Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (329)

Search Parameters:
Keywords = solids segregation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 7189 KiB  
Communication
Influence of Fission Product Distribution in Medium-Burnup UO2 Fuel on Cracking Behavior
by Dongsheng Xie, Chuanbao Tang, Tong Fu, Jiaxuan Si, Changqing Teng and Lu Wu
Materials 2025, 18(15), 3571; https://doi.org/10.3390/ma18153571 - 30 Jul 2025
Viewed by 33
Abstract
This investigation employs focused ion beam (FIB) and transmission electron microscopy (TEM) techniques to systematically analyze the distribution characteristics of fission products in medium-burnup (40.6 GWd/tU) UO2 fuel and their impact on fuel cracking behavior. The findings indicate that grain boundary embrittlement [...] Read more.
This investigation employs focused ion beam (FIB) and transmission electron microscopy (TEM) techniques to systematically analyze the distribution characteristics of fission products in medium-burnup (40.6 GWd/tU) UO2 fuel and their impact on fuel cracking behavior. The findings indicate that grain boundary embrittlement is predominantly attributed to the accumulation of spherical particles of solid fission products, including Mo, Ru, Rh, and Pd, which preferentially segregate around impurity particles, leading to localized stress concentration. Intragranular cracks are associated with the strip-like segregation of fission elements and the amorphization process. It also reveals that the size and number density of intragranular Xe bubbles are ~6.24 ± 0.24 nm and 5.2 × 1022 m−3, respectively, while Xe did not, under the analyzed conditions, significantly influence crack nucleation. This research elucidates the correlation mechanism between fission product distribution and fuel cracking behavior at medium burn up, offering experimental evidence to enhance the reliability and safety of nuclear fuel assemblies. Full article
(This article belongs to the Special Issue Key Materials in Nuclear Reactors)
Show Figures

Figure 1

25 pages, 14812 KiB  
Article
The Effect of Yttrium Addition on the Solidification Microstructure and Sigma Phase Precipitation Behavior of S32654 Super Austenitic Stainless Steel
by Jun Xiao, Geng Tian, Di Wang, Shaoguang Yang, Kuo Cao, Jianhua Wei and Aimin Zhao
Metals 2025, 15(7), 798; https://doi.org/10.3390/met15070798 - 15 Jul 2025
Viewed by 243
Abstract
This study focuses on S32654 super austenitic stainless steel (SASS) and systematically characterizes the morphology of the sigma (σ) phase and the segregation behavior of alloying elements in its as-cast microstructure. High-temperature confocal scanning laser microscopy (HT-CSLM) was employed to investigate the effect [...] Read more.
This study focuses on S32654 super austenitic stainless steel (SASS) and systematically characterizes the morphology of the sigma (σ) phase and the segregation behavior of alloying elements in its as-cast microstructure. High-temperature confocal scanning laser microscopy (HT-CSLM) was employed to investigate the effect of the rare earth element yttrium (Y) on the solidification microstructure and σ phase precipitation behavior of SASS. The results show that the microstructure of SASS consists of austenite dendrites and interdendritic eutectoid structures. The eutectoid structures mainly comprise the σ phase and the γ2 phase, exhibiting lamellar or honeycomb-like morphologies. Regarding elemental distribution, molybdenum displays a “concave” distribution pattern within the dendrites, with lower concentrations at the center and higher concentrations at the sides; when Mo locally exceeds beyond a certain threshold, it easily induces the formation of eutectoid structures. Mo is the most significant segregating element, with a segregation ratio as high as 1.69. The formation mechanism of the σ phase is attributed to the solid-state phase transformation of austenite (γ → γ2 + σ). In the late stages of solidification, the concentration of chromium and Mo in the residual liquid phase increases, and due to insufficient diffusion, there are significant compositional differences between the interdendritic regions and the matrix. The enriched Cr and Mo cause the interdendritic austenite to become supersaturated, leading to solid-state phase transformation during subsequent cooling, thereby promoting σ phase precipitation. The overall phase transformation process can be summarized as L → L + γ → γ → γ + γ2 + σ. Y microalloying has a significant influence on the solidification process. The addition of Y increases the nucleation temperature of austenite, raises nucleation density, and refines the solidification microstructure. However, Y addition also leads to an increased amount of eutectoid structures. This is primarily because Y broadens the solidification temperature range of the alloy and prolongs grain growth perio, which aggravates the microsegregation of elements such as Cr and Mo. Moreover, Y raises the initial precipitation temperature of the σ phase and enhances atomic diffusion during solidification, further promoting σ phase precipitation during the subsequent eutectoid transformation. Full article
(This article belongs to the Special Issue Synthesis, Processing and Applications of New Forms of Metals)
Show Figures

