Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (5,727)

Search Parameters:
Keywords = sound studies

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 510 KiB  
Review
IoT and Machine Learning for Smart Bird Monitoring and Repellence: Techniques, Challenges, and Opportunities
by Samson O. Ooko, Emmanuel Ndashimye, Evariste Twahirwa and Moise Busogi
IoT 2025, 6(3), 46; https://doi.org/10.3390/iot6030046 (registering DOI) - 7 Aug 2025
Abstract
The activities of birds present increasing challenges in agriculture, aviation, and environmental conservation. This has led to economic losses, safety risks, and ecological imbalances. Attempts have been made to address the problem, with traditional deterrent methods proving to be labour-intensive, environmentally unfriendly, and [...] Read more.
The activities of birds present increasing challenges in agriculture, aviation, and environmental conservation. This has led to economic losses, safety risks, and ecological imbalances. Attempts have been made to address the problem, with traditional deterrent methods proving to be labour-intensive, environmentally unfriendly, and ineffective over time. Advances in artificial intelligence (AI) and the Internet of Things (IoT) present opportunities for enabling automated real-time bird detection and repellence. This study reviews recent developments (2020–2025) in AI-driven bird detection and repellence systems, emphasising the integration of image, audio, and multi-sensor data in IoT and edge-based environments. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses framework was used, with 267 studies initially identified and screened from key scientific databases. A total of 154 studies met the inclusion criteria and were analysed. The findings show the increasing use of convolutional neural networks (CNNs), YOLO variants, and MobileNet in visual detection, and the growing use of lightweight audio-based models such as BirdNET, MFCC-based CNNs, and TinyML frameworks for microcontroller deployment. Multi-sensor fusion is proposed to improve detection accuracy in diverse environments. Repellence strategies include sound-based deterrents, visual deterrents, predator-mimicking visuals, and adaptive AI-integrated systems. Deployment success depends on edge compatibility, power efficiency, and dataset quality. The limitations of current studies include species-specific detection challenges, data scarcity, environmental changes, and energy constraints. Future research should focus on tiny and lightweight AI models, standardised multi-modal datasets, and intelligent, behaviour-aware deterrence mechanisms suitable for precision agriculture and ecological monitoring. Full article
Show Figures

Figure 1

16 pages, 7600 KiB  
Article
Passive Long-Term Acoustic Sampling Reveals Multiscale Temporal Ecological Pattern and Anthropogenic Disturbance of Campus Forests in a High Density City
by Xiaoqing Xu, Xueyao Sun and Hanbin Xie
Forests 2025, 16(8), 1289; https://doi.org/10.3390/f16081289 - 7 Aug 2025
Abstract
Biodiversity conservation and sustainable development in high-density forest urban areas have attracted growing attention and are increasingly recognized as critical for achieving the Sustainable Development Goals (SDGs). University campus forests, functioning as ecological islands, possess unique acoustic characteristics and play a vital role [...] Read more.
Biodiversity conservation and sustainable development in high-density forest urban areas have attracted growing attention and are increasingly recognized as critical for achieving the Sustainable Development Goals (SDGs). University campus forests, functioning as ecological islands, possess unique acoustic characteristics and play a vital role in supporting urban biodiversity. In this case study, acoustic monitoring was conducted over the course of a full year to objectively reveal the ecological patterns across temporal scales of the campus sound environment, by combining acoustic indices’ visualization combined with statistical analysis. The findings indicate (1) the existence of ecological sound patterns across different temporal scales, closely associated with phenological cycles; (2) the identification of the specific timing affected by the different species‘ activities, such as the breeding season of birds, the chirping time of cicadas and other insects, as well as the fluctuations in the intensity of human activities, and (3) the development of a methodological framework integrating a visualization technique with statistical analysis to enhance the understanding of long-term ecological dynamics. The results offer a foundation for promoting the sustainable conservation of campus biodiversity in high-density urban settings. Full article
(This article belongs to the Special Issue Soundscape in Urban Forests—2nd Edition)
Show Figures

