Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (165)

Search Parameters:
Keywords = solidification thermodynamics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 4985 KB  
Article
Characterization of Ti/Cu Dissimilar Metal Butt-Welded by the Cold Welding Process
by Yunyi Xiao, Fei Liu and Nuo Chen
Materials 2026, 19(1), 197; https://doi.org/10.3390/ma19010197 - 5 Jan 2026
Viewed by 132
Abstract
Titanium alloys and copper have broad applications in aerospace, defense, and industry, but their dissimilar welding faces challenges from significant physicochemical differences and easy formation of brittle Ti-Cu intermetallic compounds, while existing methods like laser welding or friction stir welding have limitations, such [...] Read more.
Titanium alloys and copper have broad applications in aerospace, defense, and industry, but their dissimilar welding faces challenges from significant physicochemical differences and easy formation of brittle Ti-Cu intermetallic compounds, while existing methods like laser welding or friction stir welding have limitations, such as low strength or inability to weld ultra-thin plates. This study adopted cold welding to join Ti-6.5Al-1Mo-1V-2Zr alloy and 99.90% pure copper. The mechanical properties of the joint were tested, the microstructure and fracture of the weld were observed, and the phase composition of the weld was analyzed. The results show that the weld fusion zone mainly consists of Cu-based solid solution and Cu3Ti. Low cold welding heat input reduces the Cu3Ti content, so the joint mechanical properties do not decrease significantly. The tensile strength of the joint reaches 284 MPa, which is 83% of that of copper-based metals, and the elongation rate reaches 6.25%. Diffusion kinetics and solidification thermodynamics analyses confirm that Cu3Ti intermetallic compounds are preferentially generated in the weld seam. Full article
(This article belongs to the Section Mechanics of Materials)
Show Figures

Figure 1

21 pages, 2757 KB  
Article
Machine Learning-Based Multi-Objective Composition Optimization of High-Nitrogen Austenitic Stainless Steels
by Yinghu Wang, Long Chen, Limei Cheng, Enuo Wang, Zhendong Sheng and Ligang Zhang
Materials 2025, 18(23), 5460; https://doi.org/10.3390/ma18235460 - 3 Dec 2025
Viewed by 490
Abstract
High-nitrogen austenitic stainless steels (HNASS) require compositional strategies that simultaneously maximize corrosion resistance and microstructural stability while suppressing delta (δ) ferrite and deleterious precipitates. Here, an explainable multi-objective design workflow is developed that couples thermodynamic descriptors from the Calculation of Phase Diagrams (CALPHAD) [...] Read more.
High-nitrogen austenitic stainless steels (HNASS) require compositional strategies that simultaneously maximize corrosion resistance and microstructural stability while suppressing delta (δ) ferrite and deleterious precipitates. Here, an explainable multi-objective design workflow is developed that couples thermodynamic descriptors from the Calculation of Phase Diagrams (CALPHAD) approach—using both equilibrium and Scheil solidification calculations—with machine learning surrogate models, random forest (RF) and Extreme Gradient Boosting (XGBoost), trained on 60,480 compositions in the Fe–C–N–Cr–Mn–Mo–Ni–Si space. The physics-informed feature set comprises phase fractions; transformation and precipitation temperatures for δ-ferrite, chromium nitride (Cr2N), sigma (σ) phase and M23C6 carbides; liquidus and solidus temperatures; and the pitting-resistance equivalent number (PREN). The RF model achieves consistently low prediction errors, with a PREN root-mean-square error (RMSE) of ≈0.004, and exhibits strong generalization. Shapley additive explanations (SHAP) reveal metallurgically consistent trends: increasing nitrogen (N) suppresses δ-ferrite and promotes Cr2N; carbon (C) promotes M23C6; molybdenum (Mo) promotes the σ-phase; and C and silicon (Si) widen the freezing range. Using the trained surrogate as the objective evaluator, the non-dominated sorting genetic algorithm III (NSGA-III) builds Pareto fronts that minimize the δ-ferrite range, Cr2N, σ-phase, M23C6 and the freezing range (ΔT) while maximizing PREN. The Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) is then applied to rank the Pareto-optimal candidates and to select compositions that combine elevated PREN with controlled precipitation windows. This workflow is efficient, reproducible and interpretable and provides actionable composition candidates together with a transferable methodology for data-driven stainless steel design. Full article
(This article belongs to the Special Issue From Materials to Applications: High-Performance Steel Structures)
Show Figures

