Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (5,772)

Search Parameters:
Keywords = solid wastes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 2020 KiB  
Article
Effects of Aggregate Size and Nozzle Diameter on Printability and Mechanical Properties of 3D Printed Ferronickel Slag–GGBFS Concrete
by Suguo Wang, Xing Wang, Xueyuan Yan and Shanghong Chen
Materials 2025, 18(15), 3681; https://doi.org/10.3390/ma18153681 - 5 Aug 2025
Abstract
Ferronickel slag and ground granulated blast-furnace slag (GGBFS) are solid waste by-products from the metallurgical industry. When incorporated into concrete, they help promote resource utilization, reduce hydration heat, and lower both solid waste emissions and the carbon footprint. To facilitate the application of [...] Read more.
Ferronickel slag and ground granulated blast-furnace slag (GGBFS) are solid waste by-products from the metallurgical industry. When incorporated into concrete, they help promote resource utilization, reduce hydration heat, and lower both solid waste emissions and the carbon footprint. To facilitate the application of ferronickel slag–GGBFS concrete in 3D printing, this study examines how aggregate size and nozzle diameter affect its performance. The investigation involves in situ printing, rheological characterization, mechanical testing, and scanning electron microscopy (SEM) analysis. Results indicate that excessively large average aggregate size negatively impacts the smooth extrusion of concrete strips, resulting in a cross-sectional width that exceeds the preset dimension. Excessively small average aggregate size results in insufficient yield stress, leading to a narrow cross-section of the extruded strip that fails to meet printing specifications. The extrusion performance is closely related to both the average aggregate size and nozzle diameter, which can significantly influence the normal extrusion stability and print quality of 3D printed concrete strips. The thixotropic performance improves with an increase in the aggregate size. Both compressive and flexural strengths improve with increasing aggregate size but decrease with an increase in the printing nozzle size. Anisotropy in mechanical behavior decreases progressively as both parameters mentioned increase. By examining the cracks and pores at the interlayer interface, this study elucidates the influence mechanism of aggregate size as well as printing nozzle parameters on the mechanical properties of 3D printed ferronickel slag–GGBFS concrete. This study also recommends the following ranges. When the maximum aggregate size exceeds 50% of the nozzle diameter, smooth extrusion is not achievable. If it falls between 30% and 50%, extrusion is possible but shaping remains unstable. When it is below 30%, both stable extrusion and good shaping can be achieved. Full article
19 pages, 1495 KiB  
Review
Computer Vision for Low-Level Nuclear Waste Sorting: A Review
by Tianshuo Li, Danielle E. Winckler and Zhong Li
Environments 2025, 12(8), 270; https://doi.org/10.3390/environments12080270 - 5 Aug 2025
Abstract
Nuclear power is a low-emission and economically competitive energy source, yet the effective disposal and management of its associated radioactive waste can be challenging. Radioactive waste can be categorised as high-level waste (HLW), intermediate-level waste (ILW), and low-level waste (LLW). LLW primarily comprises [...] Read more.
Nuclear power is a low-emission and economically competitive energy source, yet the effective disposal and management of its associated radioactive waste can be challenging. Radioactive waste can be categorised as high-level waste (HLW), intermediate-level waste (ILW), and low-level waste (LLW). LLW primarily comprises materials contaminated during routine clean-up, such as mop heads, paper towels, and floor sweepings. While LLW is less radioactive compared to HLW and ILW, the management of LLW poses significant challenges due to the large volume that requires processing and disposal. The volume of LLW can be significantly reduced through sorting, which is typically performed manually in a labour-intensive way. Smart management techniques, such as computer vision (CV) and machine learning (ML), have great potential to help reduce the workload and human errors during LLW sorting. This paper provides a comprehensive review of previous research related to LLW sorting and a summative review of existing applications of CV in solid waste management. It also discusses state-of-the-art CV and ML algorithms and their potential for automating LLW sorting. This review lays a foundation for and helps facilitate the applications of CV and ML techniques in LLW sorting, paving the way for automated LLW sorting and sustainable LLW management. Full article
Show Figures

