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Abstract

A common challenge in traditional three-dimensional grid-free localization is the struggle
to balance computational efficiency with localization accuracy. To address this trade-off,
a Bayesian grid-free framework with global optimization (BGG) for three-dimensional
acoustic source imaging is proposed. In this method, a Bayesian inference model is estab-
lished based on equivalent source theory, where the negative log-posterior of the equivalent
source positions serves as the fitness function. This function is minimized using a global
optimization algorithm to estimate the source locations. Subsequently, the source strengths
and noise variances are inferred via fixed-point iteration and projection-based estimation.
Through both simulations and experiments with spatially distributed sources, a supe-
rior balance of computational efficiency and localization accuracy is demonstrated by the
proposed BGG algorithm when compared to other state-of-the-art grid-free approaches.

Keywords: 3D acoustic source imaging; grid-free method; Bayesian inference; global
optimization; array measurement

1. Introduction

Over recent decades, acoustic source imaging has been widely applied in fields such
as aircraft and automotive noise source localization [1-4], as well as mechanical fault diag-
nosis [5,6]. When extended from a two-dimensional plane to three-dimensional space, this
technique enables the identification of spatially distributed sources, including those that
overlap along certain directions. It provides more comprehensive information about the
spatial distribution of acoustic sources. Conventional imaging methods, such as beamform-
ing [2,7] and the equivalent source method [8,9], typically assume that sources are located
at predefined grid points. However, when actual sources lie off the grid, this assumption
leads to basis mismatch, resulting in errors in both source localization and intensity estima-
tion [10]. Although off-grid approaches [11,12] have been proposed to mitigate this issue,
they still require a large number of grid points, especially for large-scale 3D problems. To
address this limitation, grid-free source imaging methods [13-17] have been developed.
These methods treat the source locations as continuous unknown parameters and estimate
them directly. In theory, this approach eliminates the basis mismatch problem and improves
localization accuracy in three-dimensional acoustic imaging.
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According to the solution strategies for source localization, grid-free acoustic imaging
methods can be categorized into mathematical programming [14,18-20], global optimiza-
tion [15,21], Bayesian inference [16,22-24], and machine learning approaches [17,25,26].

The first category formulates the source localization problem as a convex optimiza-
tion task within the framework of functional analysis, where the sources are modeled in
a continuous atomic dictionary space or a measure space. Mathematical programming
techniques are then employed to obtain the solution. Yang et al. [18] modeled the acoustic
imaging problem as a convex optimization task constrained by the atomic norm minimiza-
tion (ANM), based on an atomic set of steering vectors defined over a continuous spatial
domain. The problem was efficiently solved via the ADMM algorithm, achieving grid-free
source localization. The iterative reweighting strategy was subsequently incorporated into
the ANM algorithm, leading to enhanced resolution in grid-free acoustic imaging [19]. A
key limitation of the ANM method is that its computational efficiency relies critically on the
algebraic structure (e.g., the Toeplitz matrix) inherent to uniform arrays. The absence of this
structure in non-uniform array geometries leads to a dramatic increase in computational
complexity, thereby limiting the method’s practical applicability. Chardon [14] modeled
sound source distributions as Dirac measures and formulated an infinite-dimensional
covariance matrix fitting problem. The problem was solved iteratively using a sliding
Frank-Wolfe algorithm to estimate source locations and power. Since the method assumes
that the source amplitudes are mutually uncorrelated and also uncorrelated with the
measurement noise, it becomes challenging to localize coherent sources.

The second category establishes a fitness function based on the acoustic field transfer
relationship and employs a global optimization algorithm to search for the optimal source
locations and strengths. Malgoezar et al. [15] proposed the Bartlett energy function and
the cross-spectral matrix (CSM) energy function as fitness functions, and employed a
differential evolution algorithm to locate the global optimum. Zhai et al. [21] combined
the CSM energy function with the image source model and employed a state transition
algorithm to achieve grid-free sound source localization in three-dimensional reverberant
environments. In grid-free acoustic imaging, source locations and source strengths are two
mutually coupled optimization parameters, and simultaneous optimization of both using
an energy function is prone to convergence to local optima.

The third category constructs a Bayesian inference model based on the acoustic field
transfer relationship and employs either the Expectation-Maximization (EM) algorithm
or Markov Chain Monte Carlo (MCMC) sampling to estimate the posterior distribution
of source coordinates. Wang et al. [22] developed an EM-based framework in which the
E-step evaluates the covariance matrix of the latent source contributions, and the M-step
updates the estimates of source locations and powers. Antoni et al. [23] estimated sound
source locations using a Gibbs sampler, and sequentially updated source parameters, noise
variance, and prior source variances. Subsequently, the more computationally efficient
Hamiltonian Monte Carlo (HMC) sampler was applied to high-dimensional acoustic imag-
ing [16]. Although MCMC sampling methods demonstrate competent acoustic imaging
performance, they inherently suffer from high computational complexity and require
meticulous parameter tuning.