Figure 1

16 pages, 7278 KB  
Article
Study on Cold Cracking in 430Cb Ferritic Stainless Steel Castings Based on Multiscale Characterization and Simulation Analysis
by Siyu Qiu, Jun Xiao and Aimin Zhao
Metals 2025, 15(12), 1310; https://doi.org/10.3390/met15121310 - 28 Nov 2025
Viewed by 1039
Abstract
Cracks were found at the gate of the 430Cb ferritic stainless steel exhaust system jet base produced by investment casting. In this paper, the cracks of failed stainless steel castings were comprehensively analyzed by means of macroscopic inspection, laser confocal microscopy, field emission [...] Read more.
Cracks were found at the gate of the 430Cb ferritic stainless steel exhaust system jet base produced by investment casting. In this paper, the cracks of failed stainless steel castings were comprehensively analyzed by means of macroscopic inspection, laser confocal microscopy, field emission scanning electron microscopy, electron backscatter diffraction, X-ray diffractometer, ProCAST (version 2018, ESI Group, Paris, France) simulation and Thermo-Calc (TCFE10 database, 2022a, Thermo-Calc Software AB, Solna, Sweden) thermodynamic calculation. It can be concluded that all the cracks originate from the gate on the surface of the casting, and the fracture surface shows brittle intergranular characteristics, which can be determined as cold cracks. The formation of cold cracks can be attributed to the fact that the local stress generated during cooling after the casting solidifies exceeds the strength limit of the material itself. As the gate is the final solidification zone, shrinkage is limited and stress is concentrated. The grains are coarse, and the microstructure defects such as shrinkage porosity, pores and needle-like NbC further weaken the plasticity of the grain boundaries, promoting the crack to propagate along the direction of the maximum principal stress. The uneven cooling rate and shell constraint during the investment casting process make it difficult to release stress, and the existence of microstructure defects are the fundamental causes of crack generation. Full article
(This article belongs to the Special Issue Innovations in Heat Treatment of Metallic Materials)
Show Figures

Figure 1

31 pages, 3370 KB  
Article
Simulation and Optimization of Dry Ice Production Process Using Amine-Based CO2 Capture and External Ammonia Refrigeration
by Jean Claude Assaf, Christina Issa, Tony Flouty, Lea El Marji and Mantoura Nakad
Processes 2025, 13(10), 3209; https://doi.org/10.3390/pr13103209 - 9 Oct 2025
Cited by 1 | Viewed by 1392
Abstract
Despite growing interest in carbon capture and utilization (CCU), the transformation of captured CO2 into dry ice remains poorly studied, particularly from a systems integration and energy optimization perspective. While previous works have examined individual components such as CO2 absorption, liquefaction, [...] Read more.
Despite growing interest in carbon capture and utilization (CCU), the transformation of captured CO2 into dry ice remains poorly studied, particularly from a systems integration and energy optimization perspective. While previous works have examined individual components such as CO2 absorption, liquefaction, or refrigerant evaluation, no existing study has modeled the full dry ice production chain from capture to solidification within a unified simulation framework. This study presents the first complete simulation and optimization of a dry ice production process, incorporating CO2 absorption, solvent regeneration, dehydration, multistage compression, ammonia-based external liquefaction, and expansion-based solidification using Aspen HYSYS. The process features ammonia as a working refrigerant due to its favorable thermodynamic performance and zero global warming potential. Optimization of heat integration reduced total energy consumption by 66.67%, replacing conventional utilities with water-based heat exchangers. Furthermore, solvent recovery achieved rates of 75.65% for MDEA and 66.4% for piperazine, lowering operational costs and environmental burden. The process produced dry ice with 97.83% purity and 94.85% yield. A comparative analysis of refrigerants confirmed ammonia’s superiority over R-134a and propane. These results provide the first system-level roadmap for producing dry ice from captured CO2 in an energy-efficient, scalable, and environmentally responsible manner. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