Figure 1

19 pages, 2504 KiB  
Article
TSNetIQ: High-Resolution DOA Estimation of UAVs Using Microphone Arrays
by Kequan Zhu, Tian Jin, Shitong Xie, Zixuan Liu and Jinlong Sun
Appl. Sci. 2025, 15(15), 8734; https://doi.org/10.3390/app15158734 - 7 Aug 2025
Abstract
With the rapid development of unmanned aerial vehicle (UAV) technology and the rise of the low-altitude economy, the accurate tracking of UAVs has become a critical challenge. This paper considers a deep learning-based localization scheme that combines microphone arrays for audio source reception. [...] Read more.
With the rapid development of unmanned aerial vehicle (UAV) technology and the rise of the low-altitude economy, the accurate tracking of UAVs has become a critical challenge. This paper considers a deep learning-based localization scheme that combines microphone arrays for audio source reception. The microphone array is utilized to capture sound source reception from various angles. The proposed TSNetIQ combines elaborately designed Transformer and convolutional neural networks (CNN) modules, and the raw in-phase (I) and quadrature (Q) components of the audio signals are used as input data. Hence, the direction of arrival (DOA) estimation is treated as a regression problem. Experiments are conducted to evaluate the proposed method under different signal-to-noise ratios (SNRs), sampling frequencies, and array configurations. The results demonstrate that TSNetIQ can effectively estimate the direction of the sound source, outperforming conventional architectures trained with the same dataset. This study offers superior accuracy and robustness for real-time sound source localization in UAV applications under dynamic scenarios. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
Show Figures

Figure 1

16 pages, 5284 KiB  
Article
Hydration, Soundness, and Strength of Low Carbon LC3 Mortar Using Waste Brick Powder as a Source of Calcined Clay
by Saugat Humagain, Gaurab Shrestha, Mini K. Madhavan and Prabir Kumar Sarker
Materials 2025, 18(15), 3697; https://doi.org/10.3390/ma18153697 - 6 Aug 2025
Abstract
The construction industry is responsible for 39% of global CO2 emissions related to energy use, with cement responsible for 5–8% of it. Limestone calcined clay cement (LC3), a ternary blended binder system, offers a low-carbon alternative by partially substituting clinker [...] Read more.
The construction industry is responsible for 39% of global CO2 emissions related to energy use, with cement responsible for 5–8% of it. Limestone calcined clay cement (LC3), a ternary blended binder system, offers a low-carbon alternative by partially substituting clinker with calcined clay and limestone. This study investigated the use of waste clay brick powder (WBP), a waste material, as a source of calcined clay in LC3 formulations, addressing both environmental concerns and SCM scarcity. Two LC3 mixtures containing 15% limestone, 5% gypsum, and either 15% or 30% WBP, corresponding to clinker contents of 65% (LC3-65) or 50% (LC3-50), were evaluated against general purpose (GP) cement mortar. Tests included setting time, flowability, soundness, compressive and flexural strengths, drying shrinkage, isothermal calorimetry, and scanning electron microscopy (SEM). Isothermal calorimetry showed peak heat flow reductions of 26% and 49% for LC3-65 and LC3-50, respectively, indicating a slower reactivity of LC3. The initial and final setting times of the LC3 mixtures were 10–30 min and 30–60 min longer, respectively, due to the slower hydration kinetics caused by the reduced clinker content. Flowability increased in LC3-50, which is attributed to the lower clinker content and higher water availability. At 7 days, LC3-65 retained 98% of the control’s compressive strength, while LC3-50 showed a 47% reduction. At 28 days, the compressive strengths of mixtures LC3-65 and LC3-50 were 7% and 46% lower than the control, with flexural strength reductions being 8% and 40%, respectively. The porosity calculated from the SEM images was found to be 7%, 11%, and 15% in the control, LC3-65, and LC3-50, respectively. Thus, the reduction in strength is attributed to the slower reaction rate and increased porosity associated with the reduced clinker content in LC3 mixtures. However, the results indicate that the performance of LC3-65 was close to that of the control mix, supporting the viability of WBP as a low-carbon partial replacement of clinker in LC3. Full article
(This article belongs to the Special Issue Towards Sustainable Low-Carbon Concrete—Second Edition)
Show Figures