The last category involves data-driven neural network models that directly establish a
mapping between the observed signals and the spatial distribution of sound sources in a
continuous domain. Castellini et al. [17] used the CSM from microphone arrays as input
and employed a Multi-Layer Perceptron network to predict the positions and strengths of
two sound sources in a grid-free manner. Kujawski et al. [25] adopted a transformer-based
framework to predict the locations and intensities of an unknown number of sources.
Zhao et al. [26] designed a 121-layer DenseNet model to directly extract features from
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beamforming maps and output continuous sound source coordinates. Although machine
learning methods can achieve superior spatial resolution and computational efficiency, they
typically require substantial amounts of training data, exhibit poor model interpretability,
and demonstrate limited generalization capabilities.

To address these limitations, a Bayesian grid-free framework with global optimization
for three-dimensional acoustic source imaging (BGG) is proposed. This method initially
establishes a Bayesian inference model for three-dimensional acoustic imaging within
the framework of equivalent source theory. This model quantifies the uncertainty of
parameters including the positions and strengths of equivalent sources and measurement
noise. Subsequently, the posterior probability distribution of the equivalent source positions
is utilized to construct a fitness function for global optimization. Finally, the equivalent
source positions are optimized using a global optimization algorithm. The equivalent
source strengths and noise parameters are solved via fixed-point iteration and orthogonal
projection methods, respectively. Simulations and experiments on three-dimensional
acoustic source imaging show that the proposed method achieves the best balance between
computational efficiency and localization accuracy among existing 3D source imaging
approaches. The main contributions of the paper are as follows:

a. Based on a Bayesian inference model, the negative log-posterior of the source positions
is established as the fitness function, replacing the conventional CSM energy function
and improving the accuracy of source localization.

b. A global optimization algorithm is introduced to estimate source positions, replac-
ing the HMC sampling procedure and enhancing the computational efficiency of
source localization.

The remainder of the paper is then organized as follows. Section 2 outlines the
limitations of the fitness functions used in traditional grid-free algorithms. Section 3
presents the theoretical foundation of the BGG method, including the grid-free Bayesian
inference model, the derivation of the fitness function, the global optimization strategy;,
and the algorithmic procedure. Section 4 introduces the simulation and experimental
setup for spatially distributed acoustic source localization and analyzes the corresponding
localization results. Finally, some conclusions are given in Section 5.

2. Problem Statement

Within the framework of equivalent source theory [7,27], the acoustic pressure at the
m-th receiver can be mathematically represented as the superposition of acoustic wavefields
generated by a series of equivalent sources distributed on the radiating surface

pm = ZHN=1 G (rn)qn + €m, 1)

wherem =1,...,Mand n =1, ..., N denote the indices of the receivers and equivalent
sources, respectively. Gy, (rn) represents the Green’s function describing the sound pressure
propagation from the source position r, to the m-th receiver position ry,. g, denotes the
source strength at r,,. €, denotes the additive noise measured at the m-th receiver. In free
field conditions, G, (r,) is expressed as

_ exp (— ik||ry —rul|)
Gon(ru) = = — ]

, )

where i denotes the imaginary unit, the wavenumber k is defined as k = 27tf/c, with ¢
being the speed of sound and f the source frequency, and r;, denotes the position of m-th
receiver. The forward model of three-dimensional acoustic propagation is illustrated in
Figure 1.



Appl. Sci. 2025, 15, 11028

40f19

Zl\
4"2‘?
* .
A
& L
N r .
_\C_‘@ iy Sound source
W e o
: 5 1! N u r?i
! 1 x
) L ! !
| Jr?jn } !

Microphone array A

Figure 1. The illustration of the forward modeling from sound sources to receivers. The acoustic
pressure measured by the microphone array can be modeled as a superposition of acoustic waves
radiated from the equivalent sources. The Green'’s function Gy, (r,) describes the sound pressure
propagation from a source at position r;, to the m-th receiver at position ry,.

Expressed in matrix form, the relationship in Equation (1) becomes
p=G(r)q+e, ®3)

where p = [p1,---,pm]T € CM L, g =1[gq1,-- ,qn]" € CV*Land e = [e1,--- ey’ € CMX]
are column vectors. G(r) € CM*N denotes the propagation matrix, with its (m, n)-th entry
given by the Green's function Gy, (ry,).

Based on Equation (3), the CSM energy function [15] is derived by quantifying the
discrepancy between the measured CSM Cipeas and the model CSM Cyy o gel

2
Ecsm = ||Cmeas - CmodelH% = HPPH - G(r)q(G(T)q)HHF

. (4)
= Z ([Re(cmeas) - Re(cmodel)]2 + [Im(cmeas) - Im(cmodel)]2>

Conventional approaches, such as Differential Evolution and machine learning-based
algorithms, estimate both the source locations and source strengths by minimizing the CSM
energy function [15,17]. However, the simultaneous optimization of these two variables can
easily become trapped in local minima. In addition, the energy function does not explicitly
account for noise, making it potentially sensitive to measurement noise.

