Development and Characterization of Emulsion-Templated Oleogels from Whey Protein and Spent Coffee Grounds Oil
Abstract
1. Introduction
2. Materials and Methods
2.1. Raw Materials and Reagents
2.2. Preparation of Emulsion-Templated Oleogels
2.3. Characterization of Oleogels
2.3.1. Color
2.3.2. Rheological Analysis
2.3.3. Statistical Analysis
3. Results and Discussion
3.1. Development and Appearance of Emulsion-Templated Oleogels
3.2. Amplitude Sweep Tests of Emulsion-Templated Oleogels
3.3. Frequency Sweep Tests of Emulsion-Templated Oleogels
3.4. Temperature Sweep Tests of Emulsion-Templated Oleogels
3.5. Principal Component Analysis of Color and Rheological Properties of Emulsion-Templated Oleogels
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
BCNW | Bacterial Cellulose Nanowhiskers |
LVR | Linear Viscoelastic Region |
SCG | Spent Coffee Grounds |
SCGO | Spent Coffee Grounds Oil |
WP | Whey Protein |
References
- Pipoyan, D.; Stepanyan, S.; Stepanyan, S.; Beglaryan, M.; Costantini, L.; Molinari, R.; Merendino, N. The Effect of Trans Fatty Acids on Human Health: Regulation and Consumption Patterns. Foods 2021, 10, 2452. [Google Scholar] [CrossRef] [PubMed]
- Silva, R.C.D.; Ferdaus, M.J.; Foguel, A.; Da Silva, T.L.T. Oleogels as a Fat Substitute in Food: A Current Review. Gels 2023, 9, 180. [Google Scholar] [CrossRef] [PubMed]
- Tan, T.H.; Chan, E.; Manja, M.; Tang, T.; Phuah, E.; Lee, Y. Production, Health Implications and Applications of Oleogels as Fat Replacer in Food System: A Review. J. Am. Oil Chem. Soc. 2023, 100, 681–697. [Google Scholar] [CrossRef]
- Li, H.; Liu, X.; Zhang, L.; Qiu, Y.; Li, Z.; Li, K.; Li, H.; Sun, G.; Li, K.; Yu, J. Constructing Clean Labelled Oleogels with Whey Protein: An Emulsion Template Approach to Enhance Physicochemical Properties, Rheology, and Stability. Food Hydrocoll. 2025, 163, 111116. [Google Scholar] [CrossRef]
- Feichtinger, A.; Scholten, E. Preparation of Protein Oleogels: Effect on Structure and Functionality. Foods 2020, 9, 1745. [Google Scholar] [CrossRef] [PubMed]
- Vélez-Erazo, E.M.; Okuro, P.K.; Gallegos-Soto, A.; Da Cunha, R.L.; Hubinger, M.D. Protein-Based Strategies for Fat Replacement: Approaching Different Protein Colloidal Types, Structured Systems and Food Applications. Food Res. Int. 2022, 156, 111346. [Google Scholar] [CrossRef] [PubMed]
- Papadaki, A.; Cipolatti, E.P.; Aguieiras, E.C.G.; Cerqueira Pinto, M.C.; Kopsahelis, N.; Freire, D.M.G.; Mandala, I.; Koutinas, A.A. Development of Microbial Oil Wax-Based Oleogel with Potential Application in Food Formulations. Food Bioprocess Technol. 2019, 12, 899–909. [Google Scholar] [CrossRef]
- Papadaki, A.; Kopsahelis, N.; Mallouchos, A.; Mandala, I.; Koutinas, A.A. Bioprocess Development for the Production of Novel Oleogels from Soybean and Microbial Oils. Food Res. Int. 2019, 126, 108684. [Google Scholar] [CrossRef] [PubMed]
- Ramadhan, W.; Firdaos, A.N.; Krisnawan, W.V.; Suseno, S.H.; Riyanto, B.; Trilaksani, W.; Santoso, J. Synthesis of a Sustainable Marine Oleogel and Its Application as a Fat Substitute in a Sponge Cake System. Sustain. Food Technol. 2024, 2, 1022–1032. [Google Scholar] [CrossRef]
- Franca, A.S.; Oliveira, L.S. Potential Uses of Spent Coffee Grounds in the Food Industry. Foods 2022, 11, 2064. [Google Scholar] [CrossRef] [PubMed]