21 pages, 57255 KB  
Article
Solidification Microstructure and Secondary-Phase Precipitation Behavior of 310S Austenitic Stainless Steel
by Jun Xiao, Di Wang, Shaoguang Yang, Kuo Cao, Siyu Qiu, Jianhua Wei and Aimin Zhao
Metals 2025, 15(10), 1091; https://doi.org/10.3390/met15101091 - 29 Sep 2025
Cited by 1 | Viewed by 989
Abstract
In this study, the solidification behavior of 310S stainless steel was systematically investigated by combining high-temperature confocal laser scanning microscopy (HT-CLSM), microstructural characterization, and thermodynamic calculations. The focus was on the formation and transformation of ferrite, secondary-phase precipitation, and elemental segregation behavior, with [...] Read more.
In this study, the solidification behavior of 310S stainless steel was systematically investigated by combining high-temperature confocal laser scanning microscopy (HT-CLSM), microstructural characterization, and thermodynamic calculations. The focus was on the formation and transformation of ferrite, secondary-phase precipitation, and elemental segregation behavior, with comparisons made with 304 stainless steel. The effects of an Al addition and cooling rate were also explored. The results show that the solidification sequence of 310S stainless steel is L → L + γ → L + γ + δ → δ + γ, in which austenite nucleates early and grows rapidly, followed by the precipitation of a small amount of δ-ferrite in the later stages of solidification. In contrast, 304 stainless steel solidifies according to L → L + δ → L + δ + γ → δ + γ, with a rapid δ → γ transformation occurring after solidification. Compared with 304, 310S stainless steel exhibits a reduced ferrite fraction and a significantly increased σ phase content. The σ phase primarily precipitates directly from δ-ferrite (δ → σ), while M23C6 preferentially forms at grain boundaries and δ/γ interfaces, where δ-ferrite not only provides fast diffusion pathways for Cr but also nucleation sites. The solidification segregation sequence in 310S stainless steel is Cr > Ni > Fe, with Cr and Ni showing positive segregation and Fe showing negative segregation. The addition of Al does not alter the solidification mode of 310S stainless steel but refines austenite grains, reduces interdendritic solute enrichment, decreases segregation, lowers both the size and fraction of ferrite, and suppresses the precipitation of σ and M23C6 phases. This effect is mainly attributed to the reduction of δ/γ interfaces, which weakens the preferred nucleation sites for M23C6. Increasing the cooling rate enhances non-equilibrium solute segregation, promotes ferrite formation, inhibits the δ → γ transformation, and ultimately retains more ferrite; the intensified segregation further accelerates the δ → σ transformation. Full article
Show Figures

Graphical abstract

12 pages, 479 KB  
Article
Quantifying Latent Heat in AlSi5Cu Alloys (with 1, 2, and 4% of Cu by Mass) via DSC, Thermal Analysis, and Commercial Software
by Mile Djurdjevic, Vladimir Jovanovic and Srecko Stopic
Metals 2025, 15(9), 1045; https://doi.org/10.3390/met15091045 - 19 Sep 2025
Viewed by 596
Abstract
This study comprehensively evaluates the latent heat of hypoeutectic AlSi5Cu alloys with 1, 2, and 4% of Cu by mass, investigating their solidification behavior under controlled cooling conditions. Latent heat, a critical thermophysical property, significantly influences solidification and microstructural formation in casting processes. [...] Read more.
This study comprehensively evaluates the latent heat of hypoeutectic AlSi5Cu alloys with 1, 2, and 4% of Cu by mass, investigating their solidification behavior under controlled cooling conditions. Latent heat, a critical thermophysical property, significantly influences solidification and microstructural formation in casting processes. The evaluation employed an integrated approach, combining experimental measurements from Differential Scanning Calorimetry (DSC) and thermal analysis (TA-Newtonian method) with computational assessments performed using JMatPro and Thermo-Calc software packages. The findings reveal a reasonable agreement between the measured and calculated latent heat values, suggesting that methods beyond DSC, such as commercial software and thermal analysis techniques, offer acceptable and viable alternatives for determining latent heat in AlSiCu alloys. While DSC served as the experimental reference, providing particularly consistent lowest values for AlSi5Cu1 and AlSi5Cu2, relative error analysis indicated that JMatPro generally yielded results closest to DSC, especially for AlSi5Cu2 (0.245% relative error), and the TA-Newtonian method also showed strong agreement, particularly for AlSi5Cu1 (0.356% relative error) and AlSi5Cu4 (0.787% relative error). Maximum deviation was observed with Thermo-Calc for AlSi5Cu1 (7.474%). These discrepancies are primarily attributed to inherent differences in the underlying thermodynamic databases for computational tools and the sensitivity of experimental techniques to specific material properties and solidification behaviors. Full article
(This article belongs to the Special Issue Solidification and Casting of Metals and Alloys (2nd Edition))
Show Figures