To address these limitations, this paper proposes a Bayesian grid-free framework
with global optimization for three-dimensional acoustic source imaging, which will be
elaborated in Section 3. The framework employs a Bayesian inference model to perform
uncertainty quantification of the source locations, source strengths, and noise parameters,
and uses the negative logarithm of the posterior distribution of the source locations as
the fitness function. To mitigate the risk of local minima associated with joint multi-
parameter optimization, a stepwise optimization strategy is adopted: a global optimization
algorithm is first applied to estimate the source locations, followed by the estimation
of the source strengths and noise parameters using fixed-point iteration and orthogonal
projection techniques.
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3. The Theoretical Description of BGG Method
3.1. 3D Grid-Free Bayesian Inference Model

In the Bayesian framework, the source locations, source strengths, and measurement
noise are all treated as random variables. The plate notation of the 3D grid-free Bayesian
inference model is shown in Figure 2.

[0 Known
O Unknown

©
l
T
o
clo

Figure 2. 3D grid-free Bayesian inference model using plate notation.

The additive noise is assumed to follow a zero-mean, complex Gaussian distribution
with mutually independent components across measurements and a variance of . Based
on this assumption and Equation (3), the likelihood function of the observed acoustic
pressure follows a complex Gaussian process with a mean of G(r)q and a covariance matrix
of X, = BI.

P(plg,r) =CN(G(r)q,Zn), ®)

where P(-) denotes a probability density function (PDF), and CA/(-) denotes a complex
Gaussian distribution.

The prior PDF represents the knowledge or expectations available before the measure-
ments are taken. Assuming that the position parameters {r, })_; are mutually independent,
their prior distribution is modeled as Gaussian with zero mean and covariance A;:

N
P(r) = HN(rn;O,/\n) =N(r;0,%,), (6)
n=1

where Z, is defined as the block diagonal matrix diag(A1,...,An). This Gaussian prior
assumes that the equivalent source positions are concentrated around the acoustic center
with independent perturbations, which is consistent with typical localization uncertainties
and facilitates analytical derivation of the posterior. Moreover, as ||7|| approaches infinity,
the prior probability density approaches zero, which is essential to ensure the integrability
of the posterior probability density function.

The hyperparameter A, governing the position variance, is assumed to follow inverse-
Gamma distributions to facilitate the analytical derivation of the posterior distribution.
This choice offers two main advantages: firstly, it guarantees the positivity of the hyper-
parameters; secondly, it is conjugate to the Gaussian distribution, thereby significantly
simplifying the inference of the posterior probability density function. Given shape and
scale parameters a, and by, the corresponding prior PDF of A, is

P(An) = ZG(Au; an, by). 7)

N
n=1

follow zero-mean complex Gaussian priors with variances ;. Formally, the joint prior

The source strength parameters {g, };"_, are assumed to be mutually independent and

distribution can be expressed as

N
P(q) = HCN(%;O,%) =CN(q;0,%,). (8)
n=1
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Pp ) =

where Z; = diag(y1,- -+, TnN)-

Within the Bayesian inference framework, the posterior distribution of the param-
eters can be estimated via the EM algorithm or MCMC sampling. However, due to the
high computational complexity of these methods, the proposed approach employs a
global optimization algorithm combined with a fitness function derived from the pos-
terior distribution to optimize the source locations. The source strength parameters are
updated via fixed-point iteration, the noise parameters are updated using orthogonal pro-
jection, and the hyperparameters are updated by leveraging the properties of the inverse
Gamma distribution.

3.2. Derivation of the Fitness Function

The simultaneous optimization of all equivalent source positions {r, })\_; constitutes
a high-dimensional joint optimization problem in RN*3. However, its computational
complexity scales exponentially with N and is prone to convergence to local optima. To
address this issue, a residual sound pressure vector p /n is constructed, and each equivalent
source position r,, is iteratively updated by solving N independent three-dimensional
optimization subproblems. The residual vector is defined as:

Pm="°P~— ; G(7s)qs, )

where G(rs) denotes the s-th column of the acoustic transfer matrix. p ,, contains contribu-
tions from the n-th equivalent source and measurement noise.

