Simulation and Optimization of Dry Ice Production Process Using Amine-Based CO2 Capture and External Ammonia Refrigeration
Abstract
1. Introduction
2. Selection of Feedstock, Solvent, and CO2 Capture Method
Category | Options | CO2 Purity | Key Impurities | Availability | Energy Requirement | Suitability for Dry Ice Production | Ref. |
---|---|---|---|---|---|---|---|
Feedstock | Flue Gas | 8–15% | NOx, SOx, H2O, O2 | Widely available | High | Low | [38] |
Fermentation Gas | ~100% | Minimal | Low to moderate | Low | Moderate | [39] | |
Natural Gas (Sour Gas) | 20–70% | CH4, H2S | High | Moderate | High | [40] | |
Biogas | 35–55% | CH4, H2O, H2S | Moderate | Moderate | Moderate | [40] | |
Solvent | Monoethanolamine (MEA) | Low | High | Low maturity for solid CO2 integration | High | High | [41] |
Diethanolamine (DEA) | Moderate | High | Moderate | Moderate | High | [41] | |
Methyldiethanolamine (MDEA) | High | Low | High | Low | High | [41] | |
MDEA + Piperazine (PZ) Blend | Very high | Low | High (emerging in CO2-to-solid systems) | Moderate | High (emerging) | [41] | |
Capture Method | Chemical Absorption (Amines) | High | Low | Moderate | High | High | [42] |
Physical Adsorption | Moderate | Highly sensitive to humidity | Low | Moderate | Moderate | [43] | |
Membrane Separation | Moderate | Highly sensitive to impurities/ fouling | Low to moderate | Limited | Low | [43] | |
Cryogenic Separation | Very high | Low impurity sensitivity | Very high capital cost | High | Moderate to high | [42] |
3. Dry Ice Production Process Simulation
3.1. Simulation Methodology for CO2 Capture, Liquefaction and Solidification
3.1.1. Fluid Package Selection
3.1.2. Feed Stream Specifications
3.2. Simulation of CO2 Capture via Amine Absorption
Chemical Reactions of MDEA and Piperazine with CO2
- CO2 Hydration and Bicarbonate Formation (MDEA):CO2 + H2O ⇌ H+ + HCO3−HCO3− + MDEA ⇌ MDEAH+
- 2.
- Carbamate Formation (Piperazine):CO2 + PZ ⇌ PZCOO− + H+PZCOO− + H+ + PZ ⇌ PZ(COOH) + PZH+
3.3. Simulation of CO2 Liquefaction via External Liquefaction
External Liquefaction Configuration
3.4. CO2 Solidification and Dry Ice Production
3.5. Absorber Design and Parallel Configuration
3.5.1. Packing Type Selection
3.5.2. Absorber Diameter and Flow Considerations
3.5.3. Sensitivity of Absorber Diameter to Flooding Velocity and Packing Assumptions
- Approach to flooding (f) at fixed packing (Fp = 120 m−1)
- Packing capacity (represented here by packing factor Fp within the same family of random packings) at fixed f = 0.80.
Diameter Sensitivity Results
- D0 = baseline column diameter (17.3 m)
- Fp,0 = baseline packing factor
- Fp,new = packing factor under the new condition
- f0 = baseline design fraction of flooding
- fnew = design fraction of flooding under the new condition
- Reasonable design choices for f (0.60–0.85) shift D by 10–15% at fixed packing.
- Staying within the random packing family, changing ring size (approximated by Fp= 60–150 m−1) moves D by roughly −30% to +12% versus baseline.
“What-If” with Higher-Capacity Structured Packing
Implications for Parallel Trains
- Two columns: (within common industrial limits).
- Three columns: .