Figure 1

39 pages, 2107 KB  
Review
A Comparative Review on Dry Ice Production Methods: Challenges, Sustainability and Future Directions
by Jean Claude Assaf, Christina Issa, Tony Flouty, Lea El Marji and Mantoura Nakad
Processes 2025, 13(9), 2848; https://doi.org/10.3390/pr13092848 - 5 Sep 2025
Cited by 1 | Viewed by 2720
Abstract
Dry ice, the solid form of carbon dioxide (CO2), is widely used in cold chain logistics, industrial cleaning, and biomedical preservation. Its production, however, is closely linked to carbon capture, energy-intensive liquefaction, and solidification processes. This review critically evaluates and compares [...] Read more.
Dry ice, the solid form of carbon dioxide (CO2), is widely used in cold chain logistics, industrial cleaning, and biomedical preservation. Its production, however, is closely linked to carbon capture, energy-intensive liquefaction, and solidification processes. This review critically evaluates and compares the existing methods of CO2 capture, including chemical absorption, physical absorption, adsorption, and membrane-based separation as they pertain to dry ice production. This study further assesses liquefaction cycles using refrigerants such as ammonia and R744, highlighting thermodynamic and environmental trade-offs. Solidification techniques are examined in the context of energy consumption, process integration, and product quality. The comparative analysis is supported by extensive tabulated data on operating conditions, CO2 purity, and sustainability metrics. This review identifies key technical and environmental challenges, such as solvent regeneration, CO2 leakage, and energy recovery. Thus, it also explores emerging innovations, including hybrid cycles and renewable energy integration, to advance the sustainability of dry ice production. This, in turn, offers strategic insight for optimizing dry ice manufacturing in alignment with low-carbon industrial goals. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

