Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (117)

Search Parameters:
Keywords = soy fiber

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 2306 KiB  
Article
Optical Path Design of an Integrated Cavity Optomechanical Accelerometer with Strip Waveguides
by Chengwei Xian, Pengju Kuang, Zhe Li, Yi Zhang, Changsong Wang, Rudi Zhou, Guangjun Wen, Yongjun Huang and Boyu Fan
Photonics 2025, 12(8), 785; https://doi.org/10.3390/photonics12080785 - 4 Aug 2025
Viewed by 127
Abstract
To improve the efficiency and stability of the system, this paper proposes a monolithic integrated optical path design for a cavity optomechanical accelerometer based on a 250 nm top silicon thickness silicon-on-insulator (SOI) wafer instead of readout through U-shape fiber coupling. Finite Element [...] Read more.
To improve the efficiency and stability of the system, this paper proposes a monolithic integrated optical path design for a cavity optomechanical accelerometer based on a 250 nm top silicon thickness silicon-on-insulator (SOI) wafer instead of readout through U-shape fiber coupling. Finite Element Analysis (FEA) and Finite-Difference Time-Domain (FDTD) methods are employed to systematically investigate the performance of key optical structures, including the resonant modes and bandgap characteristics of photonic crystal (PhC) microcavities, transmission loss of strip waveguides, coupling efficiency of tapered-lensed fiber-to-waveguide end-faces, coupling characteristics between strip waveguides and PhC waveguides, and the coupling mechanism between PhC waveguides and microcavities. Simulation results demonstrate that the designed PhC microcavity achieves a quality factor (Q-factor) of 2.26 × 105 at a 1550 nm wavelength while the optimized strip waveguide exhibits a low loss of merely 0.2 dB over a 5000 μm transmission length. The strip waveguide to PhC waveguide coupling achieves 92% transmittance at the resonant frequency, corresponding to a loss below 0.4 dB. The optimized edge coupling structure exhibits a transmittance of 75.8% (loss < 1.2 dB), with a 30 μm coupling length scheme (60% transmittance, ~2.2 dB loss) ultimately selected based on process feasibility trade-offs. The total optical path system loss (input to output) is 5.4 dB. The paper confirms that the PhC waveguide–microcavity evanescent coupling method can effectively excite the target cavity mode, ensuring optomechanical coupling efficiency for the accelerometer. This research provides theoretical foundations and design guidelines for the fabrication of high-precision monolithic integrated cavity optomechanical accelerometers. Full article
Show Figures

Figure 1

46 pages, 5039 KiB  
Review
Harnessing Insects as Novel Food Ingredients: Nutritional, Functional, and Processing Perspectives
by Hugo M. Lisboa, Rogério Andrade, Janaina Lima, Leonardo Batista, Maria Eduarda Costa, Ana Sarinho and Matheus Bittencourt Pasquali
Insects 2025, 16(8), 783; https://doi.org/10.3390/insects16080783 - 30 Jul 2025
Viewed by 586
Abstract
The rising demand for sustainable protein is driving interest in insects as a raw material for advanced food ingredients. This review collates and critically analyses over 300 studies on the conversion of crickets, mealworms, black soldier flies, and other farmed species into powders, [...] Read more.
The rising demand for sustainable protein is driving interest in insects as a raw material for advanced food ingredients. This review collates and critically analyses over 300 studies on the conversion of crickets, mealworms, black soldier flies, and other farmed species into powders, protein isolates, oils, and chitosan-rich fibers with targeted techno-functional roles. This survey maps how thermal pre-treatments, blanch–dry–mill routes, enzymatic hydrolysis, and isoelectric solubilization–precipitation preserve or enhance the water- and oil-holding capacity, emulsification, foaming, and gelation, while also mitigating off-flavors, allergenicity, and microbial risks. A meta-analysis shows insect flours can absorb up to 3.2 g of water g−1, stabilize oil-in-water emulsions for 14 days at 4 °C, and form gels with 180 kPa strength, outperforming or matching eggs, soy, or whey in specific applications. Case studies demonstrate a successful incorporation at 5–15% into bakery, meat analogs and dairy alternatives without sensory penalties, and chitin-derived chitosan films extend the bread shelf life by three days. Comparative life-cycle data indicate 45–80% lower greenhouse gas emissions and land use than equivalent animal-derived ingredients. Collectively, the evidence positions insect-based ingredients as versatile, safe, and climate-smart tools to enhance food quality and sustainability, while outlining research gaps in allergen mitigation, consumer acceptance, and regulatory harmonization. Full article
(This article belongs to the Special Issue Insects and Their Derivatives for Human Practical Uses 3rd Edition)
Show Figures