- Castaldo, L.; Lombardi, S.; Gaspari, A.; Rubino, M.; Izzo, L.; Narváez, A.; Ritieni, A.; Grosso, M. In Vitro Bioaccessibility and Antioxidant Activity of Polyphenolic Compounds from Spent Coffee Grounds-Enriched Cookies. Foods 2021, 10, 1837. [Google Scholar] [CrossRef] [PubMed]
- Zayed, L.; Gablo, N.; Kalcakova, L.; Dordevic, S.; Kushkevych, I.; Dordevic, D.; Tremlova, B. Utilizing Used Cooking Oil and Organic Waste: A Sustainable Approach to Soap Production. Processes 2024, 12, 1279. [Google Scholar] [CrossRef]
- Rubio-Valle, J.F.; Valencia, C.; Sánchez, M.C.; Martín-Alfonso, J.E.; Franco, J.M. Upcycling Spent Coffee Grounds and Waste PET Bottles into Electrospun Composite Nanofiber Mats for Oil Structuring Applications. Resour. Conserv. Recycl. 2023, 199, 107261. [Google Scholar] [CrossRef]
- Rahimi, M.; Azizi, M.; Soorgi, H.; Gheybi, F.; Nokhodchi, A.; Amani, A.; Oroojalian, F. Preparation and Fabrication of Nanoemulsions of Spent Coffee Oil and Ganoderma Lucidum Spore Oil for Skin Whitening and Anti-Wrinkle Applications: In Vitro and In Vivo Evaluations. BioNanoScience 2025, 15, 279. [Google Scholar] [CrossRef]
- Papadaki, A.; Kachrimanidou, V.; Mandala, I.; Kopsahelis, N. Valorization of Spent Coffee Grounds Oil for the Production of Wax Esters: Enzymatic Synthesis and Application in Olive Oil Oleogels. Gels 2024, 10, 817. [Google Scholar] [CrossRef] [PubMed]
- Papadaki, A.; Manikas, A.C.; Papazoglou, E.; Kachrimanidou, V.; Lappa, I.; Galiotis, C.; Mandala, I.; Kopsahelis, N. Whey Protein Films Reinforced with Bacterial Cellulose Nanowhiskers: Improving Edible Film Properties via a Circular Economy Approach. Food Chem. 2022, 385, 132604. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Saqib, M.N.; Liu, F.; Zhong, F. Bacterial Cellulose Nanocrystals with a Great Difference in Aspect Ratios: A Comparison Study of Their Reinforcing Effects on Properties of the Sodium Alginate Film. Food Hydrocoll. 2023, 141, 108676. [Google Scholar] [CrossRef]
- Li, Q.; Ma, Q.; Wu, Y.; Li, Y.; Li, B.; Luo, X.; Liu, S. Oleogel Films Through the Pickering Effect of Bacterial Cellulose Nanofibrils Featuring Interfacial Network Stabilization. J. Agric. Food Chem. 2020, 68, 9150–9157. [Google Scholar] [CrossRef] [PubMed]
- Panagopoulou, E.; Evageliou, V.; Kopsahelis, N.; Ladakis, D.; Koutinas, A.; Mandala, I. Stability of Double Emulsions with PGPR, Bacterial Cellulose and Whey Protein Isolate. Colloids Surf. A Physicochem. Eng. Asp. 2017, 522, 445–452. [Google Scholar] [CrossRef]
- Paximada, P.; Tsouko, E.; Kopsahelis, N.; Koutinas, A.A.; Mandala, I. Bacterial Cellulose as Stabilizer of o/w Emulsions. Food Hydrocoll. 2016, 53, 225–232. [Google Scholar] [CrossRef]
- Plazzotta, S.; Calligaris, S.; Manzocco, L. Structural Characterization of Oleogels from Whey Protein Aerogel Particles. Food Res. Int. 2020, 132, 109099. [Google Scholar] [CrossRef] [PubMed]
- Ciuffarin, F.; Plazzotta, S.; Rondou, K.; Van Bockstaele, F.; Dewettinck, K.; Manzocco, L.; Calligaris, S. Oil Structuring Using Whey Protein-Based Cryogel Particles: Effect of Gelation pH and Feasibility as an Ingredient in Low-Saturated Fat Cocoa Spreads. Food Res. Int. 2024, 196, 115029. [Google Scholar] [CrossRef] [PubMed]
- Luo, S.-Z.; Hu, X.-F.; Jia, Y.-J.; Pan, L.-H.; Zheng, Z.; Zhao, Y.-Y.; Mu, D.-D.; Zhong, X.-Y.; Jiang, S.-T. Camellia Oil-Based Oleogels Structuring with Tea Polyphenol-Palmitate Particles and Citrus Pectin by Emulsion-Templated Method: Preparation, Characterization and Potential Application. Food Hydrocoll. 2019, 95, 76–87. [Google Scholar] [CrossRef]