3.5.4. Column Height
3.5.5. Packing Weight
3.6. Heat-Exchanger Network (HEN) Aassumptions
4. Process Modeling of Dry Ice Production
4.1. Effect of MDEA and Piperazine Solvents on CO2 Mass Fraction
4.2. Effects of Number of Trays on Reboiler Duty and CO2 Mass Fraction
4.3. Effects of (MDEA + PZ) Flow Rate on Acid Gas—CO2 Mass Fraction and Reboiler Duty
4.4. Effects of Regenerator Feed Temperature on Reboiler Duty
4.5. Effects of Molar Flow of “A4 Stream” on the Power Demand of Compressor “2”
4.6. Effects of Refrigerants on Refrigeration Loop Duty
5. Heat Integration and Solvent Recovery
5.1. Heat Integration
5.2. Solvent Recovery
6. Economic Analysis
7. Optimal Operating Conditions and Final Process Configuration
8. Sustainability and Industrial Relevance
9. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yousaf, M.; Zaman, M.; Mahmood, A.; Imran, M.; Elkamel, A.; Rizwan, M.; Wilberforce, T.; Riaz, F. Carbon dioxide utilization: A critical review from multiscale perspective. Energy Sci. Eng. 2022, 10, 4890–4923. [Google Scholar] [CrossRef]
- Acampora, L.; Grilletta, S.; Costa, G. The Integration of Carbon Capture, Utilization, and Storage (CCUS) in Waste-to-Energy Plants: A Review. Energies 2025, 18, 1883. [Google Scholar] [CrossRef]
- Aneesh, A.M.; Sam, A.A. A mini-review on cryogenic carbon capture technology by desublimation: Theoretical and modeling aspects. Front. Energy Res. 2023, 11, 1167099. [Google Scholar] [CrossRef]
- Dzido, A.; Krawczyk, P. Abrasive Technologies with Dry Ice as a Blasting Medium—Review. Energies 2023, 16, 1014. [Google Scholar] [CrossRef]
- Dziejarski, B.; Krzyżyńska, R.; Andersson, K. Current status of carbon capture, utilization, and storage technologies in the global economy: A survey of technical assessment. Fuel 2023, 342, 127776. [Google Scholar] [CrossRef]
- Chen, F.; Morosuk, T. Exergetic and Economic Evaluation of CO2 Liquefaction Processes. Energies 2021, 14, 7174. [Google Scholar] [CrossRef]
- Dry Ice Market Overview and Forecast by 2030. Available online: https://www.theinsightpartners.com/reports/dry-ice-market (accessed on 16 August 2025).
- Chen, S.; Qiao, H.; Xu, G. Performance evaluation of refrigerants for external CO2 liquefaction with focus on ammonia’s thermodynamic advantages. J. CO2 Util. 2021, 46, 101469. [Google Scholar]
- South Pars—Global Energy Monitor. Available online: https://www.gem.wiki/South_Pars (accessed on 1 September 2025).
- Gong, W. Modeling of CO2 Conditioning Processes. Ph.D. Thesis, DTU Chemical Engineering, Kgs. Lyngby, Denmark, 2023. [Google Scholar]
- Closmann, F.; Nguyen, T.; Rochelle, G.T. MDEA/Piperazine as a solvent for CO2 capture. Energy Procedia 2009, 1, 1351–1357. [Google Scholar] [CrossRef]
- Chew, Y.E.; Putra, Z.A.; Foo, D.C. Process simulation and optimisation for acid gas removal system in natural gas processing. J. Nat. Gas Sci. Eng. 2022, 107, 104764. [Google Scholar] [CrossRef]
- Vega, F.; Sanna, A.; Navarrete, B.; Maroto-Valer, M.M.; Cortés, V.J. Degradation of amine-based solvents in CO2 capture process by chemical absorption. Greenh. Gases Sci. Technol. 2014, 4, 707–733. [Google Scholar] [CrossRef]
- Emori, W.; Udoh, I.I.; Ekerenam, O.O.; Ikeuba, A.I.; Etim, I.N.; Njoku, C.N.; Daniel, E.F.; Njoku, D.I.; Uzoma, P.C.; Kolawole, S.K.; et al. Handling heat—stable salts in post—combustion CO2 capture: A detailed survey. Greenh. Gases Sci. Technol. 2023, 13, 876–904. [Google Scholar] [CrossRef]
- Eliasson, Å.; Fahrman, E.; Biermann, M.; Normann, F.; Harvey, S. Efficient heat integration of industrial CO2 capture and district heating supply. Int. J. Greenh. Gas Control 2022, 118, 103689. [Google Scholar] [CrossRef]
- Aromada, S.A.; Eldrup, N.H.; Øi, L.E. Cost and Emissions Reduction in CO2 Capture Plant Dependent on Heat Exchanger Type and Different Process Configurations: Optimum Temperature Approach Analysis. Energies 2022, 15, 425. [Google Scholar] [CrossRef]
- Jackson, S.; Brodal, E. A comparison of the energy consumption for CO2 compression process alternatives. IOP Conf. Ser. Earth Environ. Sci. 2018, 167, 012031. [Google Scholar] [CrossRef]
- Jackson, S.; Brodal, E. Optimization of the CO2 Liquefaction Process-Performance Study with Varying Ambient Temperature. Appl. Sci. 2019, 9, 4467. [Google Scholar] [CrossRef]
- Soujoudi, R.; Manteufel, R. Thermodynamic performance of ammonia in liquefied natural gas precooling cycle. Therm. Sci. 2021, 25, 2003–2016. [Google Scholar] [CrossRef]
- Sarkar, J.; Bhattacharyya, S.; Lal, A. Selection of suitable natural refrigerants pairs for cascade refrigeration system. Proc. Inst. Mech. Eng. Part A J. Power Energy 2013, 227, 612–622. [Google Scholar] [CrossRef]
- Saeed, M.Z.; Contiero, L.; Blust, S.; Allouche, Y.; Hafner, A.; Eikevik, T.M. Ultra-Low-Temperature Refrigeration Systems: A Review and Performance Comparison of Refrigerants and Configurations. Energies 2023, 16, 7274. [Google Scholar] [CrossRef]
- Mazyan, W.; Ahmadi, A.; Ahmed, H.; Hoorfar, M. Increasing the COP of a refrigeration cycle in natural gas liquefaction process using refrigerant blends of Propane-NH3, Propane-SO2 and Propane-CO2. Heliyon 2020, 6, e04750. [Google Scholar] [CrossRef]
- Isentropic Compression or Expansion. Available online: https://www.grc.nasa.gov/www/k-12/airplane/compexp.html (accessed on 1 September 2025).