Figure 1

20 pages, 5378 KiB  
Article
Machine Learning-Based Approach for CPTu Data Processing and Stratigraphic Analysis
by Helena Paula Nierwinski, Arthur Miguel Pereira Gabardo, Ricardo José Pfitscher, Rafael Piton, Ezequias Oliveira and Marieli Biondo
Metrology 2025, 5(3), 48; https://doi.org/10.3390/metrology5030048 - 6 Aug 2025
Abstract
Cone Penetration Tests with pore pressure measurements (CPTu) are widely used in geotechnical site investigations due to their high-resolution profiling capabilities. However, traditional interpretation methods—such as the Soil Behavior Type Index (Ic)—often fail to capture the internal heterogeneity typical of [...] Read more.
Cone Penetration Tests with pore pressure measurements (CPTu) are widely used in geotechnical site investigations due to their high-resolution profiling capabilities. However, traditional interpretation methods—such as the Soil Behavior Type Index (Ic)—often fail to capture the internal heterogeneity typical of mining tailings deposits. This study presents a machine learning-based approach to enhance stratigraphic interpretation from CPTu data. Four unsupervised clustering algorithms—k-means, DBSCAN, MeanShift, and Affinity Propagation—were evaluated using a dataset of 12 CPTu soundings collected over a 19-year period from an iron tailings dam in Brazil. Clustering performance was assessed through visual inspection, stratigraphic consistency, and comparison with Ic-based profiles. k-means and MeanShift produced the most consistent stratigraphic segmentation, clearly delineating depositional layers, consolidated zones, and transitions linked to dam raising. In contrast, DBSCAN and Affinity Propagation either over-fragmented or failed to identify meaningful structures. The results demonstrate that clustering methods can reveal behavioral trends not detected by Ic alone, offering a complementary perspective for understanding depositional and mechanical evolution in tailings. Integrating clustering outputs with conventional geotechnical indices improves the interpretability of CPTu profiles, supporting more informed geomechanical modeling, dam monitoring, and design. The approach provides a replicable methodology for data-rich environments with high spatial and temporal variability. Full article
Show Figures

Figure 1

22 pages, 1887 KiB  
Article
Knowledge Sharing: Key to Sustainable Building Construction Implementation
by Chijioke Emmanuel Emere, Clinton Ohis Aigbavboa and Olusegun Aanuoluwapo Oguntona
Eng 2025, 6(8), 190; https://doi.org/10.3390/eng6080190 - 6 Aug 2025
Abstract
The successful deployment of sustainable building construction (SBC) is connected to sound knowledge sharing. Concerning SBC, knowledge sharing has been identified to directly and indirectly increase innovation, environmental performance, cost saving, regulatory compliance awareness and so on. The necessity of enhancing SBC practice [...] Read more.
The successful deployment of sustainable building construction (SBC) is connected to sound knowledge sharing. Concerning SBC, knowledge sharing has been identified to directly and indirectly increase innovation, environmental performance, cost saving, regulatory compliance awareness and so on. The necessity of enhancing SBC practice globally has been emphasised by earlier research. Consequently, this study aims to investigate knowledge-sharing elements to enhance SBC in South Africa (SA). Utilising a questionnaire survey, this study elicited data from 281 professionals in the built environment. Data analysis was performed with “descriptive statistics”, the “Kruskal–Wallis H-test”, and “principal component analysis” to determine the principal knowledge-sharing features (KSFs). This study found that “creating public awareness of sustainable practices”, the “content of SBC training, raising awareness of green building products”, “SBC integration in professional certifications”, an “information hub or repository for sustainable construction”, and “mentoring younger professionals in sustainable practices” are the most critical KSFs for SBC deployment. These formed a central cluster, the Green Education Initiative and Eco-Awareness Alliance. The results achieved a reliability test value of 0.956. It was concluded that to embrace the full adoption of SBC, corporate involvement is critical, and all stakeholders must embrace the sustainability paradigm. It is recommended that the principal knowledge-sharing features revealed in this study should be carefully considered to help construction stakeholders in fostering knowledge sharing for a sustainable built environment. Full article
(This article belongs to the Section Chemical, Civil and Environmental Engineering)
Show Figures

