Based on Physics-Informed Graph Attention Network
by Qiyue Huang, Yapeng Wang, Xu Yang, Sio-Kei Im and Jianxiu Cai
Appl. Sci. 2025, 15(19), 10555; https://doi.org/10.3390/app151910555 - 29 Sep 2025
Viewed by 351
Abstract
As an emerging distributed energy system, microgrid power flow prediction plays a crucial role in optimizing energy dispatch and power grid operation. Traditional methods of power flow prediction mainly rely on statistics and time series models, neglecting the spatial relationships among different nodes [...] Read more.
As an emerging distributed energy system, microgrid power flow prediction plays a crucial role in optimizing energy dispatch and power grid operation. Traditional methods of power flow prediction mainly rely on statistics and time series models, neglecting the spatial relationships among different nodes within the microgrid. To overcome this limitation, a Physical-Informed Graph Attention Network (PI-GAT) is proposed to capture the spatial structure of the microgrid, while an attention mechanism is introduced to measure the importance weights between nodes. In this study, we constructed a representative 14-node microgrid power flow dataset. After collecting the data, we preprocessed and transformed it into a suitable format for graph neural networks. Next, an autoencoder was employed for pre-training, enabling unsupervised learning-based dimensionality reduction to enhance the expressive power of the data. Subsequently, the extended data is fed into a graph convolution module with attention mechanism, allowing adaptive weight learning and capturing relationships between nodes. And integrate the physical state equation into the loss function to achieve high-precision power flow prediction. Finally, simulation verification was conducted, comparing the PI-GAT method with traditional approaches. The results indicate that the proposed model outperforms the other latest model across various evaluation indicators. Specifically, it has 46.9% improvement in MSE and 14.08% improvement in MAE. Full article
Show Figures

Figure 1

36 pages, 35564 KB  
Article
Enhancing Soundscape Characterization and Pattern Analysis Using Low-Dimensional Deep Embeddings on a Large-Scale Dataset
by Daniel Alexis Nieto Mora, Leonardo Duque-Muñoz and Juan David Martínez Vargas
Mach. Learn. Knowl. Extr. 2025, 7(4), 109; https://doi.org/10.3390/make7040109 - 24 Sep 2025
Viewed by 503
Abstract
Soundscape monitoring has become an increasingly important tool for studying ecological processes and supporting habitat conservation. While many recent advances focus on identifying species through supervised learning, there is growing interest in understanding the soundscape as a whole while considering patterns that extend [...] Read more.
Soundscape monitoring has become an increasingly important tool for studying ecological processes and supporting habitat conservation. While many recent advances focus on identifying species through supervised learning, there is growing interest in understanding the soundscape as a whole while considering patterns that extend beyond individual vocalizations. This broader view requires unsupervised approaches capable of capturing meaningful structures related to temporal dynamics, frequency content, spatial distribution, and ecological variability. In this study, we present a fully unsupervised framework for analyzing large-scale soundscape data using deep learning. We applied a convolutional autoencoder (Soundscape-Net) to extract acoustic representations from over 60,000 recordings collected across a grid-based sampling design in the Rey Zamuro Reserve in Colombia. These features were initially compared with other audio characterization methods, showing superior performance in multiclass classification, with accuracies of 0.85 for habitat cover identification and 0.89 for time-of-day classification across 13 days. For the unsupervised study, optimized dimensionality reduction methods (Uniform Manifold Approximation and Projection and Pairwise Controlled Manifold Approximation and Projection) were applied to project the learned features, achieving trustworthiness scores above 0.96. Subsequently, clustering was performed using KMeans and Density-Based Spatial Clustering of Applications with Noise (DBSCAN), with evaluations based on metrics such as the silhouette, where scores above 0.45 were obtained, thus supporting the robustness of the discovered latent acoustic structures. To interpret and validate the resulting clusters, we combined multiple strategies: spatial mapping through interpolation, analysis of acoustic index variance to understand the cluster structure, and graph-based connectivity analysis to identify ecological relationships between the recording sites. Our results demonstrate that this approach can uncover both local and broad-scale patterns in the soundscape, providing a flexible and interpretable pathway for unsupervised ecological monitoring. Full article
Show Figures

Figure 1

Back to TopTop