- Abu-Zahra, M.R.; Schneiders, L.H.; Niederer, J.P.; Feron, P.H.; Versteeg, G.F. CO2 capture from power plants. Int. J. Greenh. Gas Control 2007, 1, 37–46. [Google Scholar] [CrossRef]
- Raksajati, A.; Ho, M.T.; Wiley, D.E. Techno-economic Evaluation of CO2 Capture from Flue Gases Using Encapsulated Solvent. Ind. Eng. Chem. Res. 2017, 56, 1604–1620. [Google Scholar] [CrossRef]
- Serviss, M.T.; Van Hout, D.; Britton, S.J.; MacIntosh, A.J. Brewing for the Future: Balancing Tradition and Sustainability. J. Am. Soc. Brew. Chem. 2025, 1–19. [Google Scholar] [CrossRef]
- Ryckebosch, E.; Drouillon, M.; Vervaeren, H. Techniques for transformation of biogas to biomethane. Biomass-Bioenergy 2011, 35, 1633–1645. [Google Scholar] [CrossRef]
- Angelidaki, I.; Treu, L.; Tsapekos, P.; Luo, G.; Campanaro, S.; Wenzel, H.; Kougias, P.G. Biogas upgrading and utilization: Current status and perspectives. Biotechnol. Adv. 2018, 36, 452–466. [Google Scholar] [CrossRef]
- Bishnoi, S.; Rochelle, G.T. Absorption of carbon dioxide into aqueous piperazine: Reaction kinetics, mass transfer and solubility. Chem. Eng. Sci. 2000, 55, 5531–5543. [Google Scholar] [CrossRef]
- Freeman, S.A.; Dugas, R.; Van Wagener, D.H.; Nguyen, T.; Rochelle, G.T. Carbon dioxide capture with concentrated, aqueous piperazine. Int. J. Greenh. Gas Control 2010, 4, 119–124. [Google Scholar] [CrossRef]
- Yang, H.; Xu, Z.; Fan, M.; Gupta, R.; Slimane, R.B.; Bland, A.E.; Wright, I. Progress in carbon dioxide separation and capture: A review. J. Environ. Sci. 2008, 20, 14–27. [Google Scholar] [CrossRef]
- Wang, M.; Lawal, A.; Stephenson, P.; Sidders, J.; Ramshaw, C. Post-combustion CO2 capture with chemical absorption: A state-of-the-art review. Chem. Eng. Res. Des. 2011, 89, 1609–1624. [Google Scholar] [CrossRef]
- Samanta, A.; Zhao, A.; Shimizu, G.K.H.; Sarkar, P.; Gupta, R. Post-Combustion CO2 Capture Using Solid Sorbents: A Review. Ind. Eng. Chem. Res. 2012, 51, 1438–1463. [Google Scholar] [CrossRef]
- Bernardo, P.; Drioli, E.; Golemme, G. Membrane Gas Separation: A Review/State of the Art. Ind. Eng. Chem. Res. 2009, 48, 4638–4663. [Google Scholar] [CrossRef]
- Takahashi, N.; Furuta, Y.; Fukunaga, H.; Takatsuka, T.; Mano, H.; Fujioka, Y. Effects of membrane properties on CO2 recovery performance in a gas absorption membrane contactor. Energy Procedia 2011, 4, 693–698. [Google Scholar] [CrossRef]
- Vo, T.T.; Wall, D.M.; Ring, D.; Rajendran, K.; Murphy, J.D. Techno-economic analysis of biogas upgrading via amine scrubber, carbon capture and ex-situ methanation. Appl. Energy 2018, 212, 1191–1202. [Google Scholar] [CrossRef]
- Sutanto, S.; Dijkstra, J.; Pieterse, J.; Boon, J.; Hauwert, P.; Brilman, D. CO2 removal from biogas with supported amine sorbents: First technical evaluation based on experimental data. Sep. Purif. Technol. 2017, 184, 12–25. [Google Scholar] [CrossRef]