Figure 1

25 pages, 2682 KiB  
Article
A Semi-Automated, Hybrid GIS-AI Approach to Seabed Boulder Detection Using High Resolution Multibeam Echosounder
by Eoin Downing, Luke O’Reilly, Jan Majcher, Evan O’Mahony and Jared Peters
Remote Sens. 2025, 17(15), 2711; https://doi.org/10.3390/rs17152711 - 5 Aug 2025
Abstract
The detection of seabed boulders is a critical step in mitigating geological hazards during the planning and construction of offshore wind energy infrastructure, as well as in supporting benthic ecological and palaeoglaciological studies. Traditionally, side-scan sonar (SSS) has been favoured for such detection, [...] Read more.
The detection of seabed boulders is a critical step in mitigating geological hazards during the planning and construction of offshore wind energy infrastructure, as well as in supporting benthic ecological and palaeoglaciological studies. Traditionally, side-scan sonar (SSS) has been favoured for such detection, but the growing availability of high-resolution multibeam echosounder (MBES) data offers a cost-effective alternative. This study presents a semi-automated, hybrid GIS-AI approach that combines bathymetric position index filtering and a Random Forest classifier to detect boulders and delineate boulder fields from MBES data. The method was tested on a 0.24 km2 site in Long Island Sound using 0.5 m resolution data, achieving 83% recall, 73% precision, and an F1-score of 77—slightly outperforming the average of expert manual picks while offering a substantial improvement in time-efficiency. The workflow was validated against a consensus-based master dataset and applied across a 79 km2 study area, identifying over 75,000 contacts and delineating 89 contact clusters. The method enables objective, reproducible, and scalable boulder detection using only MBES data. Its ability to reduce reliance on SSS surveys while maintaining high accuracy and offering workflow customization makes it valuable for geohazard assessment, benthic habitat mapping, and offshore infrastructure planning. Full article
(This article belongs to the Section Ocean Remote Sensing)
Show Figures

Figure 1

11 pages, 1037 KiB  
Article
Bonding to Demineralized Dentin: Impact of Immediate and Delayed Dentin Sealing over Time
by Erika Pérez-Soto, Rim Bourgi, Louis Hardan, Carlos Enrique Cuevas-Suarez, Ana Josefina Monjáras-Ávila, Miguel Ángel Fernández-Barrera, Nicolas Nassar, Monika Lukomska-Szymanska, Rima Daoui, Naji Kharouf and Youssef Haikel
Dent. J. 2025, 13(8), 354; https://doi.org/10.3390/dj13080354 - 5 Aug 2025
Viewed by 25
Abstract
Background/Objectives: Immediate dentin sealing (IDS) has been widely investigated in sound dentin; however, its efficacy on demineralized dentin remains insufficiently explored. This in vitro experimental study aimed to evaluate the shear bond strength (SBS) of indirect composite resin restorations bonded to demineralized dentin [...] Read more.
Background/Objectives: Immediate dentin sealing (IDS) has been widely investigated in sound dentin; however, its efficacy on demineralized dentin remains insufficiently explored. This in vitro experimental study aimed to evaluate the shear bond strength (SBS) of indirect composite resin restorations bonded to demineralized dentin using IDS, assessed at 24 h and after 6 months of aging. Methods: Twenty-five extracted premolars were randomly divided into five groups: (1) control (no sealing), (2) IDS applied to sound dentin (sound-IDS), (3) IDS applied to demineralized dentin (carious-IDS), (4) delayed dentin sealing (DDS) on sound dentin (sound-DDS), and (5) DDS on demineralized dentin (carious-DDS). SBS values were analyzed using a three-way analysis of variance (ANOVA) with dentin condition (sound vs. demineralized), aging time (24 h vs. 6 months), and sealing strategy (control, IDS, DDS) as independent variables. Statistical analyses were performed using SigmaPlot 12.0, with significance set at p < 0.05. Results: The results showed that IDS led to significantly higher SBS than DDS (p < 0.05). Bond strength was significantly influenced by dentin condition (p < 0.05), and all interactions between variables—particularly between dentin condition and sealing strategy, and between aging time and treatment—were statistically significant (p < 0.001). Overall, bond strength was higher at 24 h than after 6 months. IDS showed optimal performance in sound dentin, while DDS resulted in better long-term outcomes in demineralized dentin. Conclusions: These findings suggest that DDS may be the more effective approach in cases of carious or demineralized dentin. Full article
(This article belongs to the Section Restorative Dentistry and Traumatology)
Show Figures