Figure 1

20 pages, 1056 KiB  
Article
Dual Production of Full-Fat Soy and Expanded Soybean Cake from Non-GMO Soybeans: Agronomic and Nutritional Insights Under Semi-Organic Cultivation
by Krystian Ambroziak and Anna Wenda-Piesik
Appl. Sci. 2025, 15(15), 8154; https://doi.org/10.3390/app15158154 - 22 Jul 2025
Viewed by 254
Abstract
The diversification of plant protein sources is a strategic priority for European food systems, particularly under the EU Green Deal and Farm to Fork strategies. In this study, dual production of full-fat soy (FFS) and expanded soybean cake (ESC) was evaluated using non-GMO [...] Read more.
The diversification of plant protein sources is a strategic priority for European food systems, particularly under the EU Green Deal and Farm to Fork strategies. In this study, dual production of full-fat soy (FFS) and expanded soybean cake (ESC) was evaluated using non-GMO soybeans cultivated under semi-organic conditions in Central Poland. Two agronomic systems—post-emergence mechanical weeding with rotary harrow weed control (P1) and conventional herbicide-based control (P2)—were compared over a four-year period. The P1 system produced consistently higher yields (e.g., 35.6 dt/ha in 2024 vs. 33.4 dt/ha in P2) and larger seed size (TSW: up to 223 g). Barothermal and press-assisted processing yielded FFS with protein content of 32.4–34.5% and oil content of 20.8–22.4%, while ESC exhibited enhanced characteristics: higher protein (37.4–39.0%), lower oil (11.6–13.3%), and elevated dietary fiber (15.8–16.3%). ESC also showed reduced anti-nutritional factors (e.g., trypsin inhibitors and phytic acid) and remained microbiologically and oxidatively stable over six months. The semi-organic P1 system offers a scalable, low-input approach to local soy production, while the dual-product model supports circular, zero-waste protein systems aligned with EU sustainability targets. Full article
(This article belongs to the Special Issue Innovative Engineering Technologies for the Agri-Food Sector)
Show Figures

Figure 1

17 pages, 2405 KiB  
Article
Development of Soy-Based Meat Analogues via Wet Twin-Screw Extrusion: Enhancing Textural and Structural Properties Through Whole Yeast Powder Supplementation
by Shikang Tang, Yidian Li, Xuejiao Wang, Linyan Zhou, Zhijia Liu, Lianzhou Jiang, Chaofan Guo and Junjie Yi
Foods 2025, 14(14), 2479; https://doi.org/10.3390/foods14142479 - 15 Jul 2025
Viewed by 411
Abstract
Amid growing global concerns about environmental sustainability and food security, plant-based meat substitutes have emerged as a promising alternative to conventional meat. However, current formulations, especially those based on soy protein isolate (SPI) often fail to replicate the desired texture and structural integrity. [...] Read more.
Amid growing global concerns about environmental sustainability and food security, plant-based meat substitutes have emerged as a promising alternative to conventional meat. However, current formulations, especially those based on soy protein isolate (SPI) often fail to replicate the desired texture and structural integrity. To address this limitation, this study aimed to evaluate the use of whole yeast powder (WYP) combined with SPI for producing plant-based meat analogues via high-moisture extrusion. Seven groups were designed: a control group with 0% WYP, five treatment groups with 5%, 10%, 20%, 30%, and 40% WYP, and one reference group containing 20% yeast protein powder (YPP). Although lower in protein content than yeast protein powder (YPP), whole yeast powder exhibits superior water-binding capacity and network-forming ability owing to its complex matrix and fiber content. At a 20% inclusion level, whole yeast powder demonstrated a higher fibrous degree (1.84 ± 0.02 vs. 1.81 ± 0.04), greater hardness (574.93 ± 5.84 N vs. 531.18 ± 17.34 N), and increased disulfide bonding (95.33 ± 0.92 mg/mL vs. 78.41 ± 0.78 mg/mL) compared to 20% YPP. Scanning electron microscopy (SEM) and low-field nuclear magnetic resonance (LF-NMR) revealed that whole yeast powder facilitated the formation of aligned fibrous networks and enhanced water binding. Fourier transform infrared spectroscopy (FTIR) confirmed an increase in β-sheet content (0.267 ± 0.003 vs. 0.260 ± 0.003), which contributed to improved protein aggregation. Increasing the WYP content to 30–40% led to a decline in these parameters, including a reduced fibrous degree (1.69 ± 0.06 at 40% WYP) and weakened molecular interactions (p < 0.05). The findings highlight 20% WYP as the optimal substitution level, offering superior textural enhancement and fibrous structure formation compared to YPP. These results suggest that WYP is not only a cost-effective and processing-friendly alternative to YPP but also holds great promise for scalable industrial application in the plant-based meat sector. Its compatibility with extrusion processes and ability to improve sensory and structural attributes supports its relevance for sustainable meat analogue production. Full article
(This article belongs to the Section Plant Foods)
Show Figures