- Wang, X.; Song, C. Carbon Capture from Flue Gas and the Atmosphere: A Perspective. Front. Energy Res. 2020, 8, 560849. [Google Scholar] [CrossRef]
- Buchhauser, U.; Vrabec, J.; Faulstich, M.; Meyer-Pittroff, R. CO2 Recovery Improved Performance with a Newly Developed System. Tech. Q. 2008, 45, 84. [Google Scholar] [CrossRef]
- da Cunha, G.P.; de Medeiros, J.L.; Araújo, O.d.Q.F. Carbon Capture from CO2-Rich Natural Gas via Gas-Liquid Membrane Contactors with Aqueous-Amine Solvents: A Review. Gases 2022, 2, 98–133. [Google Scholar] [CrossRef]
- Loachamin, D.; Casierra, J.; Calva, V.; Palma-Cando, A.; Ávila, E.E.; Ricaurte, M. Amine-Based Solvents and Additives to Improve the CO2 Capture Processes: A Review. Chemengineering 2024, 8, 129. [Google Scholar] [CrossRef]
- Obi, D.; Onyekuru, S.; Orga, A. Review of recent process developments in the field of carbon dioxide (CO2) capture from power plants flue gases and the future perspectives. Int. J. Sustain. Energy 2024, 43, 2317137. [Google Scholar] [CrossRef]
- Siegelman, R.L.; Milner, P.J.; Kim, E.J.; Weston, S.C.; Long, J.R. Challenges and opportunities for adsorption-based CO2 capture from natural gas combined cycle emissions. Energy Environ. Sci. 2019, 12, 2161–2173. [Google Scholar] [CrossRef]
- Rochelle, G.; Chen, E.; Freeman, S.; Van Wagener, D.; Xu, Q.; Voice, A. Aqueous piperazine as the new standard for CO2 capture technology. Chem. Eng. J. 2011, 171, 725–733. [Google Scholar] [CrossRef]
- Merkel, T.C.; Lin, H.; Wei, X.; Baker, R. Power plant post-combustion carbon dioxide capture: An opportunity for membranes. J. Membr. Sci. 2010, 359, 126–139. [Google Scholar] [CrossRef]
- Li, K.; Cousins, A.; Yu, H.; Feron, P.; Tade, M.; Luo, W.; Chen, J. Systematic study of aqueous monoethanolamine—Based CO2 capture process: Model development and process improvement. Energy Sci. Eng. 2015, 23. Available online: https://www.scipedia.com/public/Li_et_al_2015c (accessed on 1 September 2025).
- Darani, N.S.; Behbahani, R.M.; Shahebrahimi, Y.; Asadi, A.; Mohammadi, A.H. Simulation and Optimization of the Acid Gas Absorption Process by an Aqueous Diethanolamine Solution in a Natural Gas Sweetening Unit. ACS Omega 2021, 6, 12072–12080. [Google Scholar] [CrossRef] [PubMed]
- Harmsen, J. Process intensification in the petrochemicals industry: Drivers and hurdles for commercial implementation. Chem. Eng. Process.-Process. Intensif. 2010, 49, 70–73. [Google Scholar] [CrossRef]
- Aspen Technology, Inc. Top 10 Questions About Acid Gas Removal Optimization with Aspen HYSYS. AspenTech2018. Available online: https://www.aspentech.com/-/media/aspentech/home/resources/faq-documents/pdfs/fy18/q4/at-04066-faq-acid-gas-removal.pdf (accessed on 1 September 2025).