Figure 1

23 pages, 1302 KiB  
Article
Deep Learning-Enhanced Ocean Acoustic Tomography: A Latent Feature Fusion Framework for Hydrographic Inversion with Source Characteristic Embedding
by Jiawen Zhou, Zikang Chen, Yongxin Zhu and Xiaoying Zheng
Information 2025, 16(8), 665; https://doi.org/10.3390/info16080665 - 4 Aug 2025
Viewed by 110
Abstract
Ocean Acoustic Tomography (OAT) is an important marine remote sensing technique used for inverting large-scale ocean environmental parameters, but traditional methods face challenges in computational complexity and environmental interference. This paper proposes a causal analysis-driven AI FOR SCIENCE method for high-precision and rapid [...] Read more.
Ocean Acoustic Tomography (OAT) is an important marine remote sensing technique used for inverting large-scale ocean environmental parameters, but traditional methods face challenges in computational complexity and environmental interference. This paper proposes a causal analysis-driven AI FOR SCIENCE method for high-precision and rapid inversion of oceanic hydrological parameters in complex underwater environments. Based on the open-source VTUAD (Vessel Type Underwater Acoustic Data) dataset, the method first utilizes a fine-tuned Paraformer (a fast and accurate parallel transformer) model for precise classification of sound source targets. Then, using structural causal models (SCM) and potential outcome frameworks, causal embedding vectors with physical significance are constructed. Finally, a cross-modal Transformer network is employed to fuse acoustic features, sound source priors, and environmental variables, enabling inversion of temperature and salinity in the Georgia Strait of Canada. Experimental results show that the method achieves accuracies of 97.77% and 95.52% for temperature and salinity inversion tasks, respectively, significantly outperforming traditional methods. Additionally, with GPU acceleration, the inference speed is improved by over sixfold, aimed at enabling real-time Ocean Acoustic Tomography (OAT) on edge computing platforms as smart hardware, thereby validating the method’s practicality. By incorporating causal inference and cross-modal data fusion, this study not only enhances inversion accuracy and model interpretability but also provides new insights for real-time applications of OAT. Full article
(This article belongs to the Special Issue Advances in Intelligent Hardware, Systems and Applications)
Show Figures