- Ross-Murphy, S.B. Rheological Characterization of Gels. J. Texture Stud. 1995, 26, 391–400. [Google Scholar] [CrossRef]
- Rao, M.A. Rheology of Fluid, Semisolid, and Solid Foods: Principles and Applications; Food Engineering Series; Springer: New York, NY, USA, 2014; ISBN 978-1-4614-9229-0. [Google Scholar]
- De Vries, A.; Jansen, D.; Van Der Linden, E.; Scholten, E. Tuning the Rheological Properties of Protein-Based Oleogels by Water Addition and Heat Treatment. Food Hydrocoll. 2018, 79, 100–109. [Google Scholar] [CrossRef]
- Shan, G.; Cui, M.; Wang, X.; Gao, Y.; Xu, Z.; Jiang, L.; Sui, X. Dual-Reinforcement Strategy: Fabrication of CMC-Na/SPI Aerogel-Templated Oleogels through Electrostatic Adsorption and Chemical Crosslinking. Food Hydrocoll. 2024, 148, 109525. [Google Scholar] [CrossRef]
- Dash, D.R.; Singh, S.K.; Singha, P. Viscoelastic Behavior, Gelation Properties and Structural Characterization of Deccan Hemp Seed (Hibiscus Cannabinus) Protein: Influence of Protein and Ionic Concentrations, pH, and Temperature. Int. J. Biol. Macromol. 2024, 263, 130120. [Google Scholar] [CrossRef] [PubMed]
- Ciuffarin, F.; Plazzotta, S.; Gelas, L.; Calligaris, S.; Budtova, T.; Manzocco, L. Cellulose Cryogel Particles for Oil Structuring: Mixture Properties and Digestibility. Food Hydrocoll. 2024, 157, 110470. [Google Scholar] [CrossRef]
- Shaikh, H.M.; Anis, A.; Poulose, A.M.; Madhar, N.A.; Al-Zahrani, S.M. Development of Bigels Based on Date Palm-Derived Cellulose Nanocrystal-Reinforced Guar Gum Hydrogel and Sesame Oil/Candelilla Wax Oleogel as Delivery Vehicles for Moxifloxacin. Gels 2022, 8, 330. [Google Scholar] [CrossRef] [PubMed]
- Tavernier, I.; Patel, A.R.; Van Der Meeren, P.; Dewettinck, K. Emulsion-Templated Liquid Oil Structuring with Soy Protein and Soy Protein: κ-Carrageenan Complexes. Food Hydrocoll. 2017, 65, 107–120. [Google Scholar] [CrossRef]
- Qiu, C.; Huang, Y.; Li, A.; Ma, D.; Wang, Y. Fabrication and Characterization of Oleogel Stabilized by Gelatin-Polyphenol-Polysaccharides Nanocomplexes. J. Agric. Food Chem. 2018, 66, 13243–13252. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Liu, L.; Wang, B.; Sui, X.; Zhong, Y.; Zhang, L.; Mao, Z.; Xu, H. Cellulose-Rich Oleogels Prepared with an Emulsion-Templated Approach. Food Hydrocoll. 2018, 77, 460–464. [Google Scholar] [CrossRef]
- Mariano, M.; Chirat, C.; El Kissi, N.; Dufresne, A. Impact of Cellulose Nanocrystal Aspect Ratio on Crystallization and Reinforcement of Poly(Butylene Adipate-Co-Terephthalate). J. Polym. Sci. Part B Polym. Phys. 2016, 54, 2284–2297. [Google Scholar] [CrossRef]
- Zhang, D.; Fang, Z.; Hu, S.; Qiu, X. High Aspect Ratio Cellulose Nanofibrils with Low Crystallinity for Strong and Tough Films. Carbohydr. Polym. 2024, 346, 122630. [Google Scholar] [CrossRef] [PubMed]
- Paximada, P.; Kanavou, E.; Mandala, I.G. Effect of Rheological and Structural Properties of Bacterial Cellulose Fibrils and Whey Protein Biocomposites on Electrosprayed Food-Grade Particles. Carbohydr. Polym. 2020, 241, 116319. [Google Scholar] [CrossRef] [PubMed]
- Patel, A.R.; Nicholson, R.A.; Marangoni, A.G. Applications of Fat Mimetics for the Replacement of Saturated and Hydrogenated Fat in Food Products. Curr. Opin. Food Sci. 2020, 33, 61–68. [Google Scholar] [CrossRef]