According to Bayes’ theorem and Equations (3) and (9), the posterior distribution of
the n-th equivalent source position can be expressed as

P(r” | p/n) & P(r”)P(p/n | r”l)' (10)

The marginal likelihood P(p ,, | 1), which depends only on ry, is obtained by integrating
out the latent variable g,, as it is not directly observed in P(p /n | gn, r4). The integration is
given as

Pyl 10) = [ PP | G0s7) Pa1) )

where the probability density functions of P(p,,, | g, ) and P(g,) are given by

PP | Gnrn) = (71[1%)M eXP(‘éHP/n - G(rn)ani)

Pgn) = % exp(_ |7:n|2> (12)
i [ e~ Al - L, N
e J ()G ) =l (871 - B2G(1)Ca G (1)) p ) i
where
Cn = <%+%GH<’">G(W)>{ pn = Cu G (rn)p (14)

By [exp(—(q — ) C71(q—u))dg = 7 det(C), we obtain

det(Cy)

Pl ) = gy

exp(—plh (871 = B2G(r)CaGM (1) )p ). (15)
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Apply the Woodbury identity and the matrix determinant lemma
-1 -1
(B1+ 3G (r)G(ra)) = B =B2G(ra) (& + 56" (r)G(ra))  G"(ra) = BT = B2G (1) Cu G (1) )
det(ﬁ1+ 'ynG(rn)GH(rn)) = pM det(1+ %G(TH)GH(;'”)) = pM (1 + %Gf(r)Gn(r)) = pM %
n
Hence, defining
Zp(ru) i= BI+7aG(ra) G(ra)", (17)
we can rewrite the marginal likelihood as the complex normal density
1 H -1
P(p/n |r”) = 7TM|):'p(rn)| exp(fp/n):p(rn) p/n)' (18)
Substituting the above expressions into Equation (10) yields
exp( =P/ Zp(rn) "' p/n)
P(r o< P(r 19
Taking the negative logarithm of the above equation yields
—log P(r, | p/n) = —logP(ry) + plfnzp(rn)*lp/n + log|Z, (r4) | + const, (20)

where the right-hand side consists of the position prior term, the data fitting term, and
the regularization term. The position prior incorporates prior knowledge or constraints
on ry, guiding the optimization to converge to reasonable locations. The data fitting term
measures how well the model explains the observed data, ensuring consistency between
the predicted and measured sound pressures. The regularization term models the noise,
helping to stabilize the optimization process and prevent overfitting.

Given that G(r,) is a rank-one matrix, the Sherman-Morrison formula enables simpli-
fication of the data fitting term:

G (r)p,|
B(B+1ullG(r)?)

1 Tn
Hy-1 H
p/nz‘p ("n)P/n = Bp/np/n -

(21)

By applying the matrix determinant lemma, the regularization term can be simplified as
Yall G(rn) |
log|Z,(rn)| = Mlog B+ log 1+T . (22)

Using Equations (21) and (22), the computation of the negative logarithm of P(r, | p ,,)
can be simplified.

Minimizing Equation (20) balances fitting the observed data accurately while re-
specting prior knowledge and controlling noise effects. This balance ensures that the
optimization converges to physically meaningful and statistically robust source locations.
Therefore, the negative log-posterior serves as a suitable fitness function for optimizing ry,
and the global optimization algorithm is employed to minimize this fitness function for
source position estimation.

3.3. Source Position Estimation Based on the Global Optimization Algorithm

The presence of multiple modes in the negative log-posterior presents a significant
challenge for optimization. To address this, we have implemented the Particle Swarm
Optimization (PSO) algorithm, a robust global optimization method [28,29].
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The PSO algorithm is fundamentally inspired by the collaborative behavior and
information sharing among particles within the swarm. By iteratively updating particle
positions and velocities, PSO effectively searches for the global optimum of an optimization
problem. To achieve this, each particle moves toward its personal best position pbest

and the global best position gbest found by the swarm. At each iteration, the velocity
v and position x of each particle are updated according to the following equations:

vi(t+1) =w-v;(t) +c1-r1- (pbest;(t) — xi(t)) +cp - rp - (gbest(t) — x;(t)) (23)

and
Xl'(t+1) in(t)+vi(t+1), (24)

where the subscript i denotes the particle index, and ¢ represents the current iteration
number. The inertia weight w, which decreases linearly over iterations, is employed to
balance global exploration and local exploitation. The acceleration coefficients c; and
c2 quantify a particle’s learning ability from its own experience and from the swarm,
respectively. The terms rq and ry are two independently generated random numbers
uniformly distributed in the range [0, 1], which introduce stochasticity into the algorithm
and facilitate escape from local optima. Personal best position pbest and the global best
position gbest are updated by

xi(t+1) i (xi(t+1)) < Fpbest,(t))

pbest;(t+1) =
pbest,(t) otherwise

(25)

and

gbest(t+1) = argmin f(pbest;(t+1)), (26)

pbest;(t+1)

where the fitness function f(-) corresponds to the negative log-posterior defined in
Equation (20). The objective of the optimization is therefore to locate the set of parameters
that minimizes this function, which is equivalent to maximizing the posterior probability.
Consequently, for a given residual vector p ,,, its corresponding equivalent source loca-
tion is determined by the final global best position, gbest, upon the termination of the
PSO algorithm.