Figure 1

16 pages, 1207 KiB  
Article
Study of Multi-Stakeholder Mechanism in Inter-Provincial River Basin Eco-Compensation: Case of the Inland Rivers of Eastern China
by Zhijie Cao and Xuelong Chen
Sustainability 2025, 17(15), 7057; https://doi.org/10.3390/su17157057 - 4 Aug 2025
Viewed by 215
Abstract
Based on a comprehensive review of the current research status of ecological compensation both domestically and internationally, combined with field survey data, this study delves into the issue of multi-stakeholder participation in the ecological compensation mechanisms of the Xin’an River Basin. This research [...] Read more.
Based on a comprehensive review of the current research status of ecological compensation both domestically and internationally, combined with field survey data, this study delves into the issue of multi-stakeholder participation in the ecological compensation mechanisms of the Xin’an River Basin. This research reveals that the joint participation of multiple stakeholders is crucial to achieving the goals of ecological compensation in river basins. The government plays a significant role in macro-guidance, financial support, policy guarantees, supervision, and management. It promotes the comprehensive implementation of ecological environmental protection by formulating relevant laws and regulations, guiding the public to participate in ecological conservation, and supervising and punishing pollution behaviors. The public, serving as the main force, forms strong awareness and behavioral habits of ecological protection through active participation in environmental protection, monitoring, and feedback. As participants, enterprises contribute to industrial transformation and green development by improving resource utilization efficiency, reducing pollution emissions, promoting green industries, and participating in ecological restoration projects. Scientific research institutions, as technology enablers, have effectively enhanced governance efficiency through technological research and innovation, ecosystem value accounting to provide decision-making support, and public education. Social organizations, as facilitators, have injected vitality and innovation into watershed governance by extensively mobilizing social forces and building multi-party collaboration platforms. Communities, as supporters, have transformed ecological value into economic benefits by developing characteristic industries such as eco-agriculture and eco-tourism. Based on the above findings, further recommendations are proposed to mobilize the enthusiasm of upstream communities and encourage their participation in ecological compensation, promote the market-oriented operation of ecological compensation mechanisms, strengthen cross-regional cooperation to establish joint mechanisms, enhance supervision and evaluation, and establish a sound benefit-sharing mechanism. These recommendations provide theoretical support and practical references for ecological compensation worldwide. Full article
Show Figures

Figure 1

21 pages, 12507 KiB  
Article
Soil Amplification and Code Compliance: A Case Study of the 2023 Kahramanmaraş Earthquakes in Hayrullah Neighborhood
by Eyübhan Avcı, Kamil Bekir Afacan, Emre Deveci, Melih Uysal, Suna Altundaş and Mehmet Can Balcı
Buildings 2025, 15(15), 2746; https://doi.org/10.3390/buildings15152746 - 4 Aug 2025
Viewed by 245
Abstract
In the earthquakes that occurred in the Pazarcık (Mw = 7.7) and Elbistan (Mw = 7.6) districts of Kahramanmaraş Province on 6 February 2023, many buildings collapsed in the Hayrullah neighborhood of the Onikişubat district. In this study, we investigated whether there was [...] Read more.
In the earthquakes that occurred in the Pazarcık (Mw = 7.7) and Elbistan (Mw = 7.6) districts of Kahramanmaraş Province on 6 February 2023, many buildings collapsed in the Hayrullah neighborhood of the Onikişubat district. In this study, we investigated whether there was a soil amplification effect on the damage occurring in the Hayrullah neighborhood of the Onikişubat district of Kahramanmaraş Province. Firstly, borehole, SPT, MASW (multi-channel surface wave analysis), microtremor, electrical resistivity tomography (ERT), and vertical electrical sounding (VES) tests were carried out in the field to determine the engineering properties and behavior of soil. Laboratory tests were also conducted using samples obtained from bore holes and field tests. Then, an idealized soil profile was created using the laboratory and field test results, and site dynamic soil behavior analyses were performed on the extracted profile. According to The Turkish Building Code (TBC 2018), the earthquake level DD-2 design spectra of the project site were determined and the average design spectrum was created. Considering the seismicity of the project site and TBC (2018) criteria (according to site-specific faulting, distance, and average shear wave velocity), 11 earthquake ground motion sets were selected and harmonized with DD-2 spectra in short, medium, and long periods. Using scaled motions, the soil profile was excited with 22 different earthquake scenarios and the results were obtained for the equivalent and non-linear models. The analysis showed that the soft soil conditions in the area amplified ground shaking by up to 2.8 times, especially for longer periods (1.0–2.5 s). This level of amplification was consistent with the damage observed in mid- to high-rise buildings, highlighting the important role of local site effects in the structural losses seen during the Kahramanmaraş earthquakes. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