Figure 1

14 pages, 2175 KiB  
Article
Engineering Ultra-Low Thermal Conductivity in (Pb0.8Ge0.2Te)0.95-x(PbSe)0.05(PbS)x Quaternary Lead Chalcogenides Through PbS-Induced Phase Segregation
by Dianta Ginting, Hadi Pronoto, Nurato, Kontan Tarigan, Sagir Alva, Muhamad Fitri, Dwi Nanto, Ai Nurlaela, Mashadi, Yunasfi, Toto Sudiro, Jumril Yunas and Jong-Soo Rhyee
Materials 2025, 18(14), 3232; https://doi.org/10.3390/ma18143232 - 9 Jul 2025
Viewed by 352
Abstract
The shortage of tellurium and toxicity of lead are major obstacles to scaling mid-temperature thermoelectric generators. We engineer quaternary lead chalcogenides with composition (Pb0.8Ge0.2Te)0.95-x(PbSe)0.05(PbS)x (0 ≤ x ≤ 0.25), where Pb is lead, [...] Read more.
The shortage of tellurium and toxicity of lead are major obstacles to scaling mid-temperature thermoelectric generators. We engineer quaternary lead chalcogenides with composition (Pb0.8Ge0.2Te)0.95-x(PbSe)0.05(PbS)x (0 ≤ x ≤ 0.25), where Pb is lead, Ge is germanium, Te is tellurium, Se is selenium, S is sulfur, and x denotes the molar fraction of lead sulfide (PbS). The primary novelty lies in achieving ultra-low thermal conductivity through controlled phase segregation induced by systematic PbS incorporation. X-ray diffraction analysis reveals single-phase solid solutions up to x ≈ 0.10, with secondary PbS precipitates forming beyond this threshold. These PbS-rich phases create hierarchical microstructures that scatter phonons across multiple length scales, suppressing total thermal conductivity to 0.6 Wm−1K−1 at x = 0.15—approximately 84% lower than pristine lead telluride (PbTe) and approaching glass-like thermal conductivity values. Electrical transport measurements demonstrate sulfur’s role as an electron donor, enabling carrier-type control from p-type to n-type conduction. Despite moderate electrical power factors, the optimized composition (x = 0.20) achieves a peak dimensionless figure of merit ZT ≈ 0.34 at 650 K. This work demonstrates an effective strategy for tellurium-lean, lead-reduced thermoelectric materials through sulfur-induced phase segregation, providing practical design guidelines for sustainable waste heat recovery applications. Full article
(This article belongs to the Section Energy Materials)
Show Figures

Figure 1

23 pages, 5139 KiB  
Article
Geopolymer CLSM with Off-Specification Fly Ash and Bottom Ash: A Sustainable Approach to Hazardous Waste Utilization
by Alexis K. VanDomelen, Ahmed A. Gheni, Eslam Gomaa and Mohamed A. ElGawady
Materials 2025, 18(13), 3105; https://doi.org/10.3390/ma18133105 - 1 Jul 2025
Viewed by 708
Abstract
Conventional controlled low-strength material (CLSM) is a self-consolidating cementitious material with high flowability and low strength, traditionally composed of cement, sand, and water. This study explores the sustainable utilization of off-specification fly ash (OSFA) and bottom ash (BA), classified as industrial by-products with [...] Read more.
Conventional controlled low-strength material (CLSM) is a self-consolidating cementitious material with high flowability and low strength, traditionally composed of cement, sand, and water. This study explores the sustainable utilization of off-specification fly ash (OSFA) and bottom ash (BA), classified as industrial by-products with potential environmental hazards, to develop eco-friendly geopolymer CLSM as an alternative to conventional CLSM. Sodium hydroxide (NaOH) was used as an alkali activator to stabilize and solidify both two-part (liquid NaOH) and one-part (solid NaOH pellets) geopolymer CLSM mixtures. These mixtures were evaluated based on flowability (ASTM D6103-17) and compressive strength (<300 psi per ACI Committee 229 guidelines for excavatability). A cost analysis was also conducted. The results demonstrated that incorporating OSFA as a cement replacement increased water demand by 15% to meet flowability requirements, while BA substitution for sand led to segregation challenges requiring mixture adjustments. For two-part mixtures, higher carbon content in OSFA necessitated an increased water-to-fly ash ratio. All self-consolidating mixtures exhibited 1-day compressive strengths ranging from 5 psi (0.03 MPa) to 87 psi (0.6 MPa). One-part mixtures showed a 1% to 34% reduction in 7-day compressive strength compared to two-part mixtures, improving excavatability. Increasing the BA-to-OSFA ratio from 1:1 to 3:1 reduced water demand due to lower surface area but increased the NaOH/OSFA ratio. This study highlights the potential of geopolymer CLSM to reduce costs by up to 94% at current NaOH prices (USD 6 per cubic yard) while repurposing hazardous industrial by-products, offering a cost-efficient, sustainable, and environmentally responsible solution for CLSM production. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

