Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (159)

Search Parameters:
Keywords = solar mirror

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3404 KB  
Article
Advancing Clean Solar Energy: System-Level Optimization of a Fresnel Lens Interface for UHCPV Systems
by Taher Maatallah
Designs 2025, 9(5), 115; https://doi.org/10.3390/designs9050115 - 25 Sep 2025
Viewed by 56
Abstract
This study presents the development and validation of a high-efficiency optical interface designed for ultra-high-concentration photovoltaic (UHCPV) systems, with a focus on enabling clean and sustainable solar energy conversion. A Fresnel lens serves as the primary optical concentrator in a novel system architecture [...] Read more.
This study presents the development and validation of a high-efficiency optical interface designed for ultra-high-concentration photovoltaic (UHCPV) systems, with a focus on enabling clean and sustainable solar energy conversion. A Fresnel lens serves as the primary optical concentrator in a novel system architecture that integrates advanced optical design with system-level thermal management. The proposed modeling framework combines detailed 3D ray tracing with coupled thermal simulations to accurately predict key performance metrics, including optical concentration ratios, thermal loads, and component temperature distributions. Validation against theoretical and experimental benchmarks demonstrates high predictive accuracies within 1% for optical efficiency and 2.18% for thermal performance. The results identify critical thermal thresholds for long-term operational stability, such as limiting mirror temperatures to below 52 °C and photovoltaic cell temperatures to below 130 °C. The model achieves up to 89.08% optical efficiency, with concentration ratios ranging from 240 to 600 suns and corresponding focal spot temperatures between 37.2 °C and 61.7 °C. Experimental benchmarking confirmed reliable performance, with the measured results closely matching the simulations. These findings highlight the originality of the coupled optical–thermal approach and its applicability to concentrated photovoltaic design and deployment. This integrated design and analysis approach supports the development of scalable, clean photovoltaic technologies and provides actionable insights for real-world deployment of UHCPV systems with minimal environmental impact. Full article
Show Figures

Figure 1

13 pages, 2630 KB  
Article
Research on Polar-Axis Direct Solar Radiation Spectrum Measurement Method
by Jingrui Sun, Yangyang Zou, Lu Wang, Jian Zhang, Yu Zhang, Ke Zhang, Yang Su, Junjie Yang, Ran Zhang and Guoyu Zhang
Photonics 2025, 12(9), 931; https://doi.org/10.3390/photonics12090931 - 18 Sep 2025
Viewed by 170
Abstract
High-precision measurements of direct solar radiation spectra are crucial for the development of solar resources, climate change research, and agricultural applications. However, the current measurement systems all rely on a moving two-axis tracking system with a complex structure and many error transmission links. [...] Read more.
High-precision measurements of direct solar radiation spectra are crucial for the development of solar resources, climate change research, and agricultural applications. However, the current measurement systems all rely on a moving two-axis tracking system with a complex structure and many error transmission links. In response to the above problems, a polar-axis rotating solar direct radiation spectroscopic measurement method is proposed, and an overall architecture consisting of a rotating reflector and a spectroradiometric measurement system is constructed, which simplifies the system’s structural form and enables year-round, full-latitude solar direct radiation spectroscopic measurements without requiring moving tracking. The paper focuses on the study of its optical system, optimizes the design of a polar-axis rotating solar direct radiation spectroscopy measurement optical system with a spectral range of 380–780 nm and a spectral resolution better than 2 nm, and carries out spectral reconstruction of the solar direct radiation spectra as well as the assessment of measurement accuracy. The results show that the point error distribution of the AM0 spectral curve ranges from −9.05% to 13.35%, and the area error distribution ranges from −0.04% to 0.09%; the point error distribution of the AM1.5G spectral curve ranges from −9.19% to 13.66%, and the area error distribution ranges from −0.03% to 0.11%. Both exhibit spatial and temporal uniformity exceeding 99.92%, ensuring excellent measurement performance throughout the year. The measurement method proposed in this study enhances the solar direct radiation spectral measurement system. Compared to the existing dual-axis moving tracking measurement method, the system composition is simplified, enabling direct solar radiation spectrum measurement at all latitudes throughout the year without the need for tracking, providing technical support for the development and application of new technologies for solar direct radiation measurement. It is expected to promote future theoretical research and technological breakthroughs in this field. Full article
Show Figures