Figure 1

20 pages, 2299 KiB  
Article
Valorization of Waste Mineral Wool and Low-Rank Peat in the Fertilizer Industry in the Context of a Resource-Efficient Circular Economy
by Marta Huculak-Mączka, Dominik Nieweś, Kinga Marecka and Magdalena Braun-Giwerska
Sustainability 2025, 17(15), 7083; https://doi.org/10.3390/su17157083 - 5 Aug 2025
Abstract
This study aims to evaluate eco-innovative solutions in the fertilizer industry that allow for waste valorization in the context of a resource-efficient circular economy. A comprehensive reuse strategy was developed for low-rank peat and post-cultivation horticultural mineral wool, involving the extraction of valuable [...] Read more.
This study aims to evaluate eco-innovative solutions in the fertilizer industry that allow for waste valorization in the context of a resource-efficient circular economy. A comprehensive reuse strategy was developed for low-rank peat and post-cultivation horticultural mineral wool, involving the extraction of valuable humic substances from peat and residual nutrients from used mineral wool, followed by the use of both post-extraction residues to produce organic–mineral substrates. The resulting products/semifinished products were characterized in terms of their composition and properties, which met the requirements necessary to obtain the admission of this type of product to the market in accordance with the Regulation of the Minister for Agriculture and Rural Development of 18 June 2008 on the implementation of certain provisions of the Act on fertilizers and fertilization (Journal of Laws No 119, item 765). Elemental analysis, FTIR spectroscopy, and solid-state CP-MAS 13C NMR spectroscopy suggest that post-extraction peat has a relatively condensed structure with a high C content (47.4%) and a reduced O/C atomic ratio and is rich in alkyl-like matter (63.2%) but devoid of some functional groups in favor of extracted fulvic acids. Therefore, it remains a valuable organic biowaste, which, in combination with post-extraction waste mineral wool in a ratio of 60:40 and possibly the addition of mineral nutrients, allows us to obtain a completely new substrate with a bulk density of 264 g/m3, a salinity of 7.8 g/dm3 and a pH of 5.3, with an appropriate content of heavy metals and with no impurities, meeting the requirements of this type of product. A liquid fertilizer based on an extract containing previously recovered nutrients also meets the criteria in terms of quality and content of impurities and can potentially be used as a fertilizing product suitable for agricultural crops. This study demonstrates a feasible pathway for transforming specific waste streams into valuable agricultural inputs, contributing to environmental protection and sustainable production. The production of a new liquid fertilizer using nutrients recovered from post-cultivation mineral wool and the preparation of an organic–mineral substrate using post-extraction solid residue is a rational strategy for recycling hard-to-biodegrade end-of-life products. Full article
Show Figures

Figure 1

28 pages, 1806 KiB  
Systematic Review
Systemic Review and Meta-Analysis: The Application of AI-Powered Drone Technology with Computer Vision and Deep Learning Networks in Waste Management
by Tyrone Bright, Sarp Adali and Cristina Trois
Drones 2025, 9(8), 550; https://doi.org/10.3390/drones9080550 - 5 Aug 2025
Abstract
As the generation of Municipal Solid Waste (MSW) has exponentially increased, this poses a challenge for waste managers, such as municipalities, to effectively control waste streams. If waste streams are not managed correctly, they negatively contribute to climate change, marine plastic pollution and [...] Read more.
As the generation of Municipal Solid Waste (MSW) has exponentially increased, this poses a challenge for waste managers, such as municipalities, to effectively control waste streams. If waste streams are not managed correctly, they negatively contribute to climate change, marine plastic pollution and human health effects. Therefore, waste streams need to be identified, categorised and valorised to ensure that the most effective waste management strategy is employed. Research suggests that a more efficient process of identifying and categorising waste at the source can achieve this. Therefore, the aim of the paper is to identify the state of research of AI-powered drones in identifying and categorising waste. This paper will conduct a systematic review and meta-analysis on the application of drone technology integrated with image sensing technology and deep learning methods for waste management. Different systems are explored, and a quantitative meta-analysis of their performance metrics (such as the F1 score) is conducted to determine the best integration of technology. Therefore, the research proposes designing and developing a hybrid deep learning model with integrated architecture (YOLO-Transformer model) that can capture Multispectral imagery data from drones for waste stream identification, categorisation and potential valorisation for waste managers in small-scale environments. Full article
Show Figures