22 pages, 4820 KiB  
Article
Microstructure and Properties of Corrosion-Resistant Steel Produced by CASTRIP
by Kai Lei, Long Chen, Hengchang Lu, Xintong Lian, Qingxiao Feng, Hualong Li and Han Dong
Crystals 2025, 15(7), 595; https://doi.org/10.3390/cryst15070595 - 24 Jun 2025
Viewed by 386
Abstract
The CASTRIP process is an innovative method for producing flat rolled low-carbon and low-alloy steel at very thin thicknesses. By casting steel close to its final dimensions, enormous savings in time and energy can be realized. In this paper, an ultra-high-strength low-alloy corrosion-resistant [...] Read more.
The CASTRIP process is an innovative method for producing flat rolled low-carbon and low-alloy steel at very thin thicknesses. By casting steel close to its final dimensions, enormous savings in time and energy can be realized. In this paper, an ultra-high-strength low-alloy corrosion-resistant steel was produced through the CASTRIP process. Microstructure and properties were investigated by means of optical microscopy (OM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), laser confocal microscopy (LSCM), electron backscattered diffraction (EBSD), and tensile testing. The results show that the microstructure is mainly composed of polygonal ferrite, bainite ferrite, and acicular ferrite. The bainite ferrite forms parallel lath bundles nucleating at austenite grain boundaries, propagating perpendicularly into the parent grains. The acicular ferrite exhibits a cross-interlocked morphology preferentially nucleating at oxide/sulfide inclusions. Microstructural characterization confirms that the phase transformation of acicular ferrite and bainite ferrite introduces high-density dislocations, identified as the primary strengthening mechanism. Under the CASTRIP process, corrosion-resistant elements such as Cu, P, Sb, and Nb are completely dissolved in the matrix without grain boundary segregation, thereby contributing to solid solution strengthening. Full article
(This article belongs to the Special Issue Phase Transformation and Microstructure Evolution of Alloys)
Show Figures

Figure 1

23 pages, 2768 KiB  
Article
Evolution of Non-Destructive and Destructive Peach ‘Redhaven’ Quality Traits During Maturation
by Marko Vuković, Dejan Ljubobratović, Maja Matetić, Marija Brkić Bakarić, Slaven Jurić and Tomislav Jemrić
Agronomy 2025, 15(6), 1476; https://doi.org/10.3390/agronomy15061476 - 17 Jun 2025
Viewed by 634
Abstract
The main goal of this study was to investigate and better understand the evolution of the main non-destructive and destructive quality parameters of peach ‘Redhaven’ during ripening process. This study was conducted from 8 to 21 July 2023, during which peaches ‘Redhaven’ were [...] Read more.
The main goal of this study was to investigate and better understand the evolution of the main non-destructive and destructive quality parameters of peach ‘Redhaven’ during ripening process. This study was conducted from 8 to 21 July 2023, during which peaches ‘Redhaven’ were harvested each second day from a commercial orchard located in Novaki Bistranjski. Maturity categories were defined according to different firmness thresholds: maturity for long-distance chain stores (H1), maturity for medium-distance chain stores (H2), maturity below the defined maximum firmness in order to preserve optimal quality traits (H3), ready to buy (H4), ready to eat (H5), and overripe (H6). The chlorophyll absorbance index was the non-destructive parameter that was mostly distinguished between maturity categories (r = 0.78 with firmness), followed by a* and h° ground colour parameters. During the first three maturity categories (H1–H3), firmness had a notably smaller correlation with titratable acidity and the ratio of total soluble solids and titratable acidity, which is not the case for a* and h° ground colour parameters, chlorophyll absorbance index, and the share of additional colour. During the last three maturity categories (H4–H6), non-destructive parameters are not reliable for maturity prediction. When ground colour parameters are measured near petiole insertion, mostly smaller segregation between maturity categories is obtained compared to when measured at the rest of the fruit. Total polyphenol and flavonoid content in peach juice notably corelated only in the last two maturity categories with L* ground colour parameter. Full article
Show Figures