- Ramli, R.M.; Lock, S.S.M.; Hussein, N.; Shahid, M.Z.; Farooqi, A.S. Simulation of Natural Gas Treatment for Acid Gas Removal Using the Ternary Blend of MDEA, AEEA, and NMP. Sustainability 2022, 14, 10815. [Google Scholar] [CrossRef]
- Lock, S.; Lau, K.; Ahmad, F.; Shariff, A. Modeling, simulation and economic analysis of CO2 capture from natural gas using cocurrent, countercurrent and radial crossflow hollow fiber membrane. Int. J. Greenh. Gas Control. 2015, 36, 114–134. [Google Scholar] [CrossRef]
- Alam Khan, B.; Ullah, A.; Saleem, M.W.; Khan, A.N.; Faiq, M.; Haris, M. Energy Minimization in Piperazine Promoted MDEA-Based CO2 Capture Process. Sustainability 2020, 12, 8524. [Google Scholar] [CrossRef]
- Pancione, E.; Erto, A.; Di Natale, F.; Lancia, A.; Balsamo, M. A comprehensive review of post-combustion CO2 capture technologies for applications in the maritime sector: A focus on adsorbent materials. J. CO2 Util. 2024, 89, 102955. [Google Scholar] [CrossRef]
- Hosseini-Ardali, S.M.; Hazrati-Kalbibaki, M.; Fattahi, M.; Lezsovits, F. Multi-objective optimization of post combustion CO2 capture using methyldiethanolamine (MDEA) and piperazine (PZ) bi-solvent. Energy 2020, 211, 119035. [Google Scholar] [CrossRef]
- Derks, P.; Kleingeld, T.; van Aken, C.; Hogendoorn, J.; Versteeg, G. Kinetics of absorption of carbon dioxide in aqueous piperazine solutions. Chem. Eng. Sci. 2006, 61, 6837–6854. [Google Scholar] [CrossRef]
- Vevelstad, S.J.; Buvik, V.; Knuutila, H.K.; Grimstvedt, A.; da Silva, E.F. Important Aspects Regarding the Chemical Stability of Aqueous Amine Solvents for CO2 Capture. Ind. Eng. Chem. Res. 2022, 61, 15737–15753. [Google Scholar] [CrossRef]
- Pearson, A. Refrigeration with ammonia. Int. J. Refrig. 2008, 31, 545–551. [Google Scholar] [CrossRef]
- Bantillo, S.M.R.; Callejo, G.A.C.; Camacho, S.M.K.G.; Montalban, M.A.; Valderin, R.E.; Rubi, R.V.C. Future Trends of Natural Refrigerants: Selection, Preparation, and Evaluation. Eng. Proc. 2024, 67, 9. [Google Scholar] [CrossRef]
- Øi, L.E.; Eldrup, N.; Adhikari, U.; Bentsen, M.H.; Badalge, J.L.; Yang, S. Simulation and Cost Comparison of CO2 Liquefaction. Energy Procedia 2016, 86, 500–510. [Google Scholar] [CrossRef]
- Gao, M.; Wang, L.; Chen, X.; Wei, X.; Liang, J.; Li, L. Joule–Thomson Effect on a CCS-Relevant (CO2 + N2) System. ACS Omega 2021, 6, 9857–9867. [Google Scholar] [CrossRef] [PubMed]
- Wałęsa, K.; Górecki, J.; Berdychowski, M.; Biszczanik, A.; Wojtkowiak, D. Modelling of the Process of Extrusion of Dry Ice through a Single-Hole Die Using the Smoothed Particle Hydrodynamics (SPH) Method. Materials 2022, 15, 8242. [Google Scholar] [CrossRef] [PubMed]
- Transporting Temperature-Sensitive Goods: Moving Towards Self-Contained Cold Logistics—Olivo Logistics. Available online: https://www.olivo-logistics.com/en/self-contained-cold-logistics/ (accessed on 16 August 2025).
- Berdychowski, M.; Górecki, J.; Wałęsa, K. Numerical Simulation of Dry Ice Compaction Process: Comparison of the Mohr–Coulomb Model with the Experimental Results. Materials 2022, 15, 7932. [Google Scholar] [CrossRef]
- Biszczanik, A.; Górecki, J.; Kukla, M.; Wałęsa, K.; Wojtkowiak, D. Experimental Investigation on the Effect of Dry Ice Compression on the Poisson Ratio. Materials 2022, 15, 1555. [Google Scholar] [CrossRef]
- CO2 Recovery for Dry Ice Production Systems: 10 Frequently Asked Questions. Available online: https://blog.coldjet.com/co2-recovery-for-dry-ice-production-systems (accessed on 16 August 2025).
- Le Cao, K.A.; Cao, K.L.A.; Abdillah, O.B.; Septiani, E.L.; Hirano, T.; Nguyen, N.T.; Ogi, T. Correlation between Pore Characteristics and High-Performance Carbon Dioxide Capture of Sustainable Porous Carbon Derived from Kraft Lignin and Potassium Carbonate. Energy Fuels 2025, 39, 6372–6387. [Google Scholar] [CrossRef]
- Dietrich, F.; Schöny, G.; Fuchs, J.; Hofbauer, H. Experimental study of the adsorber performance in a multi-stage fluidized bed system for continuous CO2 capture by means of temperature swing adsorption. Fuel Process. Technol. 2018, 173, 103–111. [Google Scholar] [CrossRef]
- Li, S.; Yuan, X.; Deng, S.; Zhao, L.; Lee, K.B. A review on biomass-derived CO2 adsorption capture: Adsorbent, adsorber, adsorption, and advice. Renew. Sustain. Energy Rev. 2021, 152, 111708. [Google Scholar] [CrossRef]
- Packed Columns in Mass Transfer. Available online: https://www.numberanalytics.com/blog/ultimate-guide-packed-columns-mass-transfer (accessed on 1 September 2025).