Figure 1

18 pages, 2866 KiB  
Article
Mechanisms of Exogenous L-Lysine in Influencing the Quality of Low-Sodium Marinated Braised Beef
by Chongxian Zheng, Pengsen Wang, Mingming Huang, Tong Jiang, Jianying Zhao, Yanwei Mao and Huixin Zuo
Foods 2025, 14(13), 2302; https://doi.org/10.3390/foods14132302 - 28 Jun 2025
Viewed by 290
Abstract
During the processing of marinated braised beef, excessive sodium intake is likely to occur, which can lead to various health issues. Exogenous L-lysine (L-Lys), as an essential amino acid for the human body, has the capability to enhance the quality of low-sodium meat [...] Read more.
During the processing of marinated braised beef, excessive sodium intake is likely to occur, which can lead to various health issues. Exogenous L-lysine (L-Lys), as an essential amino acid for the human body, has the capability to enhance the quality of low-sodium meat products. This study aimed to investigate the effects of exogenous L-Lys on the quality of low-sodium plain boiled beef and marinated braised beef, as well as its underlying mechanisms of action. Among them, the substitution rate of KCl was 60%. This study was conducted with three batches of experiments, each batch serving as an independent parallel. For low-sodium plain boiled beef, the optimal addition level of L-Lys was screened out through the research on the effects on meat quality indicators, water distribution, microstructure, and sensory evaluation. For the quality of low-sodium plain boiled beef, in terms of microstructure, the addition of L-Lys reduced muscle fiber breakage and voids, thereby improving its microstructural characteristics. Combined with quantitative descriptive analysis (QDA), the optimal level of additional L-Lys was subsequently determined to be 0.6%. It was further processed into marinated braised beef in soy sauce, and a comparative analysis was conducted with low-sodium marinated braised beef in soy sauce without L-Lys addition for shear force, meat color, thiobarbituric acid reactive substances (TBARS), and total viable count (TVC) during the storage periods of 0, 3, 6, 9, and 12 d. The results show that the redness (a*) value significantly increased within 0–12 d (p < 0.05), leading to a more stable meat color. Moreover, the addition of L-Lys significantly reduced the shear force and thiobarbituric acid reactive species (TBARS) values in the marinated braised beef (p < 0.05), thereby optimizing the tenderness of the marinated braised beef and inhibiting lipid oxidation. Although the total viable count (TVC) of the L-Lys group was higher than that of conventional low-sodium marinated braised beef in soy sauce from 9 to 12 d, both groups of products had undergone spoilage by day 12; therefore, the addition of L-Lys had no effect on the shelf life of the products. Comprehensive analysis suggested that the addition of exogenous L-Lys could optimize beef quality by enhancing hydration, improving muscle structural properties, and exerting antioxidant synergistic effects. Full article
(This article belongs to the Special Issue Animal Source Food Processing and Quality Control)
Show Figures