Figure 1

11 pages, 1391 KiB  
Article
Influence of Thickness on the Structure and Properties of TiAl(Si)N Gradient Coatings
by Alexey Kassymbaev, Alexandr Myakinin, Gulzhas Uazyrkhanova, Farida Belisarova, Amangeldi Sagidugumar and Ruslan Kimossov
Coatings 2025, 15(6), 710; https://doi.org/10.3390/coatings15060710 - 13 Jun 2025
Viewed by 506
Abstract
Enhanced hard coatings with exceptional mechanical and thermal qualities have prompted substantial study into multicomponent nitride systems. TiAl(Si)N coatings have emerged as viable possibilities owing to their remarkable hardness, thermal stability, and oxidation resistance. This work involved the fabrication of thickness-varied TiAl(Si)N gradient [...] Read more.
Enhanced hard coatings with exceptional mechanical and thermal qualities have prompted substantial study into multicomponent nitride systems. TiAl(Si)N coatings have emerged as viable possibilities owing to their remarkable hardness, thermal stability, and oxidation resistance. This work involved the fabrication of thickness-varied TiAl(Si)N gradient coatings using reactive magnetron sputtering, employing a controlled modulation of aluminum and silicon content across the film thickness. Three samples, with thicknesses of ~400 nm, ~600 nm, and ~800 nm, were deposited under uniform Ar/N2 gas flow ratios, and their microstructural, mechanical, and tribological characteristics were rigorously examined. SEM investigation demonstrated a significant change across thicknesses. XRD results validated the emergence of a predominant cubic TiAl(Si)N phase alongside a secondary hexagonal AlN phase, signifying partial phase segregation. The nanoindentation results indicated that Sample 2 exhibited the maximum hardness (~38 GPa) and Young’s modulus (~550 GPa) due to an optimized equilibrium between solid solution strengthening and nanocomposite production. Tribological testing revealed that Sample 1 displayed the lowest and most consistent friction coefficient, corresponding to its superior H/E and H3/E2 ratios, which signify improved elasticity and resistance to plastic deformation. The findings emphasize that the implementation of a compositional gradient, especially in the distribution of Si and Al, markedly affects the microstructure and performance of TiAl(Si)N coatings. Gradient structures enhance the microstructure, optimize hardness, and increase the friction coefficient. Ongoing refinement of gradient profiles and deposition parameters may further improve the characteristics of TiAl(Si)N coatings, facilitating their wider industrial use. Full article
(This article belongs to the Section Surface Characterization, Deposition and Modification)
Show Figures