Figure 1

16 pages, 1572 KiB  
Article
Application of ANN in the Performance Evaluation of Composite Recycled Mortar
by Shichao Zhao, Yaohua Liu, Geng Xu, Hao Zhang, Feng Liu and Binglei Wang
Buildings 2025, 15(15), 2752; https://doi.org/10.3390/buildings15152752 - 4 Aug 2025
Abstract
To promote the large-scale utilization of construction and industrial solid waste in engineering, this study focuses on developing accurate prediction and optimization methods for the unconfined compressive strength (UCS) of composite recycled mortar. Innovatively incorporating three types of recycled powder (RP)—recycled clay brick [...] Read more.
To promote the large-scale utilization of construction and industrial solid waste in engineering, this study focuses on developing accurate prediction and optimization methods for the unconfined compressive strength (UCS) of composite recycled mortar. Innovatively incorporating three types of recycled powder (RP)—recycled clay brick powder (RCBS), recycled concrete powder (RCBP), and recycled gypsum powder (RCGP)—we systematically investigated the effects of RP type, replacement rate, and curing period on mortar UCS. The core objective and novelty lie in establishing and comparing three artificial intelligence models for high-precision UCS prediction. Furthermore, leveraging GA-BP’s functional extremum optimization theory, we determined the optimal UCS alongside its corresponding mix proportion and curing scheme, with experimental validation of the solution reliability. Key findings include the following: (1) Increasing total RP content significantly reduces mortar UCS; the maximum UCS is achieved with a 1:1 blend ratio of RCBP:RCGP, while a 20% RCBS replacement rate and extended curing periods markedly enhance strength. (2) Among the prediction models, GA-BP demonstrates superior performance, significantly outperforming BP models with both single and double hidden layer. (3) The functional extremum optimization results exhibit high consistency with experimental validation, showing a relative error below 10%, confirming the method’s effectiveness and engineering applicability. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

21 pages, 3452 KiB  
Article
Features of Ash and Slag Formation During Incomplete Combustion of Coal from the Karazhyra Deposit in Small- and Medium-Scale Power Plants
by Natalya Seraya, Vadim Litvinov, Gulzhan Daumova, Maksat Shaikhov, Raigul Ramazanova and Roza Aubakirova
Processes 2025, 13(8), 2467; https://doi.org/10.3390/pr13082467 (registering DOI) - 4 Aug 2025
Abstract
The study presents a comprehensive assessment of the combustion efficiency of low-grade coal from the Karazhyra deposit in small- and medium-capacity boiler units of the energy workshops operated by Vostokenergo LLP (East Kazakhstan Region, Kazakhstan). It was found that the average annual thermal [...] Read more.
The study presents a comprehensive assessment of the combustion efficiency of low-grade coal from the Karazhyra deposit in small- and medium-capacity boiler units of the energy workshops operated by Vostokenergo LLP (East Kazakhstan Region, Kazakhstan). It was found that the average annual thermal energy output amounts to 2,387,348.85 GJ with a coal consumption of 164,328.5 tons. Based on operational data from 2016 to 2017, the average thermal efficiency (boiler efficiency) was 66.03%, with a maximum value of 75% recorded at the Zhezkent energy workshop. The average lower heating value (LHV) of the coal was 19.41 MJ/kg, which is below the design value of 20.52 MJ/kg, indicating the use of coal with reduced energy characteristics and elevated ash content (21.4%). The unburned carbon content in the ash and slag waste (ASW) was determined to be between 14 and 35%, indicating incomplete combustion. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) analyses revealed the presence of microspheres, porous granules, and coal residues, with silicon and aluminum oxides dominating the composition (up to 70.49%). Differences in the pollutant potential of ash from different boiler units were identified. Recommendations were substantiated regarding the adjustment of the air–fuel regime, modernization of combustion control systems, and utilization of ASW. The results may be used to develop measures aimed at improving the energy efficiency and environmental safety of coal-fired boiler plants. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

