Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (10,553)

Search Parameters:
Keywords = soundings

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 510 KiB  
Review
IoT and Machine Learning for Smart Bird Monitoring and Repellence: Techniques, Challenges, and Opportunities
by Samson O. Ooko, Emmanuel Ndashimye, Evariste Twahirwa and Moise Busogi
IoT 2025, 6(3), 46; https://doi.org/10.3390/iot6030046 (registering DOI) - 7 Aug 2025
Abstract
The activities of birds present increasing challenges in agriculture, aviation, and environmental conservation. This has led to economic losses, safety risks, and ecological imbalances. Attempts have been made to address the problem, with traditional deterrent methods proving to be labour-intensive, environmentally unfriendly, and [...] Read more.
The activities of birds present increasing challenges in agriculture, aviation, and environmental conservation. This has led to economic losses, safety risks, and ecological imbalances. Attempts have been made to address the problem, with traditional deterrent methods proving to be labour-intensive, environmentally unfriendly, and ineffective over time. Advances in artificial intelligence (AI) and the Internet of Things (IoT) present opportunities for enabling automated real-time bird detection and repellence. This study reviews recent developments (2020–2025) in AI-driven bird detection and repellence systems, emphasising the integration of image, audio, and multi-sensor data in IoT and edge-based environments. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses framework was used, with 267 studies initially identified and screened from key scientific databases. A total of 154 studies met the inclusion criteria and were analysed. The findings show the increasing use of convolutional neural networks (CNNs), YOLO variants, and MobileNet in visual detection, and the growing use of lightweight audio-based models such as BirdNET, MFCC-based CNNs, and TinyML frameworks for microcontroller deployment. Multi-sensor fusion is proposed to improve detection accuracy in diverse environments. Repellence strategies include sound-based deterrents, visual deterrents, predator-mimicking visuals, and adaptive AI-integrated systems. Deployment success depends on edge compatibility, power efficiency, and dataset quality. The limitations of current studies include species-specific detection challenges, data scarcity, environmental changes, and energy constraints. Future research should focus on tiny and lightweight AI models, standardised multi-modal datasets, and intelligent, behaviour-aware deterrence mechanisms suitable for precision agriculture and ecological monitoring. Full article
Show Figures

Figure 1

28 pages, 490 KiB  
Review
Psychiatric Comorbidities in Hyperacusis and Misophonia: A Systematic Review
by Ana Luísa Moura Rodrigues and Hashir Aazh
Audiol. Res. 2025, 15(4), 101; https://doi.org/10.3390/audiolres15040101 - 7 Aug 2025
Abstract
Background: The aim of this study was to conduct a systematic review of the research literature on the prevalence of psychiatric comorbidities in patients with hyperacusis and misophonia. Method: Four databases were searched: PubMed, PsycINFO, Scopus, and Web of Science (Wis)—last [...] Read more.
Background: The aim of this study was to conduct a systematic review of the research literature on the prevalence of psychiatric comorbidities in patients with hyperacusis and misophonia. Method: Four databases were searched: PubMed, PsycINFO, Scopus, and Web of Science (Wis)—last search conducted on the 16th of April 2024 to identify relevant studies. The methodological quality of each study was independently assessed using the JBI Critical Appraisal Checklist. Results: Five studies were included for the prevalence of psychiatric comorbidities in hyperacusis, and seventeen studies for misophonia. Among patients with hyperacusis, between 8% and 80% had depression, and between 39% and 61% had any anxiety disorder as measured via a diagnostic interview and/or self-report questionnaires. For misophonia, nine studies provided data on various forms of mood and anxiety disorders, with prevalences ranging from 1.1% to 37.3% and 0.2% to 69%, respectively. Conclusions: Although the 22 included studies varied considerably in design and scope, some recurring patterns of comorbidity were noted. However, apparent trends—such as the higher prevalence of mood and anxiety disorders compared to other psychiatric conditions—should be interpreted with caution, as most studies did not comprehensively assess a full range of psychiatric disorders. This likely skews prevalence estimates toward the conditions that were specifically investigated. Full article
(This article belongs to the Section Hearing)
Show Figures