23 pages, 10645 KB  
Article
Analysis of Inclusions in the Entire Smelting Process of High-Grade Rare Earth Non-Oriented Silicon Steel
by Liqiang Xue, Xiangyu Li, Tao Wang, Qi Zhao, Haozheng Wang, Jia Wang, Wanming Lin, Xiaofeng Niu, Wangzhong Mu and Chao Chen
Crystals 2025, 15(9), 779; https://doi.org/10.3390/cryst15090779 - 30 Aug 2025
Cited by 2 | Viewed by 1069
Abstract
Rare earth can modify inclusions in non-oriented silicon steel which is harmful to magnetic properties. This study focused on the 3.1% Si non-oriented silicon steel under industrial production conditions. Samples were taken during the stages before and after addition of rare earth ferrosilicon [...] Read more.
Rare earth can modify inclusions in non-oriented silicon steel which is harmful to magnetic properties. This study focused on the 3.1% Si non-oriented silicon steel under industrial production conditions. Samples were taken during the stages before and after addition of rare earth ferrosilicon alloy in Ruhrstahl-Heraeus (RH) unit, different pouring time in tundish, and continuous casting slab. This study systematically examined the morphology, composition, and size distribution of inclusions throughout the smelting process of non-oriented silicon steel by scanning electron microscopy with energy-dispersive spectroscopy (SEM/EDS), and thermodynamic analysis at liquid steel temperature and thermodynamic analysis of equilibrium solidification. The research results demonstrated that the rare earth treatment ultimately modifies the original Al2O3 inclusions in the non-oriented silicon steel into REAlO3 and RE2O2S inclusions, while also aggregating AlN inclusions to form composite inclusions. After rare earth modification, the average size of the inclusions decreases. In the RH treatment process, the inclusions before the addition of rare earth ferrosilicon alloy are mainly AlN and Al2O3. After the addition of rare earth ferrosilicon alloy, the inclusions are mainly RES and REAlO3. In the tundish and continuous casting, the rare earth content decreased, and the rare earth inclusions transform into RE2O2S and REAlO3. For the size of inclusions, after adding rare earth ferrosilicon alloy, the average size of inclusions rapidly decreased from 16.15 μm to 2.65 μm and reach its minimum size 2.16 μm at the end of RH treatment. When the molten steel entered the tundish, the average size of inclusions increased slightly and gradually decreased with the progress of pouring. The average size of inclusions in the slab is 5.79 μm. Phase stability diagram calculation indicates the most stable rare earth inclusion is Ce2O2S in molten steel. Thermodynamic calculations indicated that Al2O3, Ce2O2S, Ce2S3, AlN, and MnS precipitate sequentially during the equilibrium solidification process of molten steel. Full article
(This article belongs to the Special Issue Crystallization of High Performance Metallic Materials (2nd Edition))
Show Figures

Figure 1

17 pages, 6198 KB  
Article
The Influence of Heat Treatment Process on the Residual Ferrite in 304L Austenitic Stainless Steel Continuous Casting Slab
by Zhixuan Xue, Kun Yang, Yafeng Li, Chaochao Pei, Dongzhi Hou, Qi Zhao, Yang Wang, Lei Chen, Chao Chen and Wangzhong Mu
Materials 2025, 18(16), 3724; https://doi.org/10.3390/ma18163724 - 8 Aug 2025
Cited by 3 | Viewed by 808
Abstract
This study investigates the distribution characteristics of residual ferrite in 304L austenitic stainless steel continuous casting slab and the impact of heat treatment processes on its content. Through optical microscopy (OM), thermodynamic calculation software (Thermo–Calc) and heat treatment experiments, it is found that [...] Read more.
This study investigates the distribution characteristics of residual ferrite in 304L austenitic stainless steel continuous casting slab and the impact of heat treatment processes on its content. Through optical microscopy (OM), thermodynamic calculation software (Thermo–Calc) and heat treatment experiments, it is found that the residual ferrite content along the thickness direction at the width center of the slab exhibits an “M”-shaped distribution—lowest at the edges (approximately 3%) and highest near the center (approximately 13%). Within the triangular zone of the slab, the residual ferrite content varies between 1.8% and 12.2%, with its average along the thickness direction also showing an “M”-shaped distribution; along the width direction, the average residual ferrite content is lower at the edge positions, while within the internal triangular zone, it ranges between 8% and 10%. The ferrite morphology changes significantly across solidification zones: elongated in the surface fine-grain zone, lath-like and skeletal in the columnar grain zone and network-like in the central equiaxed grain zone. Thermodynamic calculations indicate that the solidification mode of the 304L continuous casting slab follows the FA mode. Heat treatment experiments conducted across the entire slab thickness demonstrate effective reduction in residual ferrite content; the optimal reduction is achieved at 1250 °C with a 48 min hold followed by air cooling while preserving the original “M”-shaped distribution characteristic after treatment. Increasing the heat treatment temperature, prolonging the holding time and reducing the cooling rate all contribute to reducing residual ferrite content. Full article
(This article belongs to the Special Issue Advanced Stainless Steel—from Making, Shaping, Treating to Products)
Show Figures