Figure 1

21 pages, 576 KiB  
Article
A Comprehensive Study on the Nutritional Profile and Shelf Life of a Custom-Formulated Protein Bar Versus a Market-Standard Product
by Corina Duda-Seiman, Liliana Mititelu-Tartau, Simona Biriescu, Alexandra-Loredana Almășan, Bianca-Oana Bitu, Adina-Ioana Bucur, Andrei Luca, Bogdan Hoinoiu and Teodora Hoinoiu
Foods 2025, 14(12), 2141; https://doi.org/10.3390/foods14122141 - 19 Jun 2025
Viewed by 1984
Abstract
Background: With growing interest in healthy lifestyles, protein bars have gained popularity. However, many commercial bars contain excessive calories, sugar, and artificial additives that undermine their health benefits. This study aimed to develop a protein bar using natural ingredients with a balanced macronutrient [...] Read more.
Background: With growing interest in healthy lifestyles, protein bars have gained popularity. However, many commercial bars contain excessive calories, sugar, and artificial additives that undermine their health benefits. This study aimed to develop a protein bar using natural ingredients with a balanced macronutrient profile. Method: The protein bar formulation used soy protein extract, a plant-based protein source, known for its complete amino acid profile but limited in methionine, which was complemented by oats to nutritionally balance this deficiency. A database was created to evaluate the cost-effectiveness of commercially available protein bars based on consumer feedback. The experimental bar was tested for nutritional value, shelf life, and physiological impact, using only natural ingredients for texture, flavor, and stability. Results: The experimental protein bar had higher protein and fiber content than a selected commercial bar but a shorter shelf life (7 days vs. 90 days) due to the absence of preservatives. The database helped identify target consumer groups and ensure the product was affordable and nutritionally effective. Conclusion: This study demonstrates that using natural, complementary ingredients can create a protein bar with a more balanced nutrient profile while avoiding harmful additives. The final product supports muscle protein synthesis through its high-quality protein content and promotes glycemic control and satiety via its fiber-rich, low-sugar formulation and metabolic processes, offering a healthier alternative to commercial options, with a focus on consumer health and cost-effectiveness. Full article
(This article belongs to the Special Issue Advances in Improvement and Fortification of Cereal Food)
Show Figures

Figure 1

14 pages, 1905 KiB  
Article
Nutrient Availability and Pathogen Clearance Impact Microbiome Composition in a Gnotobiotic Kimchi Model
by Devin H. Bemis, Carly E. Camphausen, Esther Liu, Joshua J. Dantus, Josue A. Navarro, Kieren Leif Dykstra, Leila A. Paltrowitz, Mariia Dzhelmach, Markus Joerg, Pamil Tamelessio and Peter Belenky
Foods 2025, 14(11), 1948; https://doi.org/10.3390/foods14111948 - 30 May 2025
Viewed by 802
Abstract
Kimchi is a fermented Korean food typically made with napa cabbage, garlic, radish, ginger, and chili pepper. It is becoming increasingly popular due to its flavor, high fiber content, and purported probiotic benefits. The microbial ecology of the fermentation community has been extensively [...] Read more.
Kimchi is a fermented Korean food typically made with napa cabbage, garlic, radish, ginger, and chili pepper. It is becoming increasingly popular due to its flavor, high fiber content, and purported probiotic benefits. The microbial ecology of the fermentation community has been extensively studied, though what’s less understood is how its microbial community changes when nutrients or pathogens are introduced. To study this, we used gnotobiotic cabbage media inoculated with a kimchi starter culture as a model system. These inoculated samples were exposed to E. coli or Bacillus cereus, with or without added nutrients in the form of tryptic soy broth (TSB). We tracked pH, colony-forming units (CFUs), and community composition over time. We also used Oxford Nanopore sequencing to analyze the 16S rRNA gene (V4–V9), followed by use of the Emu algorithm for taxonomic assignments. As expected, LABs suppressed pathogens, but this effect was weaker early on in the nutrient-rich condition. Pathogen exposure changed the overall community—Lactobacillus species became more common, and Leuconostoc mesenteroides less so. Interestingly, adding nutrients alone caused similar microbial shifts to those seen with pathogen exposure. This could suggest that nutrient levels have a larger impact on the final microbiome structure than direct microbial competition. Together, these findings suggest that monitoring total microbial composition, and not just the presence of pathogens, may be important for ensuring kimchi fermentation reproducibility. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Figure 1