Figure 1

16 pages, 7600 KiB  
Article
Passive Long-Term Acoustic Sampling Reveals Multiscale Temporal Ecological Pattern and Anthropogenic Disturbance of Campus Forests in a High Density City
by Xiaoqing Xu, Xueyao Sun and Hanbin Xie
Forests 2025, 16(8), 1289; https://doi.org/10.3390/f16081289 - 7 Aug 2025
Abstract
Biodiversity conservation and sustainable development in high-density forest urban areas have attracted growing attention and are increasingly recognized as critical for achieving the Sustainable Development Goals (SDGs). University campus forests, functioning as ecological islands, possess unique acoustic characteristics and play a vital role [...] Read more.
Biodiversity conservation and sustainable development in high-density forest urban areas have attracted growing attention and are increasingly recognized as critical for achieving the Sustainable Development Goals (SDGs). University campus forests, functioning as ecological islands, possess unique acoustic characteristics and play a vital role in supporting urban biodiversity. In this case study, acoustic monitoring was conducted over the course of a full year to objectively reveal the ecological patterns across temporal scales of the campus sound environment, by combining acoustic indices’ visualization combined with statistical analysis. The findings indicate (1) the existence of ecological sound patterns across different temporal scales, closely associated with phenological cycles; (2) the identification of the specific timing affected by the different species‘ activities, such as the breeding season of birds, the chirping time of cicadas and other insects, as well as the fluctuations in the intensity of human activities, and (3) the development of a methodological framework integrating a visualization technique with statistical analysis to enhance the understanding of long-term ecological dynamics. The results offer a foundation for promoting the sustainable conservation of campus biodiversity in high-density urban settings. Full article
(This article belongs to the Special Issue Soundscape in Urban Forests—2nd Edition)
Show Figures

Figure 1

19 pages, 2504 KiB  
Article
TSNetIQ: High-Resolution DOA Estimation of UAVs Using Microphone Arrays
by Kequan Zhu, Tian Jin, Shitong Xie, Zixuan Liu and Jinlong Sun
Appl. Sci. 2025, 15(15), 8734; https://doi.org/10.3390/app15158734 - 7 Aug 2025
Abstract
With the rapid development of unmanned aerial vehicle (UAV) technology and the rise of the low-altitude economy, the accurate tracking of UAVs has become a critical challenge. This paper considers a deep learning-based localization scheme that combines microphone arrays for audio source reception. [...] Read more.
With the rapid development of unmanned aerial vehicle (UAV) technology and the rise of the low-altitude economy, the accurate tracking of UAVs has become a critical challenge. This paper considers a deep learning-based localization scheme that combines microphone arrays for audio source reception. The microphone array is utilized to capture sound source reception from various angles. The proposed TSNetIQ combines elaborately designed Transformer and convolutional neural networks (CNN) modules, and the raw in-phase (I) and quadrature (Q) components of the audio signals are used as input data. Hence, the direction of arrival (DOA) estimation is treated as a regression problem. Experiments are conducted to evaluate the proposed method under different signal-to-noise ratios (SNRs), sampling frequencies, and array configurations. The results demonstrate that TSNetIQ can effectively estimate the direction of the sound source, outperforming conventional architectures trained with the same dataset. This study offers superior accuracy and robustness for real-time sound source localization in UAV applications under dynamic scenarios. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
Show Figures

Figure 1

34 pages, 710 KiB  
Article
Criteria for Consistent Broadband Pulse Compression and Narrowband Echo Integration Operation in Fisheries Echosounder Backscattering Measurements
by Per Lunde and Audun Oppedal Pedersen
Fishes 2025, 10(8), 389; https://doi.org/10.3390/fishes10080389 - 6 Aug 2025
Abstract
Generic and consistent formulations for measurement of the backscattering cross section (σbs) and the volume backscattering coefficient (sv) using broadband pulse compression and narrowband echo integration are derived, for small- and finite-amplitude sound propagation. The theory [...] Read more.
Generic and consistent formulations for measurement of the backscattering cross section (σbs) and the volume backscattering coefficient (sv) using broadband pulse compression and narrowband echo integration are derived, for small- and finite-amplitude sound propagation. The theory applies to backscattering operation of echosounders and sonars in general, with focus on fisheries acoustics. Formally consistent mathematical relationships for broadband and narrowband operation of such instruments are established that ensure consistency with the underlying power budget equations on average-power form, bridging a gap in prior literature. The formulations give full flexibility in choice of transmit signals and reference signals for pulse compression. Generic and general criteria for quantitative consistency between broadband and narrowband operation are derived, establishing new knowledge and analysis tools. These criteria become identical for small- and finite-amplitude sound propagation. In addition to general criteria, two special cases are considered, relevant for actual operation scenarios. The criteria serve to test and evaluate the extent to which the methods used in broadband pulse compression and narrowband echo integration operating modes are correct and consistent, and to identify and reduce experienced discrepancies between such methods. These are topics of major concern for quantitative acoustic stock assessment, underlying national and international fisheries quota regulations. Full article
(This article belongs to the Special Issue Applications of Acoustics in Marine Fisheries)
Show Figures