- Lyddon, L. Trays vs. Packing. Available online: https://www.bre.com/Blog/Trays-vs-Packing.aspx (accessed on 1 September 2025).
- Gul, A.; Barış, M.; Un, U.T. Carbon dioxide absorption using monoethanolamine, piperazine and n-metil-2-pirolidon solvents under counter current regime in packed column reactor. Int. J. Greenh. Gas Control. 2024, 131, 104036. [Google Scholar] [CrossRef]
- Otitoju, O.; Oko, E.; Wang, M. A new method for scale-up of solvent-based post-combustion carbon capture process with packed columns. Int. J. Greenh. Gas Control. 2020, 93, 102900. [Google Scholar] [CrossRef]
- Lyregaard, M.; Jørgensen, S.B.; Abildskov, J. Modeling Tray Separation Columns with Parallel Streams. Ind. Eng. Chem. Res. 2023, 62, 11109–11127. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, C.-F.; Qin, S.-J.; Zheng, Z.-S. A Kinetics Study on the Absorption of Carbon Dioxide into a Mixed Aqueous Solution of Methyldiethanolamine and Piperazine. Ind. Eng. Chem. Res. 2001, 40, 3785–3791. [Google Scholar] [CrossRef]
- Antonini, C.; Pérez-Calvo, J.-F.; van der Spek, M.; Mazzotti, M. Optimal design of an MDEA CO2 capture plant for low-carbon hydrogen production—A rigorous process optimization approach. Sep. Purif. Technol. 2021, 279, 119715. [Google Scholar] [CrossRef]
- Halim, H.N.A.; Shariff, A.M.; Tan, L.S.; Bustam, M.A. Mass Transfer Performance of CO2 Absorption from Natural Gas using Monoethanolamine (MEA) in High Pressure Operations. Ind. Eng. Chem. Res. 2015, 54, 1675–1680. [Google Scholar] [CrossRef]
- Kolmetz, K.; Jaya, A. Distillation Column Packing Hydraulics Selection, Sizing and Troubleshooting. KLM Technology Group, March 2011. Available online: www.klmtechgroup.com (accessed on 1 September 2025).
- Hoon, C.Y.; Ling, A.L.; Jaya, A. Distillation Column Selection and Sizing. KLM Technology Group. February 2011. Available online: www.klmtechgroup.com (accessed on 1 September 2025).
- Mathisen, A.; Sørensen, H.; Melaaen, M.; Müller, G.-I. Investigation into Optimal CO2 Concentration for CO2 Capture from Aluminium Production. Energy Procedia 2013, 37, 7168–7175. [Google Scholar] [CrossRef]
- Dey, A.; Balchandani, S.; Dash, S.K.; Mandal, B.P. Effect of various Key Process parameters on the Reboiler heat duty of CO2 capture unit using single and blended amine system. In Proceedings of the 12th International Conference on Thermal Engineering: Theory and Applications (ICTEA), Gandhinagar, India, 23–26 February 2019. [Google Scholar]
- Vinjarapu, S.H.B.; Neerup, R.; Larsen, A.H.; Jørsboe, J.K.; Villadsen, S.N.B.; Jensen, S.; Karlsson, J.L.; Kappel, J.; Lassen, H.; Blinksbjerg, P.; et al. Results from pilot-scale CO2 capture testing using 30 wt% MEA at a Waste-to-Energy facility: Optimisation through parametric analysis. Appl. Energy 2024, 355, 122193. [Google Scholar] [CrossRef]
- Andreasen, A. Optimisation of carbon capture from flue gas from a Waste-to-Energy plant using surrogate modelling and global optimisation. Oil Gas Sci. Technol.-Rev. D’ifp Energ. Nouv. 2021, 76, 55. [Google Scholar] [CrossRef]
- Vinjarapu, S.H.B.; Neerup, R.; Larsen, A.H.; Villadsen, S.N.B.; von Solms, N.; Jensen, S.; Karlsson, J.L.; Kappel, J.; Lassen, H.; Blinksbjerg, P.; et al. Pilot-scale CO2 capture demonstration of heat integration through split flow configuration using 30 wt% MEA at a Waste-to-Energy facility. Sep. Purif. Technol. 2024, 345, 127311. [Google Scholar] [CrossRef]
- Haq, S.E.U.; Uddin, F.; Taqvi, S.A.A.; Naqvi, M.; Naqvi, S.R. Multistage carbon dioxide compressor efficiency enhancement using waste heat powered absorption chillers. Energy Sci. Eng. 2021, 9, 1373–1384. [Google Scholar] [CrossRef]
- Improving Energy Efficiency of Carbon Capture Processes with Heat Pumps|International Sustainable Energy Conference—Proceedings. Available online: https://www.tib-op.org/ojs/index.php/isec/article/view/1083/1121 (accessed on 1 September 2025).