30 pages, 1939 KiB  
Review
A Review on Anaerobic Digestate as a Biofertilizer: Characteristics, Production, and Environmental Impacts from a Life Cycle Assessment Perspective
by Carmen Martín-Sanz-Garrido, Marta Revuelta-Aramburu, Ana María Santos-Montes and Carlos Morales-Polo
Appl. Sci. 2025, 15(15), 8635; https://doi.org/10.3390/app15158635 (registering DOI) - 4 Aug 2025
Abstract
Digestate valorization is essential for sustainable waste management and circular economy strategies, yet large-scale adoption faces technical, economic, and environmental challenges. Beyond waste-to-energy conversion, digestate is a valuable soil amendment, enhancing soil structure and reducing reliance on synthetic fertilizers. However, its agronomic benefits [...] Read more.
Digestate valorization is essential for sustainable waste management and circular economy strategies, yet large-scale adoption faces technical, economic, and environmental challenges. Beyond waste-to-energy conversion, digestate is a valuable soil amendment, enhancing soil structure and reducing reliance on synthetic fertilizers. However, its agronomic benefits depend on feedstock characteristics, treatment processes, and application methods. This study reviews digestate composition, treatment technologies, regulatory frameworks, and environmental impact assessment through Life Cycle Assessment. It analyzes the influence of functional unit selection and system boundary definitions on Life Cycle Assessment outcomes and the effects of feedstock selection, pretreatment, and post-processing on its environmental footprint and fertilization efficiency. A review of 28 JCR-indexed articles (2018–present) analyzed LCA studies on digestate, focusing on methodologies, system boundaries, and impact categories. The findings indicate that Life Cycle Assessment methodologies vary widely, complicating direct comparisons. Transportation distances, nutrient stability, and post-processing strategies significantly impact greenhouse gas emissions and nutrient retention efficiency. Techniques like solid–liquid separation and composting enhance digestate stability and agronomic performance. Digestate remains a promising alternative to synthetic fertilizers despite market uncertainty and regulatory inconsistencies. Standardized Life Cycle Assessment methodologies and policy incentives are needed to promote its adoption as a sustainable soil amendment within circular economy frameworks. Full article
(This article belongs to the Special Issue Novel Research on By-Products and Treatment of Waste)
Show Figures

Figure 1

19 pages, 9135 KiB  
Article
A Study on the Characterization of Asphalt Plant Reclaimed Powder Using Fourier Transform Infrared Spectroscopy
by Hao Wu, Daoan Yu, Wentao Wang, Chuanqi Yan, Rui Xiao, Rong Chen, Peng Zhang and Hengji Zhang
Materials 2025, 18(15), 3660; https://doi.org/10.3390/ma18153660 - 4 Aug 2025
Abstract
Asphalt plant reclaimed powder is a common solid waste in road engineering. Reusing reclaimed powder as filler holds significant importance for environmental protection and resource conservation. The key factors affecting the feasibility of reclaimed powder reuse are its acidity/alkalinity and cleanliness. Traditional evaluation [...] Read more.
Asphalt plant reclaimed powder is a common solid waste in road engineering. Reusing reclaimed powder as filler holds significant importance for environmental protection and resource conservation. The key factors affecting the feasibility of reclaimed powder reuse are its acidity/alkalinity and cleanliness. Traditional evaluation methods, such as the methylene blue test and plasticity index, can assess reclaimed powder properties to guide its recycling. However, these methods suffer from inefficiency, strong empirical dependence, and high variability. To address these limitations, this study proposes a rapid and precise evaluation method for reclaimed powder properties based on Fourier transform infrared spectroscopy (FTIR). To do so, five field-collected reclaimed powder samples and four artificial samples were evaluated. Scanning electron microscopy (SEM), X-ray fluorescence spectroscopy (XRF), and X-ray diffraction (XRD) were employed to characterize their microphase morphology, chemical composition, and crystal structure, respectively. Subsequently, FTIR was used to establish correlations between key acidity/alkalinity, cleanliness, and multiple characteristic peak intensities. Representative infrared characteristic peaks were selected, and a quantitative functional group index (Is) was proposed to simultaneously evaluate acidity/alkalinity and cleanliness. The results indicate that reclaimed powder primarily consists of tiny, crushed stone particles and dust, with significant variations in crystal structure and chemical composition, including calcium carbonate, silicon oxide, iron oxide, and aluminum oxide. Some samples also contained clay, which critically influenced the reclaimed powder properties. Since both filler acidity/alkalinity and cleanliness are affected by clay (silicon/carbon ratio determining acidity/alkalinity and aluminosilicate content affecting cleanliness), this study calculated four functional group indices based on FTIR absorption peaks, namely the Si-O-Si stretching vibration (1000 cm−1) and the CO32− asymmetric stretching vibration (1400 cm−1). These indices were correlated with conventional testing results (XRF for acidity/alkalinity, methylene blue value, and pull-off strength for cleanliness). The results show that the Is index exhibited strong correlations (R2 = 0.89 with XRF, R2 = 0.80 with methylene blue value, and R2 = 0.96 with pull-off strength), demonstrating its effectiveness in predicting both acidity/alkalinity and cleanliness. The developed method enhances reclaimed powder detection efficiency and facilitates high-value recycling in road engineering applications. Full article
(This article belongs to the Special Issue Innovative Approaches in Asphalt Binder Modification and Performance)
Show Figures