Figure 1

16 pages, 5284 KiB  
Article
Hydration, Soundness, and Strength of Low Carbon LC3 Mortar Using Waste Brick Powder as a Source of Calcined Clay
by Saugat Humagain, Gaurab Shrestha, Mini K. Madhavan and Prabir Kumar Sarker
Materials 2025, 18(15), 3697; https://doi.org/10.3390/ma18153697 - 6 Aug 2025
Abstract
The construction industry is responsible for 39% of global CO2 emissions related to energy use, with cement responsible for 5–8% of it. Limestone calcined clay cement (LC3), a ternary blended binder system, offers a low-carbon alternative by partially substituting clinker [...] Read more.
The construction industry is responsible for 39% of global CO2 emissions related to energy use, with cement responsible for 5–8% of it. Limestone calcined clay cement (LC3), a ternary blended binder system, offers a low-carbon alternative by partially substituting clinker with calcined clay and limestone. This study investigated the use of waste clay brick powder (WBP), a waste material, as a source of calcined clay in LC3 formulations, addressing both environmental concerns and SCM scarcity. Two LC3 mixtures containing 15% limestone, 5% gypsum, and either 15% or 30% WBP, corresponding to clinker contents of 65% (LC3-65) or 50% (LC3-50), were evaluated against general purpose (GP) cement mortar. Tests included setting time, flowability, soundness, compressive and flexural strengths, drying shrinkage, isothermal calorimetry, and scanning electron microscopy (SEM). Isothermal calorimetry showed peak heat flow reductions of 26% and 49% for LC3-65 and LC3-50, respectively, indicating a slower reactivity of LC3. The initial and final setting times of the LC3 mixtures were 10–30 min and 30–60 min longer, respectively, due to the slower hydration kinetics caused by the reduced clinker content. Flowability increased in LC3-50, which is attributed to the lower clinker content and higher water availability. At 7 days, LC3-65 retained 98% of the control’s compressive strength, while LC3-50 showed a 47% reduction. At 28 days, the compressive strengths of mixtures LC3-65 and LC3-50 were 7% and 46% lower than the control, with flexural strength reductions being 8% and 40%, respectively. The porosity calculated from the SEM images was found to be 7%, 11%, and 15% in the control, LC3-65, and LC3-50, respectively. Thus, the reduction in strength is attributed to the slower reaction rate and increased porosity associated with the reduced clinker content in LC3 mixtures. However, the results indicate that the performance of LC3-65 was close to that of the control mix, supporting the viability of WBP as a low-carbon partial replacement of clinker in LC3. Full article
(This article belongs to the Special Issue Towards Sustainable Low-Carbon Concrete—Second Edition)
Show Figures

Figure 1

20 pages, 5378 KiB  
Article
Machine Learning-Based Approach for CPTu Data Processing and Stratigraphic Analysis
by Helena Paula Nierwinski, Arthur Miguel Pereira Gabardo, Ricardo José Pfitscher, Rafael Piton, Ezequias Oliveira and Marieli Biondo
Metrology 2025, 5(3), 48; https://doi.org/10.3390/metrology5030048 - 6 Aug 2025
Abstract
Cone Penetration Tests with pore pressure measurements (CPTu) are widely used in geotechnical site investigations due to their high-resolution profiling capabilities. However, traditional interpretation methods—such as the Soil Behavior Type Index (Ic)—often fail to capture the internal heterogeneity typical of [...] Read more.
Cone Penetration Tests with pore pressure measurements (CPTu) are widely used in geotechnical site investigations due to their high-resolution profiling capabilities. However, traditional interpretation methods—such as the Soil Behavior Type Index (Ic)—often fail to capture the internal heterogeneity typical of mining tailings deposits. This study presents a machine learning-based approach to enhance stratigraphic interpretation from CPTu data. Four unsupervised clustering algorithms—k-means, DBSCAN, MeanShift, and Affinity Propagation—were evaluated using a dataset of 12 CPTu soundings collected over a 19-year period from an iron tailings dam in Brazil. Clustering performance was assessed through visual inspection, stratigraphic consistency, and comparison with Ic-based profiles. k-means and MeanShift produced the most consistent stratigraphic segmentation, clearly delineating depositional layers, consolidated zones, and transitions linked to dam raising. In contrast, DBSCAN and Affinity Propagation either over-fragmented or failed to identify meaningful structures. The results demonstrate that clustering methods can reveal behavioral trends not detected by Ic alone, offering a complementary perspective for understanding depositional and mechanical evolution in tailings. Integrating clustering outputs with conventional geotechnical indices improves the interpretability of CPTu profiles, supporting more informed geomechanical modeling, dam monitoring, and design. The approach provides a replicable methodology for data-rich environments with high spatial and temporal variability. Full article
Show Figures