Figure 1

39 pages, 2398 KiB  
Article
Enhancing Community Waste Recycling in Taiwan: Key Drivers Affecting Consumers in Waste Recycling
by Ching-Jung Kuo, Xiao Jin Nah and Hsin-Wei Hsu
Sustainability 2025, 17(12), 5322; https://doi.org/10.3390/su17125322 - 9 Jun 2025
Viewed by 676
Abstract
The municipal solid waste generation is projected to spike from 2.1 billion tonnes in 2023 to 3.8 billion tonnes by 2050. In Taiwan, the upsurge of waste volume, in addition to periodic maintenance of incinerators, which may persist up to four months, has [...] Read more.
The municipal solid waste generation is projected to spike from 2.1 billion tonnes in 2023 to 3.8 billion tonnes by 2050. In Taiwan, the upsurge of waste volume, in addition to periodic maintenance of incinerators, which may persist up to four months, has resulted in limited incineration capacity. The optimum approach to address the challenge is to reduce the amount of waste sent for incineration by effective segregation of combustible and non-combustible waste, as well as improving the public recycling rate. Local authorities play a significant role in encouraging public recycling and restricting non-burnable waste from being delivered to incinerators within a short period of time. This can greatly reduce the amount of waste and incinerator maintenance costs. This study aimed to explore the key driving factors for public participation in waste recycling and translate the determinants into policy in order to increase the waste recycling rate. The study employed literature analysis to select factors repeatedly mentioned as indicators and conducted online surveys to collect data on factors influencing consumer engagement in waste recycling in Taiwan. This study also adopted the Analytic Hierarchy Process and established a hierarchical framework with four dimensions (Psychological, Knowledge, Policy, and Infrastructure) and thirteen indicators. The findings have demonstrated that infrastructure (0.275) is the most influential aspect in affecting consumers’ recycling actions, followed by psychological (0.256) and policy aspects (0.251), and knowledge aspect (0.218) as the least influential factor. Positive rewards (0.120), recycling knowledge (0.118), and well-built infrastructure (0.113) were specifically identified as key drivers in encouraging recycling. The findings informed the public’s priorities in recycling involvement, and strategic initiatives targeted at these preferences can effectively assist local authorities in promoting citizen engagement in recycling. Policies that meet public demands, such as positive rewards for recycling, dissemination of recycling knowledge, and provision and improvement of more recycling infrastructure, can ensure the success of the policy implementation and serve as a reference for other Asian countries in reducing waste and improving the recycling rate. Full article
Show Figures

Figure 1

15 pages, 2890 KiB  
Article
The Interface of Additive Manufactured Tungsten–Diamond Composites
by Xuehao Gao, Dongxu Cheng, Zhe Sun, Yihe Huang, Wentai Ouyang, Cunxiao Lan, Zhaoqing Li and Lin Li
Materials 2025, 18(11), 2574; https://doi.org/10.3390/ma18112574 - 30 May 2025
Viewed by 444
Abstract
Tungsten–diamond metal matrix composites (MMCs) fabricated via L-PBF show potential for applications in nuclear facility shielding, heat sinks, precision cutting/grinding tools, and aerospace hot-end components. In this paper, tungsten (W), diamond (D), and diamond with Ni coating (D-Ni) powders are used to fabricate [...] Read more.
Tungsten–diamond metal matrix composites (MMCs) fabricated via L-PBF show potential for applications in nuclear facility shielding, heat sinks, precision cutting/grinding tools, and aerospace hot-end components. In this paper, tungsten (W), diamond (D), and diamond with Ni coating (D-Ni) powders are used to fabricate W+D and W+(D-Ni) composites by L-PBF technology. The results show that at the interface of the W+D sample, the W powder melts while the D powder remains in a solid state during L-PBF processing, and W and C elements gradually diffuse into each other. Due to the high cooling rate of L-PBF processing, the C phase forms a diamond-like carbon (DLC) phase with an amorphous structure, and the W phase becomes a supersaturated solid solution of the C element. At the interface of the W+(D-Ni) sample, the diffusion capacity of Ni and W elements in the solid state is weaker than in the molten state. C and W elements diffuse into the Ni melt, forming a rich Ni area of the DLC phase, while Ni and W elements diffuse into the solid D powder, forming a lean Ni area of the DLC phase. In the rich Ni area of the DLC phase, Ni segregation leads to the precipitation of nanocrystals (several hundred nanometers), whereas in the lean Ni area of the DLC phase, the diffusion capacity of Ni and W elements in the solid D powder is limited, resulting in nanocrystalline sizes of only about tens of nanometers. During W dendrite growth, the addition of the Ni coating and the expelling of the C phenomenon leads to W grain refinement at the interface, which reduces the number and length of cracks in the W+(D-Ni) sample. This paper contributes to the theoretical development and engineering applications of tungsten–diamond MMCs fabricated by L-PBF. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Figure 1