- Raghu, A. Quantification of Amine Loss in the Post Combustion CO2 Capture Process. Master’s Thesis, University of Regina, Regina, SK, Canada, 2012. [Google Scholar]
- Thompson, J.G.; Frimpong, R.; Remias, J.E.; Neathery, J.K.; Liu, K. Heat Stable Salt Accumulation and Solvent Degradation in a Pilot-Scale CO2 Capture Process Using Coal Combustion Flue Gas. Aerosol Air Qual. Res. 2014, 14, 550–558. [Google Scholar] [CrossRef]
- Fisher, K.S.; Rochelle, G.T.; Schubert, C. Advanced Amine Solvent Formulations and Process Integration for Near-Term CO2 Capture Success; Trimeric Corporation: Buda, TX, USA, 2007. [Google Scholar]
- AspenTech: Knowledge Base. Available online: https://esupport.aspentech.com/S_Article?id=000098074 (accessed on 27 September 2025).
- Electric Power Monthly—U.S. Energy Information Administration (EIA). Available online: https://www.eia.gov/electricity/monthly/epm_table_grapher.php?t=table_5_03 (accessed on 27 September 2025).
- Yoro, K.O.; Sekoai, P.T.; Isafiade, A.J.; Daramola, M.O. A review on heat and mass integration techniques for energy and material minimization during CO2 capture. Int. J. Energy Environ. Eng. 2019, 10, 367–387. [Google Scholar] [CrossRef]
- Khudhur, D.A.; Abdullah, T.A.T.; Norazahar, N. A Review of Safety Issues and Risk Assessment of Industrial Ammonia Refrigeration System. ACS Chem. Health Saf. 2022, 29, 394–404. [Google Scholar] [CrossRef]
- Impact of impurities on CO2 capture, transport and storage. In IEA Greenhouse GAS R&D Programme; Report Number PH4/32; IEA: Paris, France, 2004.
- Carbon Intensity of Electricity Generation. 2024. Available online: https://ourworldindata.org/grapher/carbon-intensity-electricity?utm_source=chatgpt.com (accessed on 16 August 2025).
- Cholik, A.; Ruhyat, N.; Novianto, S. Performance Evaluation of Ammonia Refrigeration Systems in a Texturizing Plant. Int. J. Innov. Mech. Eng. Adv. Mater. 2024, 6, 161–172. [Google Scholar] [CrossRef]
- Nie, J.; Li, Z.; Kong, X.; Li, D. Analysis and Comparison Study on Different HFC Refrigerants for Space Heating Air Source Heat Pump in Rural Residential Buildings of North China. Procedia Eng. 2017, 205, 1201–1206. [Google Scholar] [CrossRef]
- Yang, Z.; Qu, M.; Gluesenkamp, K. Model-Based Performance Comparison of Ammonia Chemisorption Heat Pumps for Cold Climate with Different Working Pairs and Cycle Configurations; Purdue University: West Lafayette, IN, USA, 2018. [Google Scholar]
Component | Mass Fraction in Sour Gas Stream | Mass Fraction in Solvent Feed Stream |
---|---|---|
CH4 | 0.0896 | 0 |
C2H6 | 0.0312 | 0 |
C3H8 | 0.0108 | 0 |
i-C4H10 | 0.004 | 0 |
n-C4H10 | 0.0045 | 0 |
i-C5H12 | 0.0027 | 0 |
n-C5H12 | 0.0023 | 0 |
n-C6H12 | 0.0041 | 0 |
n-C7H16 | 0.0191 | 0 |
H2O | 0.0024 | 0.55 |
CO2 | 0.8127 | 0 |
H2S | 0.0155 | 0 |
N2 | 0.0012 | 0 |
MDEA | 0 | 0.4 |
Piperazine | 0 | 0.05 |
Parameter | Operating Condition | |
Temperature (°C) | 30 | 34.63 |
Pressure (kPa) | 2000 | 1996 |
Mass Flow Rate (kg/h) | 4.7 × 104 | 4.5 × 105 |
Operating Conditions | Values |
---|---|
Condenser Pressure (kPa) | 189.6 |
Reboiler Pressure (kPa) | 217.5 |
Condenser Temperature (°C) | 82 |
Reboiler Temperature (°C) | 123.5 |
Stripper Nb of Stages | 10 |
Reflux Ratio | 0.8 |
Packing Type | Material | Packing Factor (m−1) | Pressure Drop (mbar/m) | Mass Transfer Efficiency (m−1) |
---|---|---|---|---|
Ceramic Raschig Rings (25–50 mm) | Ceramic | 120 | 1–2 | High (200–250) |