Figure 1

19 pages, 4972 KB  
Article
Dispersion of TiB2 Particles in Al–Ni–Sc–Zr System Under Rapid Solidification
by Xin Fang, Lei Hu, Peng Rong and Yang Li
Metals 2025, 15(8), 872; https://doi.org/10.3390/met15080872 - 4 Aug 2025
Viewed by 790
Abstract
The dispersion behavior of ceramic particles in aluminum alloys during rapid solidification critically affects the resulting microstructure and mechanical performance. In this study, we investigated the nucleation and growth of Al3(Sc,Zr) on TiB2 surfaces in a 2TiB2/Al–8Ni–0.6Sc–0.1Zr alloy, [...] Read more.
The dispersion behavior of ceramic particles in aluminum alloys during rapid solidification critically affects the resulting microstructure and mechanical performance. In this study, we investigated the nucleation and growth of Al3(Sc,Zr) on TiB2 surfaces in a 2TiB2/Al–8Ni–0.6Sc–0.1Zr alloy, fabricated via wedge-shaped copper mold casting and laser surface remelting. Thermodynamic calculations were employed to optimize alloy composition, ensuring sufficient nucleation driving force under rapid solidification conditions. The results show that the formation of Al3(Sc,Zr)/TiB2 composite interfaces is highly dependent on cooling rate and plays a pivotal role in promoting uniform TiB2 dispersion. At an optimal cooling rate (~1200 °C/s), Al3(Sc,Zr) nucleates heterogeneously on TiB2, forming core–shell structures and enhancing particle engulfment into the α-Al matrix. Orientation relationship analysis reveals a preferred (111)α-Al//(0001)TiB2 alignment in Sc/Zr-containing samples. A classical nucleation model quantitatively explains the observed trends and reveals the critical cooling-rate window for composite interface formation. This work provides a mechanistic foundation for designing high-performance aluminum-based composites with uniformly dispersed reinforcements for additive manufacturing applications. Full article
Show Figures

Figure 1

13 pages, 2073 KB  
Article
Dynamic Nucleation in Zr-2.5Nb During Reduced-Gravity Electromagnetic Levitation Experiments
by Gwendolyn P. Bracker, Stephan Schneider, Sarah Nell, Mitja Beckers, Markus Mohr and Robert W. Hyers
Crystals 2025, 15(8), 703; https://doi.org/10.3390/cryst15080703 - 31 Jul 2025
Viewed by 654
Abstract
Levitation techniques reduce the available heterogeneous nucleation sites and provide stable access to deeply undercooled melts. However, some samples have repeatably demonstrated that, in the presence of strong stirring, solidification may be induced at moderate, sub-critical undercoolings. Dynamic nucleation is a mechanism by [...] Read more.
Levitation techniques reduce the available heterogeneous nucleation sites and provide stable access to deeply undercooled melts. However, some samples have repeatably demonstrated that, in the presence of strong stirring, solidification may be induced at moderate, sub-critical undercoolings. Dynamic nucleation is a mechanism by which solidification may be induced through flow effects within a sub-critically undercooled melt. In this mechanism, collapsing cavities within the melt produce very high-pressure shocks, which shift the local melting temperature. In these regions of locally shifted melt temperatures, thermodynamic conditions enable nuclei to grow and trigger solidification of the full sample. By deepening the local undercooling, dynamic nucleation enables solidification to occur in conditions where classical nucleation does not. Dynamic nucleation has been observed in several zirconium and zirconium-based samples in the Electromagnetic Levitator onboard the International Space Station (ISS-EML). The experiments presented here address conditions in which a zirconium sample alloyed with 2.5 atomic percent niobium spontaneously solidifies during electromagnetic levitation experiments with strong melt stirring. In these experimental conditions, classical nucleation predicts the sample to remain liquid. This solidification behavior is consistent with the solidification behavior observed in prior experiments on pure zirconium. Full article
Show Figures