31 pages, 14774 KiB  
Article
Morphostructural and Genetic Features of Native Gold in Apocarbonate Tremolite–Diopside Skarns (Ryabinovoye Deposit, Far East, Russia)
by Veronika I. Rozhdestvina and Galina A. Palyanova
Minerals 2025, 15(6), 571; https://doi.org/10.3390/min15060571 - 27 May 2025
Viewed by 463
Abstract
We studied the chemical composition and morphostructural features of micron and submicron-sized particles of native gold in apocarbonate tremolite–diopside skarns of the Ryabinovoye deposit located on the southeastern margin of the Aldan Shield (Far East, Russia). Polished sections of lump ore samples containing [...] Read more.
We studied the chemical composition and morphostructural features of micron and submicron-sized particles of native gold in apocarbonate tremolite–diopside skarns of the Ryabinovoye deposit located on the southeastern margin of the Aldan Shield (Far East, Russia). Polished sections of lump ore samples containing native gold were analyzed by scanning electron microscopy in combination with X-ray microanalysis using different modes of visualization and X-ray diffraction methods. Gold particles, clearly visible after etching the surface of some polished sections with acids and partial or complete dissolution of some host minerals, were also examined. Native gold from the studied deposit is of high fineness (above 970‰) and contains (in wt.%) <1.59 Ag and less commonly <0.37 Cu and <0.15 Zn. Native gold is found intergrown with tremolite, diopside, and other magnesian silicates, as well as calcite, fluorite, magnetite, and sphalerite. Rare microinclusions of pyrrhotite, galena, and clinohumite are present in gold grains. It was found that native gold inherits the morphology of tremolite crystals and aggregates, which is determined by the size and shape of the voids bounded by its crystals. Gold localized in the intercrystalline spaces and in the zones of conjugation with remobilized calcite has irregular, lumpy shapes and partially or completely faceted grains with a dense structure. The nature of the localization and distribution of native gold in ores is due to the crystallization of the tremolite component of skarns. Apparently, the processes of gold accumulation are caused by the thermal activation of solid-phase differentiation of the substance of carbonate rocks, in which the processes of destruction of the original minerals and collective recrystallization play a significant role. It is likely that at some gold skarn deposits, carbonate rocks could be the source of gold. Data on the morphology and sizes of native gold segregations, as well as on the intergrown minerals, can be used to improve gold extraction technologies. A specific group of minerals intergrown with native gold in gold skarn deposits can be used as a diagnostic feature in the primary search for placer gold. The obtained results will help to better understand the formation of native gold in apocarbonate tremolite–diopside skarns. Full article
Show Figures

Graphical abstract

17 pages, 3854 KiB  
Article
Effect of Aluminum Content on Solidification Process and Microsegregation of δ-TRIP Steel
by Rudong Wang, Yanhui Sun and Heng Cui
Metals 2025, 15(6), 587; https://doi.org/10.3390/met15060587 - 25 May 2025
Viewed by 438
Abstract
As a third-generation advanced high-strength steel (AHSS), δ-TRIP steel exhibits the characteristics of high strength, high plasticity, and low density. However, the addition of Al to steel will affect solidification and segregation, which may impact the final microstructure and mechanical properties of the [...] Read more.
As a third-generation advanced high-strength steel (AHSS), δ-TRIP steel exhibits the characteristics of high strength, high plasticity, and low density. However, the addition of Al to steel will affect solidification and segregation, which may impact the final microstructure and mechanical properties of the product. In this study, thermodynamic calculations and microsegregation model analysis were employed to investigate the effects of Al addition on the solidification path, peritectic reaction range, equilibrium partition coefficients, and microsegregation behavior of δ-TRIP steel. The results show that with an increase in the Al content, the carbon content range in which δ ferrite is retained without complete transformation during the solid-state phase transition becomes broader. Simultaneously, the carbon concentration range of the peritectic zone expands. The segregation of the C, Si, Mn, P, and S elements increases with increasing Al content, whereas the segregation of Al decreases as the Al content increases. Under non-equilibrium solidification conditions, unlike equilibrium solidification, the temperature difference between the solid and liquid phases initially increases, then decreases, and subsequently levels off with further Al addition. This study provides information for the composition design and production process optimization of δ-TRIP steel, and the research results can provide a reference for similar high-aluminum, low-density steels. Full article
(This article belongs to the Special Issue Advanced High-Performance Steels: From Fundamental to Applications)
Show Figures