Figure 1

22 pages, 1887 KiB  
Article
Knowledge Sharing: Key to Sustainable Building Construction Implementation
by Chijioke Emmanuel Emere, Clinton Ohis Aigbavboa and Olusegun Aanuoluwapo Oguntona
Eng 2025, 6(8), 190; https://doi.org/10.3390/eng6080190 - 6 Aug 2025
Abstract
The successful deployment of sustainable building construction (SBC) is connected to sound knowledge sharing. Concerning SBC, knowledge sharing has been identified to directly and indirectly increase innovation, environmental performance, cost saving, regulatory compliance awareness and so on. The necessity of enhancing SBC practice [...] Read more.
The successful deployment of sustainable building construction (SBC) is connected to sound knowledge sharing. Concerning SBC, knowledge sharing has been identified to directly and indirectly increase innovation, environmental performance, cost saving, regulatory compliance awareness and so on. The necessity of enhancing SBC practice globally has been emphasised by earlier research. Consequently, this study aims to investigate knowledge-sharing elements to enhance SBC in South Africa (SA). Utilising a questionnaire survey, this study elicited data from 281 professionals in the built environment. Data analysis was performed with “descriptive statistics”, the “Kruskal–Wallis H-test”, and “principal component analysis” to determine the principal knowledge-sharing features (KSFs). This study found that “creating public awareness of sustainable practices”, the “content of SBC training, raising awareness of green building products”, “SBC integration in professional certifications”, an “information hub or repository for sustainable construction”, and “mentoring younger professionals in sustainable practices” are the most critical KSFs for SBC deployment. These formed a central cluster, the Green Education Initiative and Eco-Awareness Alliance. The results achieved a reliability test value of 0.956. It was concluded that to embrace the full adoption of SBC, corporate involvement is critical, and all stakeholders must embrace the sustainability paradigm. It is recommended that the principal knowledge-sharing features revealed in this study should be carefully considered to help construction stakeholders in fostering knowledge sharing for a sustainable built environment. Full article
(This article belongs to the Section Chemical, Civil and Environmental Engineering)
Show Figures

Figure 1

20 pages, 1938 KiB  
Article
A Fuzzy MCDM-Based Deep Multi-View Clustering Approach for Large-Scale Multi-View Data Analysis
by Yueyao Li and Bin Wu
Symmetry 2025, 17(8), 1253; https://doi.org/10.3390/sym17081253 - 6 Aug 2025
Abstract
Multidimensional clustering of large-scale multi-view data is an important topic because it makes possible to combine a variety of manifestations of a complex information set. Nevertheless, comparing and selecting the most suitable deep clustering method is not an easy task, especially when several [...] Read more.
Multidimensional clustering of large-scale multi-view data is an important topic because it makes possible to combine a variety of manifestations of a complex information set. Nevertheless, comparing and selecting the most suitable deep clustering method is not an easy task, especially when several opposing criteria are applied. Multi-criteria decision-making (MCDM) techniques provide systematic approaches to making such judgments, although they are often limited in their ability to handle uncertainty, imprecise judgments, and interdependencies in practice. To solve these problems, this paper suggests a circular Fermatean fuzzy technique order preference by similarity to ideal solution (CFF-TOPSIS) method, which combines improved fuzzy modeling with MCDM to make the decision-making process accurate and sound. By exploiting the intrinsic symmetry of TOPSIS, where distances to positive and negative ideal solutions are treated symmetrically, the proposed model integrates five evaluation criteria for assessing clustering adequacy, including clustering accuracy, scalability, computational complexity, robustness, and interpretability, to critically evaluate five alternative clustering methods based on the input of three decision-makers. This measurement is performed efficiently by the CFF-TOPSIS method based on the uncertainty and subjective judgment contained within circular Fermatean fuzzy sets (CFFSs). The model is reliable and superior to existing models, as confirmed by sensitivity and comparative analyses. The suggested approach provides a systematic and flexible method for making decisions in complex big-data settings, while maintaining symmetry in the evaluation of alternatives and criteria. Full article
(This article belongs to the Section Mathematics)
Show Figures