21 pages, 4203 KiB  
Article
Multiscale Characterization of Rice Starch Gelation and Retrogradation Modified by Soybean Residue (Okara) and Extracted Dietary Fiber Using Rheology, Synchrotron Wide-Angle X-Ray Scattering (WAXS), and Fourier Transform Infrared (FTIR) Spectroscopy
by Aunchalee Aussanasuwannakul and Suparat Singkammo
Foods 2025, 14(11), 1862; https://doi.org/10.3390/foods14111862 - 23 May 2025
Viewed by 711
Abstract
Okara, the soybean residue from soy milk and tofu production, offers significant potential as a sustainable, fiber-rich ingredient for starch-based and gluten-free food systems. This study investigates the comparative effects of whole okara and its extracted dietary fiber (DF) on the retrogradation, rheological [...] Read more.
Okara, the soybean residue from soy milk and tofu production, offers significant potential as a sustainable, fiber-rich ingredient for starch-based and gluten-free food systems. This study investigates the comparative effects of whole okara and its extracted dietary fiber (DF) on the retrogradation, rheological properties, and nanostructural organization of rice starch (RS) gels. Rice starch suspensions were blended with 5–20% (dry basis) of either whole okara or DF, thermally gelatinized, and analyzed using dynamic rheology, synchrotron-based Wide-Angle X-ray Scattering (WAXS), and Fourier Transform Infrared (FTIR) spectroscopy. DF markedly reduced the gelation temperature and enhanced storage modulus (G′), indicating earlier and stronger gel network formation. WAXS analysis showed that DF more effectively disrupted long-range molecular ordering, as evidenced by suppressed crystallinity development and disrupted molecular ordering within the A-type lattice. FTIR spectra revealed intensified O–H stretching and new ester carbonyl bands, with progressively higher short-range molecular order (R1047/1022) in DF-modified gels. While whole okara provided moderate retrogradation resistance and contributed to network cohesiveness via its matrix of fiber, protein, and lipid, DF exhibited superior retrogradation inhibition and gel stiffness due to its purity and stronger fiber–starch interactions. These results highlight the functional divergence of okara-derived ingredients and support their targeted use in formulating stable, fiber-enriched, starch-based foods. Full article
Show Figures

Graphical abstract

18 pages, 6196 KiB  
Article
Optical Fiber Pressure Sensor with Self-Temperature Compensation Structure Based on MEMS for High Temperature and High Pressure Environment
by Ke Li, Yongjie Wang, Gaochao Li, Zhen Xu, Yuanyuan Liu, Ancun Shi, Xiaoyan Yu and Fang Li
Photonics 2025, 12(3), 258; https://doi.org/10.3390/photonics12030258 - 13 Mar 2025
Viewed by 774
Abstract
To meet the pressure measurement requirements of deep earth exploration, we propose an OFPS (optical fiber pressure sensor) with self-temperature compensation based on MEMS technology. A spectral extraction and filtering algorithm, based on FFT (fast Fourier transform), was designed to independently demodulate the [...] Read more.
To meet the pressure measurement requirements of deep earth exploration, we propose an OFPS (optical fiber pressure sensor) with self-temperature compensation based on MEMS technology. A spectral extraction and filtering algorithm, based on FFT (fast Fourier transform), was designed to independently demodulate the composite spectra of multiple FP (Fabry–Pérot) cavities, enabling the simultaneous measurement of pressure and temperature parameters. The sensor was fabricated by etching on an SOI (silicon on insulator) and bonding with glass to form pressure-sensitive FP cavities, with the glass itself serving as the temperature-sensitive component as well as providing temperature compensation for pressure sensing. Experimental results showed that within the pressure range of 0–100 MPa, the sensor exhibited a sensitivity of 0.566 nm/MPa, with a full-scale error of 0.34%, and a linear fitting coefficient (R2) greater than 0.9999. Within the temperature range of 0–160 °C, the temperature sensitivity of the glass cavity is 0.0139 nm/°C and R2 greater than 0.999. Full article
Show Figures