Figure 1

20 pages, 16408 KB  
Article
Design, Analysis, and Experimentation of Space Deployable Segmented Solar Concentrator
by Jinyuan Mei, Chunyang Han, Zhenbang Xu, Yunsheng Qi, Qingyu Meng, Zipeng Yang and Zhongyuan Li
Aerospace 2025, 12(8), 713; https://doi.org/10.3390/aerospace12080713 - 11 Aug 2025
Viewed by 361
Abstract
To improve the optical concentrator ratio of space solar power stations (SSPSs), this paper proposes a deployable segmented solar concentrator (DSSC) based on an afocal reflective system. First, a novel concept of an afocal reflective concentrator composed of segmented primary and secondary mirrors [...] Read more.
To improve the optical concentrator ratio of space solar power stations (SSPSs), this paper proposes a deployable segmented solar concentrator (DSSC) based on an afocal reflective system. First, a novel concept of an afocal reflective concentrator composed of segmented primary and secondary mirrors is introduced, and the deployable mechanism for the segmented primary mirror is described in detail. Subsequently, a model for the comprehensive error of the deployable mechanism with 3D revolute joint clearances and link length errors is established based on the “massless link” equivalent model of the clearance in revolute joints and the homogeneous transfer matrix. Sensitivity analysis evaluates the impact of various geometric errors of the deployable mechanism on the comprehensive error. Finally, a prototype experimental system is built to verify the concentration ratio of the concentrator and the pose error of the deployable mechanism. The experimental results show that the DSSC geometric concentration ratio reaches 5.36 to 6, and the optical concentration ratio reaches 24.7 to 32.2. The repeatability of the deployable mechanism is ±50 µm and ±1.2′, meeting the tolerance requirements of the optical system. The proposed afocal reflective DSSC can be used for solar energy concentration, improving the utilization of solar energy. Full article
(This article belongs to the Section Astronautics & Space Science)
Show Figures

Figure 1

10 pages, 1309 KB  
Proceeding Paper
A Sustainable Approach to Cooking: Design and Evaluation of a Sun-Tracking Concentrated Solar Stove
by Hasan Ali Khan, Malik Hassan Nawaz, Main Omair Gul and Mazhar Javed
Mater. Proc. 2025, 23(1), 4; https://doi.org/10.3390/materproc2025023004 - 29 Jul 2025
Viewed by 490
Abstract
Access to clean cooking remains a major challenge in rural and off-grid areas where traditional fuels are costly, harmful, or scarce. Solar cooking offers a sustainable solution, but many existing systems suffer from fixed positioning and low efficiency. This study presents a low-cost, [...] Read more.
Access to clean cooking remains a major challenge in rural and off-grid areas where traditional fuels are costly, harmful, or scarce. Solar cooking offers a sustainable solution, but many existing systems suffer from fixed positioning and low efficiency. This study presents a low-cost, dual-axis solar tracking parabolic dish cooker designed for such regions, featuring adjustable pot holder height and portability for ease of use. The system uses an Arduino UNO, LDR sensors, and a DC gear motor to automate sun tracking, ensuring optimal alignment throughout the day. A 0.61 m parabolic dish with ≥97% reflective silver-coated mirrors concentrates sunlight to temperatures exceeding 300 °C. Performance tests in April, June, and November showed boiling times as low as 3.37 min in high-irradiance conditions (7.66 kWh/m2/day) and 6.63 min under lower-irradiance conditions (3.86 kWh/m2/day). Compared to fixed or single-axis systems, this design achieved higher thermal efficiency and reliability, even under partially cloudy skies. Built with locally available materials, the system offers an affordable, clean, and effective cooking solution that supports energy access, health, and sustainability in underserved communities. Full article
Show Figures