3.4. Updating Source Strength, Noise, and Position Hyperparameters

The update rule for the source strength variance, y,;, which is a parameter within the
pressure covariance matrix X, (r, ), is derived by differentiating the log-posterior probability
log p(ru | p,,) with respect to 1y, and setting the result to zero. This procedure yields the
following fixed-point iteration:

'Yr(zneW) _ 'Yr<101d) ) GH(rn)Z;;l(er)pirlsz/angjl(VH)G("VI) . 27)
G (rn)Z, (ra)G(rn)

This iteration can be interpreted as a reweighting scheme. Specifically, if the contribution of
the n-th equivalent source to the residual field power is larger than its modeled contribution,
its corresponding variance vy, is adjusted upward. Conversely, if its contribution is smaller,
Yn is decreased.

The noise variance p is updated using an orthogonal projection method. First, an
orthogonal projection matrix is constructed as:

HL =1- Gpeak(r) G;eak(r)l (28)



Appl. Sci. 2025, 15, 11028

90f19

where Gpeak(r) € CM*K s the transfer matrix composed of the column vectors corre-
sponding to the K strongest equivalent sources, and (-)* denotes the Moore-Penrose
pseudoinverse. This matrix projects the observed pressure vector p onto the subspace
orthogonal to that spanned by the basis functions of the identified sources. The resulting
noise variance is then estimated as:

Re [tr(HLppH)}

(new) _
p 2, 29)

where the numerator represents the residual energy in the projected subspace, while the
denominator, M — K, accounts for the degrees of freedom, providing an unbiased estimate
of the noise variance.

The position hyperparameter A, is updated using the expectation of its posterior
distribution. For an inverse-gamma distribution, ZG(a, b), the mean is given by b/ (a — 1).
Hence, the update rule for A, is expressed as

)\(new) = bEOSt = bn + rzlﬂAilrn (30)
! -1 (4 +3N)-1

3.5. Termination Criteria and Algorithm Procedure
The algorithm terminates when either the maximum number of iterations is reached
or the convergence criterion is satisfied, given by
=2 2/ A 2 <, (31)
where v = [y1,---,Yn], the superscript [k] indicates the iteration index, and ¢ repre-

sents the convergence threshold. The procedure involved in the BBG algorithm is briefly
explained in Algorithm 1.

Algorithm 1: Bayesian grid-free framework with global optimization for three-
dimensional acoustic source imaging (BGG)

Input : Initial source positions r, initial covariance matrix Zr,Xq, Ly, measured
data p, iteration steps K, number of Equivalent Sources N, convergence
threshold e

Output: Final source positions r, final covariance matrix X,

1 fork + 1to K do

2 forn < 1to N do

3 Compute residual pressure vector p ,,, by Equation (9);
Update 1y, through the PSO algorithm;

Update Ay, using Equation (30) ;

o1

6 end

7 Update X, using Equation (27) ;

8 Update X, using Equation (29) ;

o | ifk=Kor || yM — 4/ v*1 |2 < € then
10 break

1 end

12 end
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4. Simulations and Experiments on Spatially Distributed Acoustic
Source Localization

4.1. Simulation and Experiment Setup

To validate the proposed method, both numerical simulations and experiments were
conducted using the setup shown in Figure 3. In the simulations, three pulsating-sphere
sources were placed at A (0.20, 0.23, 0.30) m, B (0.03, 0.00, 0.20) m, and C (—0.20, —0.10,
0.22) m to emulate a spatially distributed acoustic scene. Each source had a radius of
0.04 m and a surface vibration velocity of 0.03 m/s, generating in-phase sinusoidal signals.
To evaluate the robustness of the algorithm against interference, Gaussian white noise with
varying levels from 0 dB to 30 dB, in steps of 5 dB, was added to the original signals. In
the experiments, the speakers were positioned identically to the simulated sources and
driven with the same in-phase sinusoidal signals, with Gaussian white noise at 30 dB
added. In both simulations and experiments, the acoustic signals were acquired by two
orthogonal microphone arrays: an 89-element top array located on the z = 0.5 m plane
and a 32-element side array on the y = 1 m plane. In the simulations, array signals were
generated for 27 frequencies ranging from 400 Hz to 3000 Hz in 100 Hz increments to
evaluate algorithmic performance. In contrast, the experiments were conducted at eight
discrete frequencies: [400, 600, 800, 1000, 1500, 2000, 2500, 3000] Hz. The search space for
source localization was defined as x € [—0.5,0.5] m, y € [—0.5,0.5] m, and z € [0,0.5] m.