Figure 1

16 pages, 3469 KiB  
Article
Phenotypic Characters and Inheritance Tendency of Agronomic Traits in F1 Progeny of Pear
by Xiaojie Zhang, Mengyue Tang, Jiamei Li, Yue Chi, Kexin Wang, Jianying Peng and Yuxing Zhang
Plants 2025, 14(10), 1491; https://doi.org/10.3390/plants14101491 - 16 May 2025
Viewed by 471
Abstract
Studying fruit genetic trends, heterosis, and growth traits in pear hybrid progeny provides the foundation for variety breeding. The aim of this research is to reveal the trait performance of the hybrid progeny of Chinese white pear and Western pear and provide a [...] Read more.
Studying fruit genetic trends, heterosis, and growth traits in pear hybrid progeny provides the foundation for variety breeding. The aim of this research is to reveal the trait performance of the hybrid progeny of Chinese white pear and Western pear and provide a theoretical basis for other breeders to predict the trait performance of their hybrid progeny when selecting Eastern pear and Western pear as parents. Our research team constructed a ‘Yuluxiang’ × ‘Xianghongli’ interspecific hybrid population in 2015, and in 2023, we conducted a two-year investigation of 16 traits in 140 hybrid progeny, including 11 fruit traits and 5 growth traits, and analyzed and compared the genetic variation and heterosis of traits, as well as the correlation between various traits. The results showed that the hybrid progeny was widely segregated for single fruit weight (FW), soluble solid (SS) content, and titratable acid (TA) content and conformed to a normal distribution, with quantitative genetic traits under polygenic control. The highest two-year coefficients of variation for TA were 54.42% in 2023 and 39.17% in 2024. A genetic trend of decreasing FW was observed, which was greatly influenced by the male sex. The ratio of soft soluble flesh to crispy flesh was 1:1, and the gene controlling this trait may be a quality trait controlled by a single gene. The traits that showed transgressive heterosis for two years included fruit longitudinal diameter (FLoD), fruit shape index (FSI), and TA, and those that showed negative heterosis included FW, SS, leaf longitudinal diameter (LLoD), and leaf lateral diameter (LLaD). Correlation analysis indicated that the progeny of crosses in this combination, which had red fruit skin, may also present red early flowering color (EFC) and young leaf color (YLC), reddish brown annual branch color (ABC), and lower FSI, fruit stalk length (FSL), LLaD, and TA. Thus, at the seedling stage, individuals with red-colored fruit may be screened by observing the color of young leaves and young stems and the lateral diameter of the leaves. Principal component analysis showed that among the 16 traits included in six principal components, peel color (PC), FLoD, 2024SS, fruit tape (FT), and FSI were the main factors causing differences in fruit phenotypes. This study systematically elucidated the genetic trends of agronomic traits in pears and will provide a theoretical basis for the selection of parents and early selection of hybrid progeny in pear hybrid breeding. Full article
Show Figures

Figure 1

12 pages, 2540 KiB  
Article
Monolithic GaN-Based Dual-Quantum-Well LEDs with Size-Controlled Color-Tunable White-Light Emission
by Seung Hun Lee, Dabin Jeon, Gun-Woo Lee and Sung-Nam Lee
Materials 2025, 18(9), 2140; https://doi.org/10.3390/ma18092140 - 6 May 2025
Viewed by 469
Abstract
We report a monolithic GaN-based light-emitting diode (LED) platform capable of color-tunable white-light emission via LED size scaling. By varying the LED size from 800 µm to 50 µm, the injection current density was effectively controlled under constant driving current, enabling precise modulation [...] Read more.
We report a monolithic GaN-based light-emitting diode (LED) platform capable of color-tunable white-light emission via LED size scaling. By varying the LED size from 800 µm to 50 µm, the injection current density was effectively controlled under constant driving current, enabling precise modulation of carrier distribution within a dual-composition multi-quantum well (MQW) structure. The active layer consists of five lower In0.15Ga0.85N/GaN QWs for blue emission and strain induction, and an upper In0.3Ga0.7N/GaN single QW engineered for red-orange emission. The strain imposed by lower QWs promotes indium segregation in the last QW through spinodal decomposition, resulting in a broadened emission spanning from ~500 nm to 580 nm. High-resolution TEM and EDX analyses directly confirmed the indium segregation and phase-separated structure of the last QW. Spectral analysis revealed that larger devices exhibited dominant emission at 580 nm with a correlated color temperature (CCT) of 2536 K and a CIE coordinate of (0.501, 0.490). As LED size decreased, increased hole injection allowed recombination to occur in deeper QWs, resulting in a blueshift to 450 nm and a CCT of 9425 K with CIE (0.224, 0.218) in the 50 × 50 µm2 LED. This approach enables phosphor-free white-light generation with tunable color temperatures and chromaticities using a single wafer, offering a promising strategy for compact, adaptive solid-state lighting applications. Full article
(This article belongs to the Special Issue Advances in Nanophotonic Materials, Devices, and Applications)
Show Figures