Figure 1

18 pages, 3778 KB  
Article
Total Internal Reflection End-Pumped Solar Laser with the Solar-to-Laser Conversion Efficiency of 6.09%
by Lin Wang, Haiyang Zhang, Dário Garcia, Weichen Xu, Changming Zhao and Anran Guo
Energies 2025, 18(15), 4033; https://doi.org/10.3390/en18154033 - 29 Jul 2025
Viewed by 412
Abstract
A novel total internal reflection solar end-pumped laser system has been introduced for the first time, aimed at enhancing the solar-to-laser conversion efficiency. Utilizing a conical solid or cavity reflector, this system refocuses sunlight from a 0.2818 m2 parabolic mirror into a [...] Read more.
A novel total internal reflection solar end-pumped laser system has been introduced for the first time, aimed at enhancing the solar-to-laser conversion efficiency. Utilizing a conical solid or cavity reflector, this system refocuses sunlight from a 0.2818 m2 parabolic mirror into a single Ce (0.05 at.%): Nd (1 at.%): YAG crystal rod, measuring 4 mm in diameter and 10 mm in length, thereby promoting total internal reflection and extending the pumping path. Simulation results indicate that under the same solar input power conditions (249.05 W), the conversion efficiencies of the conical solid reflector and cavity reflector systems are 1.2 times and 1.33 times higher than the current highest recorded efficiency of single-rod systems, respectively. At 950 W/m2, the conical reflector reaches 5.48% efficiency, while the cavity reflector attains 6.09%. Their collection efficiencies are 52.03 W/m2 and 57.90 W/m2, with slope efficiencies of 6.65% and 7.72%. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

22 pages, 6689 KB  
Article
Design and Implementation of a Sun Outage Simulation System with High Uniformity and Stray Light Suppression Capability
by Zhen Mao, Zhaohui Li, Yong Liu, Limin Gao and Jianke Zhao
Sensors 2025, 25(15), 4655; https://doi.org/10.3390/s25154655 - 27 Jul 2025
Viewed by 568
Abstract
To enable accurate evaluation of satellite laser communication terminals under solar outage interference, this paper presents the design and implementation of a solar radiation simulation system targeting the 1540–1560 nm communication band. The system reconstructs co-propagating interference conditions through standardized and continuously tunable [...] Read more.
To enable accurate evaluation of satellite laser communication terminals under solar outage interference, this paper presents the design and implementation of a solar radiation simulation system targeting the 1540–1560 nm communication band. The system reconstructs co-propagating interference conditions through standardized and continuously tunable output, based on high irradiance and spectral uniformity. A compound beam homogenization structure—combining a multimode fiber and an apodizator—achieves 85.8% far-field uniformity over a 200 mm aperture. A power–spectrum co-optimization strategy is introduced for filter design, achieving a spectral matching degree of 78%. The system supports a tunable output from 2.5 to 130 mW with a 50× dynamic range and maintains power control accuracy within ±0.9%. To suppress internal background interference, a BRDF-based optical scattering model is established to trace primary and secondary stray light paths. Simulation results show that by maintaining the surface roughness of key mirrors below 2 nm and incorporating a U-shaped reflective light trap, stray light levels can be reduced to 5.13 × 10−12 W, ensuring stable detection of a 10−10 W signal at a 10:1 signal-to-background ratio. Experimental validation confirms that the system can faithfully reproduce solar outage conditions within a ±3° field of view, achieving consistent performance in spectrum shaping, irradiance uniformity, and background suppression. The proposed platform provides a standardized and practical testbed for ground-based anti-interference assessment of optical communication terminals. Full article
(This article belongs to the Section Communications)
Show Figures

Figure 1

17 pages, 2045 KB  
Article
An Analytical Method for Solar Heat Flux in Spacecraft Thermal Management Under Multidimensional Pointing Attitudes
by Xing Huang, Tinghao Li, Hua Yi, Yupeng Zhou, Feng Xu and Yatao Ren
Energies 2025, 18(15), 3956; https://doi.org/10.3390/en18153956 - 24 Jul 2025
Viewed by 363
Abstract
In order to provide a theoretical basis for the thermal analysis and management of spacecraft/payload interstellar pointing attitudes, which are used for inter-satellite communication, this paper develops an analytical method for solar heat flux under pointing attitudes. The key to solving solar heat [...] Read more.
In order to provide a theoretical basis for the thermal analysis and management of spacecraft/payload interstellar pointing attitudes, which are used for inter-satellite communication, this paper develops an analytical method for solar heat flux under pointing attitudes. The key to solving solar heat flux is calculating the angle between the sun vector and the normal vector of the object surface. Therefore, a method for calculating the included angle is proposed. Firstly, a coordinate system was constructed based on the pointing attitude. Secondly, the angle between the coordinate axis vector and solar vector variation with a true anomaly was calculated. Finally, the reaching direct solar heat flux was obtained using an analytical method or commercial software. Based on the proposed method, the direct solar heat flux of relay satellites in commonly used lunar orbits, including Halo orbits and highly elliptic orbits, was calculated. Thermal analysis on the payload of interstellar laser communication was also conducted in this paper. The calculated temperatures of each mirror ranged from 16.6 °C to 21.2 °C. The highest temperature of the sensor was 20.9 °C, with a 2.3 °C difference from the in-orbit data. The results indicate that the external heat flux analysis method proposed in this article is realistic and reasonable. Full article
Show Figures