Side array

@) (b)

Figure 3. The layout of the sound sources and the microphone array. (a) Simulation: Three sources,
labeled A, B, and C, are located at (0.20, 0.23, 0.30) m, (0.03, 0.00, 0.20) m, and (-0.20, -0.10, 0.22) m,
respectively. The microphone array configuration includes an 89-element top array positioned in the
z = 0.5 m plane and a 32-element side array in the y = 1 m plane. (b) Experiment: Measured layout of
the same sources and microphone array as in the simulation.

For 3D acoustic source localization, we compared our method against three bench-
marks: the on-grid beamforming algorithm Clean-SC, and two grid-free algorithms based
on differential evolution (GF-DE) and Hamiltonian Monte Carlo (GF-HMC). The Clean-SC
algorithm was implemented with a spatial resolution of 0.01 m, utilizing the steering vector
from Formulation III as described by Sarradj [30]. For the grid-free algorithms, the number
of equivalent sources (N) was set to 5. Following the methodology in [15], the GE-DE
algorithm was configured with the following key parameters: a population size of 128N, a
crossover probability of 0.75, a scale factor of 0.8, and a maximum of 200 generations. The
GF-HMC algorithm employed a leapfrog integration procedure with a fixed step size of
0.005 and a step count of 40. In the BGG algorithm, the PSO algorithm is configured as
follows: the population size was set to 128N (where N denotes the number of equivalent
sources). The inertia weight was linearly decreased from 1.1 to 0.1 throughout the iterations,
while both acceleration coefficients, c¢; and ¢y, were fixed at 1.49 to balance exploration
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and exploitation. The optimization process was terminated when the fitness improve-
ment between consecutive iterations fell below 10~°, or when the maximum number of
200 iterations was reached.

To quantitatively evaluate the performance of the 3D acoustic source localization
methods, we use two indicators: the absolute localization error (ALE) and the sound
pressure level (SPL) estimation error (SEE). The spatial localization error for the i-th
source, ALE(, is calculated as the Euclidean distance between the estimated and actual
source positions:

ALE® — \/(xl(z‘) _ xgi))z n (yl(i) _ y((]i))Z N (Zl(z') _ Z(()i)>2/ (32)

(i) @) @ @ (@)

Yo +Zo ) is the estimated position from the localization map and (x,”,,",z,")

()

where (xoi
is the ground-truth (actual) position of the i-th source. The indicator SEE is defined as:
SEE =

Lt — L85, (33)

where L;’ft is the estimated SPL and L;,‘Ef is the reference SPL. Both values are normalized
relative to the maximum source power. In summary, ALE assesses localization accuracy,
while SEE quantifies the precision of source strength estimation.

4.2. Simulation Results and Analysis

Figure 4 compares the simulation localization performance of four algorithms at 400,
1000, and 3000 Hz. The true source positions are indicated by pink circles, while squares
represent the estimated locations, with their color mapped to the normalized SPL. Among
all source identification results, the GF-HMC method demonstrates the highest localization
accuracy, successfully resolving all sources across the entire 400-3000 Hz frequency range.
The proposed BGG algorithm achieves the second-best performance; while it accurately
identifies the sources at 1000 Hz and 3000 Hz, its precision for Source B at (0.03, 0.00,
0.20) m is inferior to that of GF-HMC at 400 Hz. Although both algorithms optimize the
same negative log-posterior objective function, HMC achieves superior optimization by
constructing Hamiltonian energy, outperforming the PSO-based approach used in BGG.
In contrast, the performance of the GF-DE algorithm degrades as the source frequency
decreases, with a corresponding decline in the estimation accuracy of both source position
and amplitude. This is attributed to its simultaneous optimization of position and strength,
which renders it more susceptible to converging to local optima at lower frequencies.
Finally, the Clean-SC method, being constrained by the Rayleigh criterion, exhibits lower
resolution than the other acoustic inverse methods. Consequently, it is only capable of
identifying the 3000 Hz source.

Figure 5 presents a quantitative comparison of the algorithms” localization perfor-
mance in the simulations, based on absolute localization error and SPL estimation error.
Panels (a) and (b) show the error trends as a function of frequency, averaged across the
three sources. Panels (c) and (d) present the corresponding errors for each individual source
after averaging across the frequency range. As shown in Figure 5a,b, both ALE and SEE
show an increasing trend as frequency decreases. This phenomenon is attributed to the
greater difficulty in source identification at lower frequencies, where the spatial rate of
phase change slows. Among all evaluated methods, the proposed BGG algorithm and
GF-HMC exhibit the best performance. Notably, at frequencies above 600 Hz, the BGG
algorithm’s ALE and SEE are nearly consistently lower than those of GF-HMC, with a
particularly pronounced advantage above 2000 Hz. This suggests that the PSO-based opti-
mization in BGG is more effective than HMC for the same negative log-posterior objective
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function in this high-frequency regime, likely due to the fixed step size and step count used
in our HMC implementation. Conversely, below 600 Hz, the ALE and SEE of the BGG
algorithm are higher than those of GF-HMC. This reversal suggests that by constructing
Hamiltonian energy, HMC is more capable of surmounting potential energy barriers of
local optima to find the global minimum, a distinct advantage over PSO at challenging
low frequencies.
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Figure 4. Comparative simulation results of the localization performance of the four algorithms
at 400, 1000, and 3000 Hz. The ground-truth source positions are marked with pink circles, while
the locations estimated by the algorithms are represented by squares. The color of each square
corresponds to the normalized SPL.