Figure 1

19 pages, 7447 KB  
Article
Research on the Size and Distribution of TiN Inclusions in High-Titanium Steel Cast Slabs
by Min Zhang, Xiangyu Li, Zhijie Guo and Yanhui Sun
Materials 2025, 18(15), 3527; https://doi.org/10.3390/ma18153527 - 28 Jul 2025
Cited by 1 | Viewed by 808
Abstract
High-titanium steel contains an elevated titanium content, which promotes the formation of abundant non-metallic inclusions in molten steel at high temperatures, including titanium oxides, sulfides, and nitrides. These inclusions adversely affect continuous casting operations and generate substantial internal/surface defects in cast slabs, ultimately [...] Read more.
High-titanium steel contains an elevated titanium content, which promotes the formation of abundant non-metallic inclusions in molten steel at high temperatures, including titanium oxides, sulfides, and nitrides. These inclusions adversely affect continuous casting operations and generate substantial internal/surface defects in cast slabs, ultimately compromising product performance and service reliability. Therefore, stringent control over the size, distribution, and population density of inclusions is imperative during the smelting of high-titanium steel to minimize their detrimental effects. In this paper, samples of high titanium steel (0.4% Ti, 0.004% N) casting billets were analyzed by industrial test sampling and full section comparative analysis of the samples at the center and quarter position. Using the Particle X inclusions, as well as automatic scanning and analyzing equipment, the number, size, location distribution, type and morphology of inclusions in different positions were systematically and comprehensively investigated. The results revealed that the primary inclusions in the steel consisted of TiN, TiS, TiC and their composite forms. TiN inclusions exhibited a size range of 1–5 µm on the slab surface, while larger particles of 2–10 μm were predominantly observed in the interior regions. Large-sized TiN inclusions (5–10 μm) are particularly detrimental, and this problematic type of inclusion predominantly concentrates in the interior regions of the steel slab. A gradual decrease in TiN inclusion number density was identified from the surface toward the core of the slab. Thermodynamic and kinetic calculations incorporating solute segregation effects demonstrated that TiN precipitates primarily in the liquid phase. The computational results showed excellent agreement with experimental data regarding the relationship between TiN size and solidification rate under different cooling conditions, confirming that increased cooling rates lead to reduced TiN particle sizes. Both enhanced cooling rates and reduced titanium content were found to effectively delay TiN precipitation, thereby suppressing the formation of large-sized TiN inclusions in high-titanium steels. Full article
(This article belongs to the Special Issue Advanced Stainless Steel—from Making, Shaping, Treating to Products)
Show Figures

Figure 1

18 pages, 2433 KB  
Article
Thermodynamic Assessment of the Pyrometallurgical Recovery of a Pb-Ag Alloy from a Mixture of Ammonium Jarosite–Lead Paste Wastes
by Jose Enrique Sanchez Vite, Alejandro Cruz Ramírez, Manuel Eduardo Flores Favela, Ricardo Gerardo Sánchez Alvarado, José Antonio Romero Serrano, Margarita García Hernández, Teresita del Refugio Jiménez Romero and Juan Cancio Jiménez Lugos
Recycling 2025, 10(4), 136; https://doi.org/10.3390/recycling10040136 - 8 Jul 2025
Cited by 2 | Viewed by 2907
Abstract
A previously pyrometallurgical process, developed to obtain a Pb-Ag alloy and a slag rich in sulfur from the recycling of a mixture of industrial wastes of jarosite and lead paste, was thermodynamically assessed at 1200 °C. The industrial jarosite sourced from a Mexican [...] Read more.
A previously pyrometallurgical process, developed to obtain a Pb-Ag alloy and a slag rich in sulfur from the recycling of a mixture of industrial wastes of jarosite and lead paste, was thermodynamically assessed at 1200 °C. The industrial jarosite sourced from a Mexican zinc hydrometallurgical plant corresponded to an ammonium jarosite with a measurable silver content. The specific heat capacity (Cp) of the ammonium jarosite was obtained from TGA and DSC measurements, as well as the thermodynamic functions of enthalpy, entropy, and Gibbs free energy. The Cp was successfully modeled using polynomial regression, with a second-degree polynomial employed to describe the low-temperature behavior. The thermodynamic data generated were input into the thermodynamic software FactSage 8.2 for modeling of the lead paste–ammonium jarosite-Na2CO3-SiC system and represented by stability phase diagrams. The thermodynamic assessment of the pyrometallurgical process predicted compounds formed at high temperatures, showing that a Pb-Ag alloy and a slag rich in Na, S, and Fe (NaFeS2 and NaFeO2) were obtained. The compounds formed evidence of the effective sulfur retention in the slag, which is crucial for mitigating SO2 emissions during high-temperature treatments. The experimental compounds, after solidification, were determined by X-ray diffraction measurements to be Na2Fe(SO4)2 and Na2(SO4), which reasonably match the thermodynamic assessment. The heat capacity of the ammonium jarosite provides essential thermodynamic insights into the compositional complexities of industrial waste, which are particularly relevant for thermodynamic modeling and process optimization in pyrometallurgical systems aimed at metal recovery and residue valorization. Full article
Show Figures