Figure 1

20 pages, 3877 KiB  
Article
An Evaluation of Soybean Protein Concentrate as a Replacement for Fish Meal with Methionine Supplementation in Diets for Hybrid Sturgeon (Acipenser baerii ♀ × A. schrenckii ♂)
by Zhaolin Li, Kai Xie, Jiufeng Gu, Xinyu Li, Yong Shi, Junzhi Zhang, Yi Hu and Xuezhi Zhu
Animals 2025, 15(6), 787; https://doi.org/10.3390/ani15060787 - 10 Mar 2025
Viewed by 930
Abstract
Soy protein concentrate (SPC) is a cost-effective alternative to fish meal (FM) in aquaculture, but its deficiency in essential amino acids, particularly methionine, limits its application. This study evaluated the effects of methionine supplementation on growth, liver and intestinal health, and muscle quality [...] Read more.
Soy protein concentrate (SPC) is a cost-effective alternative to fish meal (FM) in aquaculture, but its deficiency in essential amino acids, particularly methionine, limits its application. This study evaluated the effects of methionine supplementation on growth, liver and intestinal health, and muscle quality in hybrid sturgeon (Acipenser baerii ♀ × A. schrenckii ♂) fed SPC-based diets. Four diets were formulated: an FM control diet, and SPC diets supplemented with 0% (M0), 0.25% (M2.5), and 0.50% (M5) methionine. Replacing FM with SPC without methionine (M0) significantly reduced weight gain and the protein efficiency ratio (PER) while increasing the feed conversion ratio (FCR) and hepatic lipid accumulation. Methionine supplementation (M5) restored growth performance, the PER, and muscle texture to levels comparable to the FM group. Intestinal enzyme activities (lipase and trypsin), villus height, and goblet cell counts significantly improved in the M5 group. Gene expression analysis showed that M5 upregulated tight junction genes (claudin1, occludin) and anti-inflammatory genes (tgfβ, lysozyme) while reducing pro-inflammatory cytokines (il1β, il8). In the liver, M5 reduced oxidative stress markers such as malondialdehyde (MDA) and improved antioxidant enzyme activities (SOD, CAT) while optimizing lipid metabolism, as evidenced by lower triglyceride (TG) and total cholesterol (TC) levels. Muscle quality analysis showed that M5 significantly increased muscle hardness, chewiness, and fiber density compared to M0. In conclusion, methionine supplementation at 0.50% effectively mitigates the negative effects of SPC, improving growth, liver and intestinal health, and muscle quality in hybrid sturgeon. Full article
(This article belongs to the Section Aquatic Animals)
Show Figures

Figure 1

20 pages, 1259 KiB  
Article
Characterization of Plant-Based Raw Materials Used in Meat Analog Manufacture
by Viorica Bulgaru, Mihail Mazur, Natalia Netreba, Sergiu Paiu, Veronica Dragancea, Angela Gurev, Rodica Sturza, İlkay Şensoy and Aliona Ghendov-Mosanu
Foods 2025, 14(3), 483; https://doi.org/10.3390/foods14030483 - 3 Feb 2025
Cited by 2 | Viewed by 1811
Abstract
The purpose of this research was to investigate the characteristics of different plant-based sources rich in protein, chickpea flour (CPF), hazelnut oil cake (HOC), soy protein isolate (SPI) and concentrate (SPC), and pea protein isolate (PPI) for their subsequent use in the manufacture [...] Read more.
The purpose of this research was to investigate the characteristics of different plant-based sources rich in protein, chickpea flour (CPF), hazelnut oil cake (HOC), soy protein isolate (SPI) and concentrate (SPC), and pea protein isolate (PPI) for their subsequent use in the manufacture of meat analogs. The protein sources were analyzed for dry matter, ash, protein, fat, starch, dietary fiber, water holding capacity, granulosity, color parameters (L*, a*, b*, C*, YI), antioxidant activity before and after gastrointestinal in vitro digestion, and amino acid and mineral compositions. The highest dry matter content was determined in hazelnut oil cake and pea protein isolate. For the protein content, maximum values were obtained for the protein isolate and concentrate samples, from 52.80% to 80.50%, followed by hazelnut oil cake and chickpea flour. The water-holding capacity of all plant sources was directly influenced by the values of protein content, dietary fiber, and granulosity. The results obtained after gastrointestinal digestion also showed quite significant antioxidant activity, which is due to the process of hydrolysis and denaturation of plant-based protein sources in the gastrointestinal tract. Major amino acids identified in the analyzed samples were glutamic acid, leucine, arginine, phenylalanine, serine, valine, alanine, and tyrosine from minerals P, Na, Mg, and Ca. Principal component analysis (PCA) was used to illustrate the relationship between physicochemical characteristics, amino acid composition, mineral composition, and antioxidant activity determined in the plant-based materials. Full article
Show Figures