Metal Pall Rings | Stainless steel | 250–300 | 2–4 | Moderate (150–200) |
Mellapak (250 Y) | Stainless steel | 250 | 3–6 | Low (50–80) |
Parameters | Values |
---|---|
Mass flow rate of Rich Amine stream () | 490,300 kg/h |
Mass flow rate of Sweet Gas stream () | 9002 kg/h |
Liquid density of Rich Amine stream () | 1101 kg/m3 |
Gas density of Sweet Gas Stream () | 19.7 kg/m3 |
Absorbers | |||||
---|---|---|---|---|---|
Absorber 1 | 8 | 0.0025 | 0.0153 | 0.012 | 12.8 |
Absorber 2 | 7.68 | 0.0027 | 0.0216 | 0.02 | 12.54 |
Packing Factor Fp (m−1) | f = 0.60 | f = 0.70 | f = 0.80 (Baseline f) | f = 0.85 |
---|---|---|---|---|
60 | 14.12 m | 13.08 m | 12.23 m | 11.88 m |
80 | 16.31 m | 15.10 m | 14.12 m | 13.73 m |
120 | 19.97 m | 18.49 m | 17.30 m | 16.80 m |
150 | 22.32 m | 20.67 m | 19.34 m | 18.79 m |
Total Capital Cost (TCC), USD | 20,589,000 |
Annual Operating Cost (excl. utilities), USD·yr−1 | 17,880,100 |
Annual Utilities Cost, USD·yr−1 | 14,610,000 |
Dry-ice production rate, t·h−1 | 36.9 |
Dry-ice price basis, USD·t−1 | 160 |
Annual dry-ice revenue, USD·yr−1 | 47,468,160 |
Annual margin = Revenue − (OPEX + Utilities), USD·yr−1 | 14,978,060 |
Simple payback, years | 1.37 |
Parameters | Before Optimization | After Optimization | Results |
---|---|---|---|
Heat Integration | Heaters and Coolers | Heat Exchangers | 66.67% Energy Saved |
Solvent Recovery | No Recovery | Partial Recovery | 75.65% MDEA and 66.4% PZ Recovered |
Absorber Design | One Absorber (Oversized Diameter) | Splitting into Two Absorbers | DAbsorber 1: 12.8 m DAbsorber 2: 12.54 m |
Product Purity | 94.86% | 97.83% | 2.97% Purity Increase |
Product Yield | 90.47% | 94.85% | 4.38% Yield Increase |
Type of Optimization | Optimized Value | ||
Number of stages in the absorber | 22 | ||
Mass flow of the Solvent Feed stream | 2.3 × 106 kg/h | ||
Temperature of Regen Feed stream | 80 °C | ||
Molar flow of the refrigerant | 5103 kgmole/h |
Refrigerant | Global Warming Potential (GWP, 100-yr) | Typical COP (−10 to +10 °C) | Flammability | Environmental Notes | Ref. |
---|---|---|---|---|---|
Ammonia (NH3) | 0 | ~1.4 | Moderate | Natural refrigerant; toxic but not a GHG | [95] |
R134a | 1430 | 3.5–5.0 | Non-flammable | HFC refrigerant facing regulatory phase-down | [96] |
Propane (R290) | 3 | 4.2–5.0 | High | Hydrocarbon refrigerant; efficient but flammable | [97] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Assaf, J.C.; Issa, C.; Flouty, T.; El Marji, L.; Nakad, M. Simulation and Optimization of Dry Ice Production Process Using Amine-Based CO2 Capture and External Ammonia Refrigeration. Processes 2025, 13, 3209. https://doi.org/10.3390/pr13103209
Assaf JC, Issa C, Flouty T, El Marji L, Nakad M. Simulation and Optimization of Dry Ice Production Process Using Amine-Based CO2 Capture and External Ammonia Refrigeration. Processes. 2025; 13(10):3209. https://doi.org/10.3390/pr13103209
Chicago/Turabian StyleAssaf, Jean Claude, Christina Issa, Tony Flouty, Lea El Marji, and Mantoura Nakad. 2025. "Simulation and Optimization of Dry Ice Production Process Using Amine-Based CO2 Capture and External Ammonia Refrigeration" Processes 13, no. 10: 3209. https://doi.org/10.3390/pr13103209
APA StyleAssaf, J. C., Issa, C., Flouty, T., El Marji, L., & Nakad, M. (2025). Simulation and Optimization of Dry Ice Production Process Using Amine-Based CO2 Capture and External Ammonia Refrigeration. Processes, 13(10), 3209. https://doi.org/10.3390/pr13103209