Figure 1

21 pages, 1209 KiB  
Article
Sustainable Membrane-Based Acoustic Metamaterials Using Cork and Honeycomb Structures: Experimental and Numerical Characterization
by Giuseppe Ciaburro and Virginia Puyana-Romero
Buildings 2025, 15(15), 2763; https://doi.org/10.3390/buildings15152763 - 5 Aug 2025
Abstract
This work presents the experimental and numerical investigation of a novel acoustic metamaterial based on sustainable and biodegradable components: cork membranes and honeycomb cores made from treated aramid paper. The design exploits the principle of localized resonance induced by tensioned membranes coupled with [...] Read more.
This work presents the experimental and numerical investigation of a novel acoustic metamaterial based on sustainable and biodegradable components: cork membranes and honeycomb cores made from treated aramid paper. The design exploits the principle of localized resonance induced by tensioned membranes coupled with subwavelength cavities, aiming to achieve high sound absorption at low (250–500 Hz) and mid frequencies (500–1400 Hz) with minimal thickness and environmental impact. Three configurations were analyzed, varying the number of membranes (one, two, and three) while keeping a constant core structure composed of three stacked honeycomb layers. Acoustic performance was measured using an impedance tube (Kundt’s tube), focusing on the normal-incidence sound absorption coefficient in the frequency range of 250–1400 Hz. The results demonstrate that increasing the number of membranes introduces multiple resonances and broadens the effective absorption bandwidth. Numerical simulations were performed to predict pressure field distributions. The numerical model showed good agreement with the experimental data, validating the underlying physical model of coupled mass–spring resonators. The proposed metamaterial offers a low-cost, modular, and fully recyclable solution for indoor sound control, combining acoustic performance and environmental sustainability. These findings offer promising perspectives for the application of bio-based metamaterials in architecture and eco-design. Further developments will address durability, high-frequency absorption, and integration in hybrid soundproofing systems. Full article
Show Figures

Figure 1

25 pages, 2682 KiB  
Article
A Semi-Automated, Hybrid GIS-AI Approach to Seabed Boulder Detection Using High Resolution Multibeam Echosounder
by Eoin Downing, Luke O’Reilly, Jan Majcher, Evan O’Mahony and Jared Peters
Remote Sens. 2025, 17(15), 2711; https://doi.org/10.3390/rs17152711 - 5 Aug 2025
Abstract
The detection of seabed boulders is a critical step in mitigating geological hazards during the planning and construction of offshore wind energy infrastructure, as well as in supporting benthic ecological and palaeoglaciological studies. Traditionally, side-scan sonar (SSS) has been favoured for such detection, [...] Read more.
The detection of seabed boulders is a critical step in mitigating geological hazards during the planning and construction of offshore wind energy infrastructure, as well as in supporting benthic ecological and palaeoglaciological studies. Traditionally, side-scan sonar (SSS) has been favoured for such detection, but the growing availability of high-resolution multibeam echosounder (MBES) data offers a cost-effective alternative. This study presents a semi-automated, hybrid GIS-AI approach that combines bathymetric position index filtering and a Random Forest classifier to detect boulders and delineate boulder fields from MBES data. The method was tested on a 0.24 km2 site in Long Island Sound using 0.5 m resolution data, achieving 83% recall, 73% precision, and an F1-score of 77—slightly outperforming the average of expert manual picks while offering a substantial improvement in time-efficiency. The workflow was validated against a consensus-based master dataset and applied across a 79 km2 study area, identifying over 75,000 contacts and delineating 89 contact clusters. The method enables objective, reproducible, and scalable boulder detection using only MBES data. Its ability to reduce reliance on SSS surveys while maintaining high accuracy and offering workflow customization makes it valuable for geohazard assessment, benthic habitat mapping, and offshore infrastructure planning. Full article
(This article belongs to the Section Ocean Remote Sensing)
Show Figures