Figure 1

21 pages, 1977 KiB  
Review
Advancements in Research on Alternative Protein Sources and Their Application in Food Products: A Systematic Review
by Leona Puljić, Marija Banožić, Nikolina Kajić, Višnja Vasilj, Kristina Habschied and Krešimir Mastanjević
Processes 2025, 13(1), 108; https://doi.org/10.3390/pr13010108 - 3 Jan 2025
Cited by 2 | Viewed by 3999
Abstract
To ensure food security amid dwindling natural resources, alternative proteins (APs) have been suggested as a sustainable solution. Yet, the adoption and consumption of APs remain limited. This review aims to delve into the latest progress (following PRISMA guidelines) concerning the utilization of [...] Read more.
To ensure food security amid dwindling natural resources, alternative proteins (APs) have been suggested as a sustainable solution. Yet, the adoption and consumption of APs remain limited. This review aims to delve into the latest progress (following PRISMA guidelines) concerning the utilization of proteins from alternative sources, particularly focusing on their effective incorporation into food products. Our findings reveal that insect proteins can improve amino acid profiles in bakery products. However, consumer acceptance remains low due to cultural biases, with optimal sensory results being achieved at lower substitution levels (5–10%). Mushroom proteins, when incorporated into meat analogs and bakery items, enhance nutritional value and offer favorable sensory properties, making them viable replacements in meat products. Plant-based proteins, such as pea and soy proteins, increase fiber and antioxidants and improve texture in meat alternatives, although formulation adjustments are necessary to meet consumer expectations for taste and overall experience. Microalgae offer unique benefits for bakery, confectionery, and dairy products by boosting protein, fatty acids, and probiotic growth while maintaining sensory acceptability. In conclusion, this study highlights that the effective incorporation of APs into food products can help in the development of healthier, more sustainable diets. That said, the success of AP acceptance will depend on continued innovations in formulation and consumer education. Full article
Show Figures

Figure 1

13 pages, 10236 KiB  
Article
Silicon Nitride Spot-Size Converter with Coupling Loss < 1.5 dB for Both Polarizations at 1W Optical Input
by Enge Zhang, Yu Zhang, Lei Zhang and Xu Yang
Photonics 2025, 12(1), 5; https://doi.org/10.3390/photonics12010005 - 24 Dec 2024
Cited by 1 | Viewed by 1399
Abstract
Microwave photonics (MWP) applications often require a high optical input power (>100 mW) to achieve an optimal signal-to-noise ratio (SNR). However, conventional silicon spot-size converters (SSCs) are susceptible to high optical power due to the two-photon absorption (TPA) effect. To overcome this, we [...] Read more.
Microwave photonics (MWP) applications often require a high optical input power (>100 mW) to achieve an optimal signal-to-noise ratio (SNR). However, conventional silicon spot-size converters (SSCs) are susceptible to high optical power due to the two-photon absorption (TPA) effect. To overcome this, we introduce a silicon nitride (SiN) SSC fabricated on a silicon-on-insulator (SOI) substrate. When coupled to a tapered fiber with a 4.5 μm mode field diameter (MFD), the device exhibits low coupling losses of <0.9 dB for TE modes and <1.4 dB for TM modes at relatively low optical input power. Even at a 1W input power, the additional loss is minimal, at approximately 0.1 dB. The versatility of the SSC is further demonstrated by its ability to efficiently couple to fibers with MFDs of 2.5 μm and 6.5 μm, maintaining coupling losses below 1.5 dB for both polarizations over the entire C-band. This adaptability to different mode diameters makes the SiN SSC a promising candidate for future electro-optic chiplets that integrate heterogeneous materials such as III-V for gain and lithium niobate for modulation with the SiN-on-SOI for all other functions using advanced packaging techniques. Full article
(This article belongs to the Special Issue Recent Advancement in Microwave Photonics)
Show Figures