13 pages, 1780 KiB  
Article
The Use of Sound Recorders to Remotely Measure Grass Intake Behaviour in Horses
by Daisy E. F. Taylor, Bryony E. Lancaster and Andrea D. Ellis
Animals 2025, 15(15), 2273; https://doi.org/10.3390/ani15152273 - 4 Aug 2025
Viewed by 351
Abstract
Visual observation to record grass intake is time-consuming and labour-intensive. Technological methods, such as activity monitors, have been used but only record head position. This study aimed to evaluate sound recorders attached to headcollars to acoustically measure grass intake behaviour in horses as [...] Read more.
Visual observation to record grass intake is time-consuming and labour-intensive. Technological methods, such as activity monitors, have been used but only record head position. This study aimed to evaluate sound recorders attached to headcollars to acoustically measure grass intake behaviour in horses as a low-cost alternative method. Pilot Study 1 assessed 6 × 11 min periods comparing bites/min and chews/min between video footage (VD) and sound recorders (SR). Grazing was identified audibly (SRear) and visually through soundwave pattern software (SRwav). Chew rates (SRear: 47 ± 5 chews/min, VD: 43 ± 4 chews/min) were similar between methods. Pilot Study 2 compared hourly grass intake times between SRwav and visual observation (VO) for two horses during a 3 h period. Results showed significant correlation between methods (rho = 0.99, p < 0.01, Spearman). The main study measured intake behaviour using SRwav and VO methods for three free-ranging horses during 3 h observation periods over multiple days, adding up to 3 × 24 h in winter and in spring (n = 48). Mean differences per period between SRwav and VO were 1.8% ± 3 s.d. Foraging duration per period measured with SRwav closely matched VO (r2 = 0.99, p < 0.001). Sound recorders accurately recorded grass intake time and chews in grazing horses during moderate weather conditions. Full article
(This article belongs to the Section Equids)
Show Figures

Figure 1

10 pages, 1129 KiB  
Article
Optimal Sound Presentation Level for Sound Localization Testing in Unilateral Conductive Hearing Loss
by Miki Takahara, Takanori Nishiyama, Yu Fumiiri, Tsubasa Kitama, Makoto Hosoya, Marie N. Shimanuki, Masafumi Ueno, Takeshi Wakabayashi, Hiroyuki Ozawa and Naoki Oishi
Audiol. Res. 2025, 15(4), 95; https://doi.org/10.3390/audiolres15040095 - 2 Aug 2025
Viewed by 91
Abstract
Background/Objectives: This study aimed to investigate the optimal sound presentation level for sound localization testing to assess the effect of hearing interventions in individuals with unilateral conductive hearing loss (UCHL). Methods: Nine participants with normal hearing were tested, and simulated two-stage [...] Read more.
Background/Objectives: This study aimed to investigate the optimal sound presentation level for sound localization testing to assess the effect of hearing interventions in individuals with unilateral conductive hearing loss (UCHL). Methods: Nine participants with normal hearing were tested, and simulated two-stage UCHL was created using earmuffs and earplugs. We created two types of masking conditions: (1) only an earplug inserted, and (2) an earplug inserted with an earmuff worn. A sound localization test was performed for each condition. The sound presentation levels were 40, 45, 50, 55, 60, 65, and 70 dB SPL, and the results were evaluated using root mean square and d-values. Results: Both values showed little difference in masking Condition 2, regardless of the sound presentation level, whereas in masking Condition 1, the values were at their minimum at 55 dB SPL. In addition, comparing the differences between masking Conditions 1 and 2 for each sound presentation level, the greatest difference was observed at 55 dB SPL for both values. Conclusions: The optimal sound presentation level for sound localization testing to assess hearing intervention effects in UCHL was 55 dB. This result may be attributed to the effect of input from the non-masked ear, accounting for interaural attenuation; the effect was considered minimal at 55 dB SPL. Full article
(This article belongs to the Section Hearing)
Show Figures