Figure 1

10 pages, 1023 KB  
Article
Research on the Solidification Structure of the Zn-19Al-6Mg Alloy
by Jianhua Wei, Jun Xiao, Shaoguang Yang, Kuo Cao, Di Wang and Aimin Zhao
Metals 2025, 15(7), 769; https://doi.org/10.3390/met15070769 - 8 Jul 2025
Viewed by 756
Abstract
This paper deals with “Zn-19Al-6Mg” coatings and their solidification structure is the basis for the study of the alloy’s properties. The solidification equilibrium phase diagram of this alloy was calculated using thermodynamic software. Samples were taken from the billets of this alloy for [...] Read more.
This paper deals with “Zn-19Al-6Mg” coatings and their solidification structure is the basis for the study of the alloy’s properties. The solidification equilibrium phase diagram of this alloy was calculated using thermodynamic software. Samples were taken from the billets of this alloy for differential thermal analysis experiments. By combining the phase diagram and the experimental results of differential thermal analysis, the solidification structure of the Zn-19Al-6Mg alloy was obtained. The phases in the solidified structure were identified by means of SEM, EDS, XRD, etc. The research finds that the solidification structure of the Zn-19Al-6Mg alloy is composed of the β-Al phase, the α-Al phase, the MgZn2 phase, and the Mg2Zn11 phase. During the actual solidification process of the alloy, due to the large cooling rate, Zn-rich phases will appear in the microstructure. The research results provide a basis for the regulation of the coating structure when preparing Zn-19Al-6Mg-coated sheets and strips. Full article
Show Figures

Figure 1

27 pages, 5230 KB  
Review
Advances in Solidification Processing in Steady Magnetic Field
by Shengya He, Chenglin Huang and Chuanjun Li
Materials 2025, 18(12), 2886; https://doi.org/10.3390/ma18122886 - 18 Jun 2025
Cited by 1 | Viewed by 1236
Abstract
As a contactless physical field, a steady magnetic field (SMF) is capable of acting on substances, which leads to changes in physical and/or chemical properties and to further influencing thermodynamic and kinetic behaviors at macroscopic, mesoscopic, and microscopic scales. The application of the [...] Read more.
As a contactless physical field, a steady magnetic field (SMF) is capable of acting on substances, which leads to changes in physical and/or chemical properties and to further influencing thermodynamic and kinetic behaviors at macroscopic, mesoscopic, and microscopic scales. The application of the SMF to material science has evolved into an important interdisciplinary field—the Electromagnetic Processing of Materials (EPM). Therein, the implementation of the SMF for the solidification of metals and alloys has been increasingly given attention. The SMF was found to regulate nucleation, crystal growth, the distribution of solutes and structure morphology during alloy solidification via various magnetic effects, such as magnetic damping, the thermoelectric magnetic effect, magnetic orientation and magnetically controlled diffusion. In this review, we briefly summarize the main SMF effects and review recent progress in magnetic field-assisted solidification processing, including nucleation, dendritic growth, solute segregation and interfacial phenomena. Finally, future perspectives regarding controlling alloys’ solidification using an SMF are discussed. Full article
(This article belongs to the Special Issue Energy Field-Assisted Metal Forming)
Show Figures

Figure 1

Back to TopTop