Figure 1

22 pages, 3515 KiB  
Article
Biodegradation of Chloroquine by a Fungus from Amazonian Soil, Penicillium guaibinense CBMAI 2758
by Patrícia de Almeida Nóbrega, Samuel Q. Lopes, Lucas S. Sá, Ryan da Silva Ramos, Fabrício H. e Holanda, Inana F. de Araújo, André Luiz M. Porto, Willian G. Birolli and Irlon M. Ferreira
J. Fungi 2025, 11(8), 579; https://doi.org/10.3390/jof11080579 - 4 Aug 2025
Abstract
Concern over the presence of pharmaceutical waste in the environment has prompted research into the management of emerging organic micropollutants (EOMs). In response, sustainable technologies have been applied as alternatives to reduce the effects of these contaminants. This study investigated the capacity of [...] Read more.
Concern over the presence of pharmaceutical waste in the environment has prompted research into the management of emerging organic micropollutants (EOMs). In response, sustainable technologies have been applied as alternatives to reduce the effects of these contaminants. This study investigated the capacity of filamentous fungi isolated from iron mine soil in the Amazon region to biodegrade the drug chloroquine diphosphate. An initial screening assessed the growth of four fungal strains on solid media containing chloroquine diphosphate: Trichoderma pseudoasperelloides CBMAI 2752, Penicillium rolfsii CBMAI 2753, Talaromyces verruculosus CBMAI 2754, and Penicillium sp. cf. guaibinense CBMAI 2758. Among them, Penicillium sp. cf. guaibinense CBMAI 2758 was selected for further testing in liquid media. A Box–Behnken factorial design was applied with three variables, pH (5, 7, and 9), incubation time (5, 10, and 15 days), and chloroquine diphosphate concentration (50, 75, and 100 mg·L−1), totaling 15 experiments. The samples were analyzed by gas chromatography–mass spectrometry (GC-MS). The most effective conditions for chloroquine biodegradation were pH 7, 100 mg·L−1 concentration, and 10 days of incubation. Four metabolites were identified: one resulting from N-deethylation M1 (N4-(7-chloroquinolin-4-yl)-N1-ethylpentane-1,4-diamine), two from carbon–carbon bond cleavage M2 (7-chloro-N-ethylquinolin-4-amine) and M3 (N1,N1-diethylpentane-1,4-diamine), and one from aromatic deamination M4 (N1-ethylbutane-1,4-diamine) by enzymatic reactions. The toxicity analysis showed that the products obtained from the biodegradation of chloroquine were less toxic than the commercial formulation of this compound. These findings highlight the biotechnological potential of Amazonian fungi for drug biodegradation and decontamination. Full article
(This article belongs to the Special Issue Fungal Biotechnology and Application 3.0)
Show Figures