Figure 1

11 pages, 1037 KiB  
Article
Bonding to Demineralized Dentin: Impact of Immediate and Delayed Dentin Sealing over Time
by Erika Pérez-Soto, Rim Bourgi, Louis Hardan, Carlos Enrique Cuevas-Suarez, Ana Josefina Monjáras-Ávila, Miguel Ángel Fernández-Barrera, Nicolas Nassar, Monika Lukomska-Szymanska, Rima Daoui, Naji Kharouf and Youssef Haikel
Dent. J. 2025, 13(8), 354; https://doi.org/10.3390/dj13080354 - 5 Aug 2025
Viewed by 25
Abstract
Background/Objectives: Immediate dentin sealing (IDS) has been widely investigated in sound dentin; however, its efficacy on demineralized dentin remains insufficiently explored. This in vitro experimental study aimed to evaluate the shear bond strength (SBS) of indirect composite resin restorations bonded to demineralized dentin [...] Read more.
Background/Objectives: Immediate dentin sealing (IDS) has been widely investigated in sound dentin; however, its efficacy on demineralized dentin remains insufficiently explored. This in vitro experimental study aimed to evaluate the shear bond strength (SBS) of indirect composite resin restorations bonded to demineralized dentin using IDS, assessed at 24 h and after 6 months of aging. Methods: Twenty-five extracted premolars were randomly divided into five groups: (1) control (no sealing), (2) IDS applied to sound dentin (sound-IDS), (3) IDS applied to demineralized dentin (carious-IDS), (4) delayed dentin sealing (DDS) on sound dentin (sound-DDS), and (5) DDS on demineralized dentin (carious-DDS). SBS values were analyzed using a three-way analysis of variance (ANOVA) with dentin condition (sound vs. demineralized), aging time (24 h vs. 6 months), and sealing strategy (control, IDS, DDS) as independent variables. Statistical analyses were performed using SigmaPlot 12.0, with significance set at p < 0.05. Results: The results showed that IDS led to significantly higher SBS than DDS (p < 0.05). Bond strength was significantly influenced by dentin condition (p < 0.05), and all interactions between variables—particularly between dentin condition and sealing strategy, and between aging time and treatment—were statistically significant (p < 0.001). Overall, bond strength was higher at 24 h than after 6 months. IDS showed optimal performance in sound dentin, while DDS resulted in better long-term outcomes in demineralized dentin. Conclusions: These findings suggest that DDS may be the more effective approach in cases of carious or demineralized dentin. Full article
(This article belongs to the Section Restorative Dentistry and Traumatology)
Show Figures