As shown in Figure 5c,d, the BGG algorithm demonstrates the best overall source
identification performance. Its ALE, averaged across all frequencies, is less than 0.018 m,
and its average SEE is below 1.71 dB. Compared to GF-DE, BGG achieves superior accuracy
in both source localization and strength estimation. This suggests that BGG’s negative

log-posterior fitness function is more effective than the CSM energy function used by
GF-DE.
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Figure 5. Comparison of absolute localization and SPL estimation errors across four algorithms.

(a,b) Error as a function of frequency, averaged over all sources. (c,d) Errors for each individual
source, averaged over all frequencies. In the bar charts, the height and color of each bar indicate the
error magnitude.

Figure 6 compares the negative log-posterior obtained by GF-HMC and BGG for
Source B at (0.03, 0.00, 0.20) m at 400 Hz (Figure 6a) and 3000 Hz (Figure 6b). The larger
number of iterations required by both algorithms at 400 Hz, as shown in Figure 6, reflects
the greater difficulty of source localization at this lower frequency compared to 3000 Hz.
At 400 Hz, the source identification results of BGG are inferior to those of GF-HMC. This
performance difference arises from the final negative log-posterior value, which is lower
for GF-HMC's leapfrog integration than for BGG's particle swarm optimization. However,
the negative log-posterior value obtained by GF-HMC is not the global minimum, which
explains the discrepancy between its localization result and the ground truth. Conversely, at
3000 Hz, BGG attains a lower negative log-posterior value than GF-HMC, which accounts
for BGG’s smaller ALE and SEE at this frequency. Overall, these results confirm that the
negative log-posterior functions as an effective fitness function for optimizing acoustic
source locations.

Figure 7 presents the comparison of absolute localization error and sound pressure
level (SPL) estimation error as functions of the signal-to-noise ratio (SNR). Both ALE and
SEE are averaged over 27 frequencies ranging from 400 Hz to 3000 Hz. As shown in the
figure, the ALE and SEE of the GF-DE and Clean-SC algorithms remain almost unchanged
with decreasing SNR, whereas those of the HMC and BGG algorithms increase significantly.
This is because variations in SNR primarily affect the low-frequency performance of the
HMC and BGG algorithms, while the GF-DE and Clean-5C methods already exhibit poor
accuracy at low frequencies and are therefore less sensitive to noise levels. Owing to its use
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of Hamiltonian dynamics, the HMC algorithm demonstrates stronger noise robustness at
low frequencies, resulting in lower ALE values compared with the BGG algorithm.
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Figure 6. Comparison of the negative log-posterior objective function for Source B located at (0.03,
0.00, 0.20) m, evaluated at 400 Hz (a) and 3000 Hz (b). Both the GF-HMC and BGG algorithms aim to

minimize this function.
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Figure 7. Comparison of absolute localization and SPL estimation errors as a function of SNRs.
(a) Absolute localization errors versus SNRs. (b) SPL estimation errors versus SNRs.

Table 1 shows the average computation time of the four algorithms, measured in CPU
seconds from MATLAB R2022a implementations across 27 frequencies. All algorithms
are executed in MATLAB on a 13th Gen Intel(R) Core(TM) i9-13900KF processor (Intel
Corporation, Santa Clara, CA, USA). It can be seen from the table that the computation time
of BGG is slightly higher than that of GF-DE, primarily because evaluating the negative log-
posterior involves greater computational effort than the CSM energy function. However,
the computation time of BGG is nearly one-quarter that of GF-HMC, since BGG employs
PSO to optimize the negative log-posterior, which is far less computationally intensive than

leapfrog integration.

Table 1. Average computation time (CPU seconds) of the four algorithms over 27 frequencies.

Clean-SC GF-DE GF-HMC BGG
3.30 21.27 109.85 27.58

Figure 8 illustrates the computational time of the GF-DE, GF-HMC, and BGG algo-
rithms as a function of the number of equivalent sources. It can be observed that the
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runtime of all three algorithms increases nearly linearly with the number of sources. For
the GF-HMC and BGG algorithms, this linear trend arises because the optimization of
equivalent source positions is decomposed into N independent subproblems through
the construction of the residual sound pressure vector. Although the GF-DE algorithm
simultaneously optimizes all source parameters, its computational complexity is primarily
dictated by the evaluation cost of the fitness function. Each evaluation for a candidate
solution—encompassing all N sources—requires computing the complete sound field at
M microphones. This process, dominated by operations involving an M x N transfer
matrix, exhibits a computational complexity of O(MN). Consequently, for a fixed M, the
evaluation cost scales linearly with N, leading to the overall near-linear increase in runtime.
While the exact optimization time may vary slightly depending on the initialization, the
overall computational cost of the BGG and GF-DE algorithms remains comparable and
significantly lower than that of GF-HMC.