Graphical abstract

14 pages, 2082 KiB  
Article
Effect of the Growth Period of Tree Leaves and Needles on Their Fuel Properties
by Tadeusz Dziok, Justyna Łaskawska and František Hopan
Energies 2025, 18(15), 4109; https://doi.org/10.3390/en18154109 - 2 Aug 2025
Viewed by 209
Abstract
The main advantage of using biomass for energy generation is the reduction in carbon dioxide emissions. For a fast reduction effect, it is important to use biomass characterised by an annual growth cycle. These may be fallen leaves. The fuel properties of the [...] Read more.
The main advantage of using biomass for energy generation is the reduction in carbon dioxide emissions. For a fast reduction effect, it is important to use biomass characterised by an annual growth cycle. These may be fallen leaves. The fuel properties of the leaves can change during the growth period. These changes can result from both the natural growth process and environmental factors—particulate matter adsorption. The main objective was to determine changes in the characteristics of leaves and needles during the growth period (from May to October). Furthermore, to determine the effect of adsorbed particulate matter, the washing process was carried out. Studies were carried out for three tree species: Norway maple, horse chestnut and European larch. Proximate and ultimate analysis was performed and mercury content was determined. During the growth period, beneficial changes were observed: an increase in carbon content and a decrease in hydrogen and sulphur content. The unfavourable change was a significant increase in ash content, which caused a decrease in calorific value. The increase in ash content was caused by adsorbed particulate matter. They were mostly absorbed by the tissues of the needle and leaves and could not be removed by washing the surface. Full article
Show Figures

Figure 1

16 pages, 6744 KiB  
Article
Thermochemical Conversion of Digestate Derived from OFMSW Anaerobic Digestion to Produce Methane-Rich Syngas with CO2 Sorption
by Emanuele Fanelli, Cesare Freda, Assunta Romanelli, Vito Valerio, Adolfo Le Pera, Miriam Sellaro, Giacinto Cornacchia and Giacobbe Braccio
Processes 2025, 13(8), 2451; https://doi.org/10.3390/pr13082451 - 2 Aug 2025
Viewed by 192
Abstract
The energetic valorization of digestate obtained from anaerobic digestion (AD) of the organic fraction of municipal solid waste (OFMSW) was investigated via pyrolysis in a bench-scale rotary kiln. The mass rate of dried digestate to the rotary kiln pyrolyzer was fixed at 500 [...] Read more.
The energetic valorization of digestate obtained from anaerobic digestion (AD) of the organic fraction of municipal solid waste (OFMSW) was investigated via pyrolysis in a bench-scale rotary kiln. The mass rate of dried digestate to the rotary kiln pyrolyzer was fixed at 500 gr/h. The effect of the pyrolysis temperature was investigated at 600, 700, and 800 °C. The pyrolysis products, char, oil, and gas, were quantified and chemically analyzed. It was observed that with the increase in the temperature from 600 to 800 °C, the char decreased from 60.3% to 52.2% and the gas increased from 26.5% to 35.3%. With the aim of increasing the methane production and methane concentration in syngas, the effect of CaO addition to the pyrolysis process was investigated at the same temperature, too. The mass ratio CaO/dried digestate was set at 0.2. The addition of CaO sorbent has a clear effect on the yield and composition of pyrolysis products. Under the experimental conditions, CaO was observed to act both as a CO2 sorbent and as a catalyst, promoting cracking and reforming reactions of volatile compounds. In more detail, at the investigated temperatures, a net reduction in CO2 concentration was observed in syngas, accompanied by an increase in CH4 concentration. The gas yield decreased with the CaO addition because of CO2 chemisorption. The oil yield decreased as well, probably because of the cracking and reforming effect of the CaO on the volatiles. A very promising performance of the CaO sorbent was observed at 600 °C; at this temperature, the CO2 concentration decreased from 32.2 to 13.9 mol %, and the methane concentration increased from 16.1 to 29.4 mol %. At the same temperature, the methane production increased from 34 to 63 g/kgdigestate. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