- De Vries, A.; Wesseling, A.; Van Der Linden, E.; Scholten, E. Protein Oleogels from Heat-Set Whey Protein Aggregates. J. Colloid. Interface Sci. 2017, 486, 75–83. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, A.M.; Scherer, L.G.; Daudt, R.M.; Spada, J.C.; Cardozo, N.S.M.; Marczak, L.D.F. Effects of Starch Source and Treatment Type—Conventional and Ohmic Heating—On Stability and Rheological Properties of Gels. LWT 2019, 109, 7–12. [Google Scholar] [CrossRef]
- Malkin, A.Y.; Derkach, S.R.; Kulichikhin, V.G. Rheology of Gels and Yielding Liquids. Gels 2023, 9, 715. [Google Scholar] [CrossRef] [PubMed]
- Park, C.; Campanella, O.; Maleky, F. The Effects of Whey Protein and Oleogel Interactions on Mechanical Properties of Oleocolloids and Hydro-Oleocolloids Matrices. Food Hydrocoll. 2022, 124, 107285. [Google Scholar] [CrossRef]
- Luo, Z.; Wei, S.; Zhang, M.; Song, Y.; Pang, J.; Zhang, H. Decoding Protein Structure Effects: Konjac Glucomannan Mediated Oleogel Networks with Different Structural Properties via Emulsion Interface Design. Food Chem. 2025, 491, 145220. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zheng, S.; Song, Y.; Jiang, Q.; Zhang, H. Preparation, Characterization, and Application of Composite Oleogels Based on Whey Protein Isolate and Sodium Alginate. Int. J. Biol. Macromol. 2025, 300, 140317. [Google Scholar] [CrossRef] [PubMed]
Oleogels | L* | a* | b* | C* | h° |
---|---|---|---|---|---|
WP:SCGO 1:5 | 47.13 ± 1.90 a | 7.32 ± 0.16 a | 23.85 ± 1.07 a | 24.96 ± 0.95 a | 72.25 ± 2.24 a |
WP:SCGO 1:5 BCNW | 47.98 ± 1.08 a | 7.47 ± 0.22 a | 24.94 ± 2.02 a | 26.03 ± 1.06 a | 73.32 ± 1.78 a |
WP:SCGO 1:2.5 | 52.41 ± 2.20 a | 7.04 ± 0.05 a | 25.47 ± 1.52 a | 26.43 ± 0.30 a | 74.54 ± 3.16 a |
WP:SCGO 1:2.5 BCNW | 52.13 ± 3.03 a | 7.17 ± 0.50 a | 25.64 ± 1.30 a | 26.63 ± 0.95 a | 74.37 ± 1.93 a |
Oleogels | Amplitude Sweep Tests | Frequency Sweep Tests | |
---|---|---|---|
G′ (×103 Pa) | Critical Strain (%) | Tan δ (1 Hz) | |
WP:SCGO 1:5 | 43.45 ± 0.20 a | 0.040 ± 0.002 a | 0.074 ± 0.004 a |
WP:SCGO 1:5 BCNW | 346.60 ± 68.30 b | 0.038 ± 0.001 a | 0.047 ± 0.001 b |
WP:SCGO 1:2.5 | 892.77 ± 24.19 c | 0.072 ± 0.013 b | 0.072 ± 0.006 a |
WP:SCGO 1:2.5 BCNW | 977.86 ± 74.54 c | 0.086 ± 0.002 b | 0.097 ± 0.011 c |
Oleogels | k | n | R2 |
---|---|---|---|
WP:SCGO 1:5 | 13.68 ± 0.23 a | 0.05 ± 0.01 a | 0.99 |
WP:SCGO 1:5 BCNW | 219.21 ± 27.79 b | 0.03 ± 0.00 a | 0.99 |
WP:SCGO 1:2.5 | 718.91 ± 121.32 c | 0.05 ± 0.01 a | 0.99 |
WP:SCGO 1:2.5 BCNW | 621.91 ± 39.54 c | 0.04 ± 0.01 a | 0.93 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Papadaki, A.; Mandala, I.; Kopsahelis, N. Development and Characterization of Emulsion-Templated Oleogels from Whey Protein and Spent Coffee Grounds Oil. Foods 2025, 14, 2697. https://doi.org/10.3390/foods14152697
Papadaki A, Mandala I, Kopsahelis N. Development and Characterization of Emulsion-Templated Oleogels from Whey Protein and Spent Coffee Grounds Oil. Foods. 2025; 14(15):2697. https://doi.org/10.3390/foods14152697
Chicago/Turabian StylePapadaki, Aikaterini, Ioanna Mandala, and Nikolaos Kopsahelis. 2025. "Development and Characterization of Emulsion-Templated Oleogels from Whey Protein and Spent Coffee Grounds Oil" Foods 14, no. 15: 2697. https://doi.org/10.3390/foods14152697
APA StylePapadaki, A., Mandala, I., & Kopsahelis, N. (2025). Development and Characterization of Emulsion-Templated Oleogels from Whey Protein and Spent Coffee Grounds Oil. Foods, 14(15), 2697. https://doi.org/10.3390/foods14152697