Figure 1

8 pages, 177 KiB  
Essay
Cancer and Humility: Moving from “Why” to Hope
by Ronald T. Michener
Religions 2025, 16(8), 1010; https://doi.org/10.3390/rel16081010 - 5 Aug 2025
Viewed by 119
Abstract
If God cares and is present, can God use pain and suffering in my life? Absolutely. Does this mean that God planned, ordained, or designed the pain (or cancer) to be instrumental in my life for some sort of higher spiritual purpose? If [...] Read more.
If God cares and is present, can God use pain and suffering in my life? Absolutely. Does this mean that God planned, ordained, or designed the pain (or cancer) to be instrumental in my life for some sort of higher spiritual purpose? If so, why? Why does God allow cancer to invade and interrupt one’s life? There are no theologically sound or definitive answers to these questions. Although asking such questions is basic to our humanity, as we will observe in various passages of Scripture, the answers will always remain elusive. Instead of seeking to answer the question “why?”, I will suggest two areas for theological and pastoral reflection with respect to those facing cancer: humility and hope. Enduring cancer, from diagnosis through treatment, requires humility in mind and body before our Creator and before our caregivers. Cancer also provides an opportunity for Christians to embed themselves in the hope of resurrection and new creation. Resurrection hope is also not reduced to hope beyond death but hope that is manifested now through embodied resurrection “signs” and actions of human sacrificial love, both received and practiced by the patient undergoing illness and by the patient’s caregivers, family, and friends. Full article
(This article belongs to the Special Issue Cancer and Theology: Personal and Pastoral Perspectives)
23 pages, 1302 KiB  
Article
Deep Learning-Enhanced Ocean Acoustic Tomography: A Latent Feature Fusion Framework for Hydrographic Inversion with Source Characteristic Embedding
by Jiawen Zhou, Zikang Chen, Yongxin Zhu and Xiaoying Zheng
Information 2025, 16(8), 665; https://doi.org/10.3390/info16080665 - 4 Aug 2025
Viewed by 110
Abstract
Ocean Acoustic Tomography (OAT) is an important marine remote sensing technique used for inverting large-scale ocean environmental parameters, but traditional methods face challenges in computational complexity and environmental interference. This paper proposes a causal analysis-driven AI FOR SCIENCE method for high-precision and rapid [...] Read more.
Ocean Acoustic Tomography (OAT) is an important marine remote sensing technique used for inverting large-scale ocean environmental parameters, but traditional methods face challenges in computational complexity and environmental interference. This paper proposes a causal analysis-driven AI FOR SCIENCE method for high-precision and rapid inversion of oceanic hydrological parameters in complex underwater environments. Based on the open-source VTUAD (Vessel Type Underwater Acoustic Data) dataset, the method first utilizes a fine-tuned Paraformer (a fast and accurate parallel transformer) model for precise classification of sound source targets. Then, using structural causal models (SCM) and potential outcome frameworks, causal embedding vectors with physical significance are constructed. Finally, a cross-modal Transformer network is employed to fuse acoustic features, sound source priors, and environmental variables, enabling inversion of temperature and salinity in the Georgia Strait of Canada. Experimental results show that the method achieves accuracies of 97.77% and 95.52% for temperature and salinity inversion tasks, respectively, significantly outperforming traditional methods. Additionally, with GPU acceleration, the inference speed is improved by over sixfold, aimed at enabling real-time Ocean Acoustic Tomography (OAT) on edge computing platforms as smart hardware, thereby validating the method’s practicality. By incorporating causal inference and cross-modal data fusion, this study not only enhances inversion accuracy and model interpretability but also provides new insights for real-time applications of OAT. Full article
(This article belongs to the Special Issue Advances in Intelligent Hardware, Systems and Applications)
Show Figures

Figure 1

16 pages, 1207 KiB  
Article
Study of Multi-Stakeholder Mechanism in Inter-Provincial River Basin Eco-Compensation: Case of the Inland Rivers of Eastern China
by Zhijie Cao and Xuelong Chen
Sustainability 2025, 17(15), 7057; https://doi.org/10.3390/su17157057 - 4 Aug 2025
Viewed by 215
Abstract
Based on a comprehensive review of the current research status of ecological compensation both domestically and internationally, combined with field survey data, this study delves into the issue of multi-stakeholder participation in the ecological compensation mechanisms of the Xin’an River Basin. This research [...] Read more.
Based on a comprehensive review of the current research status of ecological compensation both domestically and internationally, combined with field survey data, this study delves into the issue of multi-stakeholder participation in the ecological compensation mechanisms of the Xin’an River Basin. This research reveals that the joint participation of multiple stakeholders is crucial to achieving the goals of ecological compensation in river basins. The government plays a significant role in macro-guidance, financial support, policy guarantees, supervision, and management. It promotes the comprehensive implementation of ecological environmental protection by formulating relevant laws and regulations, guiding the public to participate in ecological conservation, and supervising and punishing pollution behaviors. The public, serving as the main force, forms strong awareness and behavioral habits of ecological protection through active participation in environmental protection, monitoring, and feedback. As participants, enterprises contribute to industrial transformation and green development by improving resource utilization efficiency, reducing pollution emissions, promoting green industries, and participating in ecological restoration projects. Scientific research institutions, as technology enablers, have effectively enhanced governance efficiency through technological research and innovation, ecosystem value accounting to provide decision-making support, and public education. Social organizations, as facilitators, have injected vitality and innovation into watershed governance by extensively mobilizing social forces and building multi-party collaboration platforms. Communities, as supporters, have transformed ecological value into economic benefits by developing characteristic industries such as eco-agriculture and eco-tourism. Based on the above findings, further recommendations are proposed to mobilize the enthusiasm of upstream communities and encourage their participation in ecological compensation, promote the market-oriented operation of ecological compensation mechanisms, strengthen cross-regional cooperation to establish joint mechanisms, enhance supervision and evaluation, and establish a sound benefit-sharing mechanism. These recommendations provide theoretical support and practical references for ecological compensation worldwide. Full article
Show Figures

Figure 1

Back to TopTop