23 pages, 1211 KiB  
Review
Dealuminated Metakaolin in Supplementary Cementitious Material and Alkali-Activated Systems: A Review
by Mostafa Elsebaei, Maria Mavroulidou, Amany Micheal, Maria Astrid Centeno, Rabee Shamass and Ottavia Rispoli
Appl. Sci. 2025, 15(15), 8599; https://doi.org/10.3390/app15158599 (registering DOI) - 2 Aug 2025
Viewed by 153
Abstract
This paper presents a comprehensive review of dealuminated metakaolin (DK), a hazardous industrial by-product generated by the aluminium sulphate (alum) industry and evaluates its potential as a component in cementitious systems for the partial or full replacement of Portland cement (PC). Positioned within the [...] Read more.
This paper presents a comprehensive review of dealuminated metakaolin (DK), a hazardous industrial by-product generated by the aluminium sulphate (alum) industry and evaluates its potential as a component in cementitious systems for the partial or full replacement of Portland cement (PC). Positioned within the context of waste valorisation in concrete, the review aims to establish a critical understanding of DK formation, properties, and reactivity, particularly its pozzolanic potential, to assess its suitability for use as a supplementary cementitious material (SCM), or as a precursor in alkali-activated cement (AAC) systems for concrete. A systematic methodology is used to extract and synthesise relevant data from existing literature concerning DK and its potential applications in cement and concrete. The collected information is organised into thematic sections exploring key aspects of DK, beginning with its formation from kaolinite ores, followed by studies on its pozzolanic reactivity. Applications of DK are then reviewed, focusing on its integration into SCMs and alkali-activated cement (AAC) systems. The review consolidates existing knowledge related to DK, identifying scientific gaps and practical challenges that limit its broader adoption for cement and concrete applications, and outlines future research directions to provide a solid foundation for future studies. Overall, this review highlights the potential of DK as a low-carbon, circular-economy material and promotes its integration into efforts to enhance the sustainability of construction practices. The findings aim to support researchers’ and industry stakeholders’ strategies to reduce cement clinker content and mitigate the environmental footprint of concrete in a circular-economy context. Full article
(This article belongs to the Special Issue Applications of Waste Materials and By-Products in Concrete)
Show Figures

Figure 1

30 pages, 2603 KiB  
Review
Sugarcane Industry By-Products: A Decade of Research Using Biotechnological Approaches
by Serafín Pérez-Contreras, Francisco Hernández-Rosas, Manuel A. Lizardi-Jiménez, José A. Herrera-Corredor, Obdulia Baltazar-Bernal, Dora A. Avalos-de la Cruz and Ricardo Hernández-Martínez
Recycling 2025, 10(4), 154; https://doi.org/10.3390/recycling10040154 - 2 Aug 2025
Viewed by 227
Abstract
The sugarcane industry plays a crucial economic role worldwide, with sucrose and ethanol as its main products. However, its processing generates large volumes of by-products—such as bagasse, molasses, vinasse, and straw—that contain valuable components for biotechnological valorization. This review integrates approximately 100 original [...] Read more.
The sugarcane industry plays a crucial economic role worldwide, with sucrose and ethanol as its main products. However, its processing generates large volumes of by-products—such as bagasse, molasses, vinasse, and straw—that contain valuable components for biotechnological valorization. This review integrates approximately 100 original research articles published in JCR-indexed journals between 2015 and 2025, of which over 50% focus specifically on sugarcane-derived agroindustrial residues. The biotechnological approaches discussed include submerged fermentation, solid-state fermentation, enzymatic biocatalysis, and anaerobic digestion, highlighting their potential for the production of biofuels, enzymes, and high-value bioproducts. In addition to identifying current advances, this review addresses key technical challenges such as (i) the need for efficient pretreatment to release fermentable sugars from lignocellulosic biomass; (ii) the compositional variability of by-products like vinasse and molasses; (iii) the generation of metabolic inhibitors—such as furfural and hydroxymethylfurfural—during thermochemical processes; and (iv) the high costs related to inputs like hydrolytic enzymes. Special attention is given to detoxification strategies for inhibitory compounds and to the integration of multifunctional processes to improve overall system efficiency. The final section outlines emerging trends (2024–2025) such as the use of CRISPR-engineered microbial consortia, advanced pretreatments, and immobilization systems to enhance the productivity and sustainability of bioprocesses. In conclusion, the valorization of sugarcane by-products through biotechnology not only contributes to waste reduction but also supports circular economy principles and the development of sustainable production models. Full article
Show Figures