Figure 1

26 pages, 2251 KiB  
Article
Enablers and Policy Framework for Construction Waste Minimization Under Circular Economy: Stakeholder Perspectives
by Muhammad Usman Shahid and Majid Ali
Sustainability 2025, 17(9), 4129; https://doi.org/10.3390/su17094129 - 2 May 2025
Cited by 1 | Viewed by 1278
Abstract
The expansion of the construction sector in order to meet infrastructure demands is generating millions of tons of solid waste. This waste threatens resource sustainability and increases environmental challenges. Adopting a circular economy (CE) through waste minimization (WM) offers a solution, but policy [...] Read more.
The expansion of the construction sector in order to meet infrastructure demands is generating millions of tons of solid waste. This waste threatens resource sustainability and increases environmental challenges. Adopting a circular economy (CE) through waste minimization (WM) offers a solution, but policy guidelines are very limited in developing countries, especially in the context of Pakistan. The global body of knowledge lacks a comparative analysis of the influence of the perception of stakeholders when developing such guidelines. Therefore, the purpose of the current study is to identify enablers for the development of a policy framework and to provide a comparative analysis of the perception of stakeholders. In this regard, Saunders’s research onion model and purposive sampling methods were used for the selection of research variables and respondents, respectively. Data were gathered through semi-structured interviews. Thematic analysis, including word frequency and cluster analyses using the NVivo 15 software, was performed. The key findings indicated an 80% agreement and a 60% disagreement among consultant–contractor and contractor–regulator relationships, respectively. Overall, financial support (14.6%) and awareness programs (11.2%) at the macro level, the use of BIM (5%), the clarity of specifications (4.1%), the segregation of onsite waste (2%), and the adoption of reuse and recycling practices (2%) at the micro level were found to be major policy measures. This study concludes with practical implications for sustainable development. Full article
Show Figures

Figure 1

12 pages, 6390 KiB  
Article
Exploring How Dopants Strengthen Metal-Ni/Ceramic-Al2O3 Interface Structures at the Atomic and Electronic Levels
by Fengqiao Sun, Xiaofeng Zhang, Long Li, Qicheng Chen, Dehao Kong, Haifeng Yang and Renwei Li
Molecules 2025, 30(9), 1990; https://doi.org/10.3390/molecules30091990 - 29 Apr 2025
Viewed by 370
Abstract
The metal-based/ceramic interface structure is a key research focus in science, and addressing the stability of the interface has significant scientific importance as well as economic value. In this project, the work of adhesion, heat of segregation, electronic structure, charge density, and density [...] Read more.
The metal-based/ceramic interface structure is a key research focus in science, and addressing the stability of the interface has significant scientific importance as well as economic value. In this project, the work of adhesion, heat of segregation, electronic structure, charge density, and density of states for doped-M (M = Ti, Mg, Cu, Zn, Si, Mn, or Al) Ni (111)/Al2O3 (0001) interface structures are studied using first-principle calculation methods. The calculation results demonstrate that doping Ti and Mg can increase the bonding strength of the Ni–Al2O3 interface by factors of 3.4 and 1.5, respectively. However, other dopants, such as Si, Mn, and Al, have a negative effect on the bonding of the Ni–Al2O3 interface. As a result, the alloying elements may be beneficial to the bonding of the Ni–Al2O3 interface, but they may also play an opposite role. Moreover, the Ti and Mg dopants segregate from the matrix and move to the middle position of the Ni–Al2O3 interface during relaxation, while other dopants exhibit a slight segregation and solid solution in the matrix. Most remarkably, the segregation behavior of Ti and Mg induced electron transfer to the middle of the interface, thereby increasing the charge density of the Ni–Al2O3 interface. For the optimal doped-Ti Ni–Al2O3 interface, bonds of Ti–O and Ti–Ni are found, which indicates that the dopant Ti generates stable compounds in the interface region, acting as a stabilizer for the interface. Consequently, selecting Ti as an additive in the fabrication of metal-based ceramic Ni–Al2O3 composites will contribute to prolonging the service lifetime of the composite. Full article
Show Figures

Graphical abstract

Back to TopTop