400 : : : :
300
@
© 200
=
100
O L L L 'l
3 4 5 6 7 8

Number of equivalent sources

Figure 8. Computational time comparison of the GF-DE, GF-HMC, and BGG algorithms as a function
of the number of equivalent sources.

4.3. Experiment Results and Analysis

Figure 9 compares the experiment localization performance of four algorithms at
400, 1000, and 3000 Hz. The true source positions are indicated by pink circles, while
squares represent the estimated locations, with their color mapped to the normalized
SPL. As shown in Figure 9, the proposed BGG algorithm achieves better localization
performance than the CleanSC and GF-DE algorithms. This improvement arises because
BGG employs the negative log-posterior of the equivalent source positions as the fitness
function, which provides a more accurate fit to the measured data while mitigating the
impact of experimental noise. The only exception occurs at 400 Hz, where the localization
of Source B at (0.03, 0.00, 0.20) m by BGG is slightly inferior to that of GF-HMC, primarily
due to the reduced resolution of the algorithm at low frequencies.

Figure 10 presents a quantitative comparison of the algorithms” localization perfor-
mance in the experiments, based on absolute localization error and SPL estimation error.
Panels (a) and (b) show the error trends as a function of frequency, averaged across the
three sources. Panels (c) and (d) present the corresponding errors after averaging across
the frequency range.
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As shown in Figure 10a,b, the ALE and SEE of the proposed BGG algorithm are
relatively high below 800 Hz due to deviations in the estimated position and amplitude
of Source B at (0.03, 0.00, 0.20) m. However, above 800 Hz, the ALE and SEE achieved
by BGG are substantially lower than those of the CleanSC and GF-DE algorithms. This
demonstrates the advantage of using the negative log-posterior as the fitness function
over the CSM energy function adopted by GF-DE, as well as the superiority of acoustic
inverse methods compared with beamforming approaches. In comparison with GE-HMC,
the benefit of the proposed algorithm is most pronounced above 2000 Hz. This is because
GF-HMC employs a fixed number of leapfrog steps with a fixed step size, which limits
its ability to explore the solution space, whereas the PSO in BGG provides stronger local
exploration capability. As shown in Figure 10c,d, the BGG algorithm achieves an average
ALE of 0.032 m across all frequencies. Although slightly higher than GF-HMC due to the
poorer localization performance of Source B at low frequencies, it is 0.015 m lower than
that of GF-DE. The average SEE of BGG is 1.78 dB, the lowest among all algorithms, being
0.79 dB lower than GF-DE and 0.19 dB lower than GF-HMC. In summary, the proposed
BGG algorithm demonstrates a superior balance between computational efficiency and
localization accuracy compared with other state-of-the-art grid-free approaches.
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Figure 9. Comparative experiment results of the localization performance of four algorithms at
400, 1000, and 3000 Hz. The ground-truth source positions are marked with pink circles, while
the locations estimated by the algorithms are represented by squares. The color of each square
corresponds to the normalized SPL.
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Figure 10. Comparison of absolute localization and SPL estimation errors across four algorithms.
(a,b) Error as a function of frequency, averaged over all sources. (c,d) Errors averaged over
all frequencies.

5. Conclusions

This study has proposed a novel Bayesian Grid-free framework with Global opti-
mization (BGG) for three-dimensional acoustic source imaging. In this framework, a
Bayesian inference model is constructed based on equivalent source theory. The negative
log-posterior of the equivalent source positions is employed as the fitness function, re-
placing the conventional Cross-Spectral Matrix (CSM) energy function. To optimize this
function, a global optimization algorithm (Particle Swarm Optimization, PSO) is used to
estimate the source positions, offering an alternative to traditional Hamiltonian Monte
Carlo (HMC) methods. The effectiveness and robustness of the proposed BGG method
are validated through comprehensive simulations and experiments involving spatially
distributed acoustic sources.

Compared with HMC-based grid-free algorithm, BGG requires only one-quarter of the
computation time and achieves superior localization performance above 800 Hz, particu-
larly above 2000 Hz. Compared with differential-evolution-based grid-free algorithm, BGG
exhibits similar computation time while reducing the absolute localization error by 0.015 m
and the SPL estimation error by 0.79 dB. Overall, BGG demonstrates the best balance be-
tween computational efficiency and source localization accuracy among grid-free methods.
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