Figure 1

15 pages, 2744 KiB  
Article
Ultrasound-Assisted Enzymatic Extraction and Physicochemical Properties of Soluble Dietary Fiber from Soy Sauce Residue
by Lili Zhang, Juncheng Song, Qi Liu, Feng Liu and Xiangyang Li
Appl. Sci. 2024, 14(24), 11979; https://doi.org/10.3390/app142411979 - 20 Dec 2024
Viewed by 1127
Abstract
There are millions of tons of fresh soy sauce residue (SSR) by-products created by China’s soy sauce industry every year. Most of the SSR is directly discarded; this not only wastes resources, but also pollutes the environment. As it is rich in dietary [...] Read more.
There are millions of tons of fresh soy sauce residue (SSR) by-products created by China’s soy sauce industry every year. Most of the SSR is directly discarded; this not only wastes resources, but also pollutes the environment. As it is rich in dietary fiber, which is beneficial to human health, skimmed SSR was used as a raw material to obtain soluble dietary fiber (SDF) in this study. Firstly, the process of ultrasonic-assisted enzymatic extraction of SDF was optimized through single factor experiments and a response surface test. The extraction rate of the SDF from SSR reached 76.8 ± 0.8% under the optimum extracting conditions of a cellulase/hemicellulase (w/w) 1/1 mixture, an enzyme addition amount of 5.7%, a material–liquid ratio (w/v) of 1/20 g/mL, and a reaction time of 30 min. Then, the physicochemical properties of the SDF extracted using enzymatic and chemical methods were compared; we found that the SDF obtained through ultrasound-assisted enzymatic extraction had a much better appearance and physicochemical properties than that extracted by acid or alkali, with a lighter color, higher extraction rate, higher water-holding capacity, higher oil-holding capacity, higher swelling capacity, and solubility. The microstructure was more uniform and porous. This study will provide theoretical guidance and technical support for the recycling and utilization of SSR, which is beneficial for improving its economic value. Full article
Show Figures

Figure 1

19 pages, 885 KiB  
Article
Energy, Macronutrients and Micronutrients Intake Among Pregnant Women in Lebanon: Findings from the Updated Lebanese National Food Consumption Survey (LEBANON-FCS)
by Rana Mahfouz, Marie-Therese Akiki, Vanessa Ndayra, Rebecca El Khoury, Marise Chawi, Majida Hatem, Lara Hanna-Wakim, Yonna Sacre and Maha Hoteit
Nutrients 2024, 16(23), 4059; https://doi.org/10.3390/nu16234059 - 26 Nov 2024
Cited by 1 | Viewed by 2195
Abstract
Background: Pregnancy is a crucial period for maternal and fetal health, and in Lebanon, where cultural and economic factors influence dietary practices, there is an urgent need to evaluate the food consumption patterns and diet quality of pregnant women. Aim: To evaluate the [...] Read more.
Background: Pregnancy is a crucial period for maternal and fetal health, and in Lebanon, where cultural and economic factors influence dietary practices, there is an urgent need to evaluate the food consumption patterns and diet quality of pregnant women. Aim: To evaluate the food consumption patterns, energy intake, as well as macro- and micro-nutrient intake among a nationally representative sample of Lebanese pregnant women aged 18–49 years old. Methods: A cross-sectional study was carried out from March to October 2023, involving 500 pregnant women from all eight Lebanese governorates. Sociodemographic and medical information was gathered, food consumption was evaluated using a validated Food Frequency Questionnaire (FFQ) and three 24-h recall, and anthropometric measurements were recorded. Results: The current population did not meet the USDA healthy pattern recommendations for whole grain, seafood, dairy, nuts, seeds and soy products consumption but exceeded the guidelines for vegetables, meats, poultry, eggs, oils, and refined grains. According to Mediterranean diet guidelines, the sample fell short in recommended intakes for fruits, olives/nuts/seeds, eggs, and olive oil, while surpassing the recommended levels for potatoes, legumes, pulses, sweets, red meat, processed meat, and fish and seafood. None of the participants met the energy requirements for their trimester and age group. In terms of macronutrient intake, the requirements for protein, unsaturated fats, and fiber were not met, while intakes of fats and sugars were exceeded. Regarding micronutrients, the recommended levels were not fully achieved, with particularly low intakes of vitamin D and iodine, as well as inadequate adherence to recommendations for iron, calcium, vitamin A, vitamin E, zinc, and choline. Additionally, a third of the participants did not meet the recommended intakes for folate and vitamin B12. Conclusions: The findings reveal significant dietary inadequacies among the current population, with participants failing to meet essential recommendations for whole grains and key food groups, alongside insufficient energy intake for their trimesters and age groups. Critical micronutrient deficiencies, particularly in vitamin D, iodine, and B vitamins, highlight the urgent need for targeted nutritional interventions and public health initiatives to improve dietary practices among pregnant women in Lebanon. Full article
(This article belongs to the Section Nutrition in Women)
Show Figures

Figure 1

Back to TopTop