Graphical abstract

38 pages, 4692 KiB  
Review
Progress and Challenges in the Process of Using Solid Waste as a Catalyst for Biodiesel Synthesis
by Zhaolin Dong, Kaili Dong, Haotian Li, Liangyi Zhang and Yitong Wang
Molecules 2025, 30(15), 3243; https://doi.org/10.3390/molecules30153243 - 1 Aug 2025
Viewed by 143
Abstract
Biodiesel, as one of the alternatives to fossil fuels, faces significant challenges in large-scale industrial production due to its high production costs. In addition to raw material costs, catalyst costs are also a critical factor that cannot be overlooked. This review summarizes various [...] Read more.
Biodiesel, as one of the alternatives to fossil fuels, faces significant challenges in large-scale industrial production due to its high production costs. In addition to raw material costs, catalyst costs are also a critical factor that cannot be overlooked. This review summarizes various methods for preparing biodiesel catalysts from solid waste. These methods not only enhance the utilization rate of waste but also reduce the production costs and environmental impact of biodiesel. Finally, the limitations of waste-based catalysts and future research directions are discussed. Research indicates that solid waste can serve as a catalyst carrier or active material for biodiesel production. Methods such as high-temperature calcination, impregnation, and coprecipitation facilitate structural modifications to the catalyst and the formation of active sites. The doping of metal ions not only alters the catalyst’s acid-base properties but also forms stable metal bonds with functional groups on the carrier, thereby maintaining catalyst stability. The application of microwave-assisted and ultrasound-assisted methods reduces reaction parameters, making biodiesel production more economical and sustainable. Overall, this study provides a scientific basis for the reuse of solid waste and ecological protection, emphasizes the development potential of waste-based catalysts in biodiesel production, and offers unique insights for innovation in this field, thereby accelerating the commercialization of biodiesel. Full article
Show Figures

Graphical abstract

12 pages, 1465 KiB  
Article
Development and Characterization of Emulsion-Templated Oleogels from Whey Protein and Spent Coffee Grounds Oil
by Aikaterini Papadaki, Ioanna Mandala and Nikolaos Kopsahelis
Foods 2025, 14(15), 2697; https://doi.org/10.3390/foods14152697 - 31 Jul 2025
Viewed by 187
Abstract
This study aimed to develop novel oleogels using whey protein (WP) and bacterial cellulose nanowhiskers (BCNW) to expand the potential applications of spent coffee grounds oil (SCGO). An emulsion-templated approach was employed to structure SCGO with varying WP:SCGO ratios, while the incorporation of [...] Read more.
This study aimed to develop novel oleogels using whey protein (WP) and bacterial cellulose nanowhiskers (BCNW) to expand the potential applications of spent coffee grounds oil (SCGO). An emulsion-templated approach was employed to structure SCGO with varying WP:SCGO ratios, while the incorporation of BCNW was evaluated as a potential stabilizing and reinforcing agent. All oleogels behaved as “true” gels (tan δ < 0.1). Rheological analysis revealed that higher WP content significantly increased gel strength, indicating enhanced structural integrity and deformation resistance. The addition of BCNW had a significant reinforcing effect in oleogels with a higher oil content (WP:SCGO 1:5), while its influence was less evident in formulations with lower oil content (WP:SCGO 1:2.5). Notably, depending on the WP:SCGO ratio, the storage modulus (G′) data showed that the oleogels resembled both hard (WP:SCGO 1:2.5) and soft (WP:SCGO 1:5) solid fats, highlighting their potential as fat replacers in a wide range of food applications. Consequently, this study presents a sustainable approach to structuring SCGO while tailoring its rheological behavior, aligning with global efforts to reduce food waste and develop sustainable food products. Full article
(This article belongs to the Section Food Physics and (Bio)Chemistry)
Show Figures

Graphical abstract

Back to TopTop