Figure 1

22 pages, 728 KiB  
Article
Design and Performance Evaluation of LLM-Based RAG Pipelines for Chatbot Services in International Student Admissions
by Maksuda Khasanova Zafar kizi and Youngjung Suh
Electronics 2025, 14(15), 3095; https://doi.org/10.3390/electronics14153095 - 2 Aug 2025
Viewed by 323
Abstract
Recent advancements in large language models (LLMs) have significantly enhanced the effectiveness of Retrieval-Augmented Generation (RAG) systems. This study focuses on the development and evaluation of a domain-specific AI chatbot designed to support international student admissions by leveraging LLM-based RAG pipelines. We implement [...] Read more.
Recent advancements in large language models (LLMs) have significantly enhanced the effectiveness of Retrieval-Augmented Generation (RAG) systems. This study focuses on the development and evaluation of a domain-specific AI chatbot designed to support international student admissions by leveraging LLM-based RAG pipelines. We implement and compare multiple pipeline configurations, combining retrieval methods (e.g., Dense, MMR, Hybrid), chunking strategies (e.g., Semantic, Recursive), and both open-source and commercial LLMs. Dual evaluation datasets of LLM-generated and human-tagged QA sets are used to measure answer relevancy, faithfulness, context precision, and recall, alongside heuristic NLP metrics. Furthermore, latency analysis across different RAG stages is conducted to assess deployment feasibility in real-world educational environments. Results show that well-optimized open-source RAG pipelines can offer comparable performance to GPT-4o while maintaining scalability and cost-efficiency. These findings suggest that the proposed chatbot system can provide a practical and technically sound solution for international student services in resource-constrained academic institutions. Full article
(This article belongs to the Special Issue AI-Driven Data Analytics and Mining)
Show Figures

Figure 1

16 pages, 506 KiB  
Article
Exploring the Link Between Sound Quality Perception, Music Perception, Music Engagement, and Quality of Life in Cochlear Implant Recipients
by Ayşenur Karaman Demirel, Ahmet Alperen Akbulut, Ayşe Ayça Çiprut and Nilüfer Bal
Audiol. Res. 2025, 15(4), 94; https://doi.org/10.3390/audiolres15040094 - 2 Aug 2025
Viewed by 84
Abstract
Background/Objectives: This study investigated the association between cochlear implant (CI) users’ assessed perception of musical sound quality and their subjective music perception and music-related quality of life (QoL). The aim was to provide a comprehensive evaluation by integrating a relatively objective Turkish [...] Read more.
Background/Objectives: This study investigated the association between cochlear implant (CI) users’ assessed perception of musical sound quality and their subjective music perception and music-related quality of life (QoL). The aim was to provide a comprehensive evaluation by integrating a relatively objective Turkish Multiple Stimulus with Hidden Reference and Anchor (TR-MUSHRA) test and a subjective music questionnaire. Methods: Thirty CI users and thirty normal-hearing (NH) adults were assessed. Perception of sound quality was measured using the TR-MUSHRA test. Subjective assessments were conducted with the Music-Related Quality of Life Questionnaire (MuRQoL). Results: TR-MUSHRA results showed that while NH participants rated all filtered stimuli as perceptually different from the original, CI users provided similar ratings for stimuli with adjacent high-pass filter settings, indicating less differentiation in perceived sound quality. On the MuRQoL, groups differed on the Frequency subscale but not the Importance subscale. Critically, no significant correlation was found between the TR-MUSHRA scores and the MuRQoL subscale scores in either group. Conclusions: The findings demonstrate that TR-MUSHRA is an effective tool for assessing perceived sound quality relatively objectively, but there is no relationship between perceiving sound quality differences and measures of self-reported musical engagement and its importance. Subjective music experience may represent different domains beyond the perception of sound quality. Therefore, successful auditory rehabilitation requires personalized strategies that consider the multifaceted nature of music perception beyond simple perceptual judgments. Full article
Show Figures

Figure 1

Back to TopTop