Figure 1

17 pages, 2124 KB  
Article
Soiling Forecasting for Parabolic Trough Collector Mirrors: Model Validation and Sensitivity Analysis
by Areti Pappa, Johannes Christoph Sattler, Siddharth Dutta, Panayiotis Ktistis, Soteris A. Kalogirou, Orestis Spiros Alexopoulos and Ioannis Kioutsioukis
Atmosphere 2025, 16(7), 807; https://doi.org/10.3390/atmos16070807 - 1 Jul 2025
Viewed by 401
Abstract
Parabolic trough collector (PTC) systems, often deployed in arid regions, are vulnerable to dust accumulation (soiling), which reduces mirror reflectivity and energy output. This study presents a physically based soiling forecast algorithm (SFA) designed to estimate soiling levels. The model was calibrated and [...] Read more.
Parabolic trough collector (PTC) systems, often deployed in arid regions, are vulnerable to dust accumulation (soiling), which reduces mirror reflectivity and energy output. This study presents a physically based soiling forecast algorithm (SFA) designed to estimate soiling levels. The model was calibrated and validated using three meteorological data sources—numerical forecasts (YR), METAR observations, and on-site measurements—from a PTC facility in Limassol, Cyprus. Field campaigns covered dry, rainy, and red-rain conditions. The model demonstrated robust performance, particularly under dry summer conditions, with normalized root mean square errors (NRMSE) below 1%. Sedimentation emerged as the dominant soiling mechanism, while the contributions of impaction and Brownian motion varied according to site-specific environmental conditions. Under dry deposition conditions, the reflectivity change rate during spring and autumn was approximately twice that of summer, indicating a need for more frequent cleaning during transitional seasons. A red-rain event resulted in a pronounced drop in reflectivity, showcasing the model’s ability to capture abrupt soiling dynamics associated with extreme weather episodes. The proposed SFA offers a practical, adaptable tool for reducing soiling-related losses and supporting seasonally adjusted maintenance strategies for solar thermal systems. Full article
(This article belongs to the Section Atmospheric Techniques, Instruments, and Modeling)
Show Figures

Figure 1

20 pages, 9232 KB  
Article
Design, Fabrication, and Electromagnetic Characterization of a Feed Horn of the Linear-Polarized Multi-Beam Cryogenic S-Band Receiver for the Sardinia Radio Telescope
by Tonino Pisanu, Paolo Maxia, Alessandro Navarrini, Giuseppe Valente, Renzo Nesti, Luca Schirru, Pasqualino Marongiu, Pierluigi Ortu, Adelaide Ladu, Francesco Gaudiomonte, Silvio Pilia, Roberto Caocci, Paola Di Ninni, Luca Cresci and Aldo Sonnini
Electronics 2025, 14(11), 2301; https://doi.org/10.3390/electronics14112301 - 5 Jun 2025
Viewed by 826
Abstract
The S-band (i.e., 2–4 GHz) is essential in multiple fields of radio astronomy, ranging from pulsar and solar studies to investigations of the early universe. The Italian 64 m fully steerable Sardinia Radio Telescope (SRT) is a system designed to operate in a [...] Read more.
The S-band (i.e., 2–4 GHz) is essential in multiple fields of radio astronomy, ranging from pulsar and solar studies to investigations of the early universe. The Italian 64 m fully steerable Sardinia Radio Telescope (SRT) is a system designed to operate in a wide frequency band ranging from 300 MHz to 116 GHz. Recently, the Astronomical Observatory of Cagliari (OAC) has been developing a new cryogenic seven-beam S-band radio receiver. This paper describes the design, fabrication and electromagnetic characterization of the feed horn for this new receiver. It has been designed to observe the sky in the 3–4.5 GHz frequency range and it will be composed of seven feed horns arranged in a regular hexagonal layout with a central element. The feed horns are optimized for placement in the primary focus and consequently illuminate the 64 m primary mirror of the SRT. The electromagnetic characterization of the single feed horn is crucial to verify the receiver’s performance; for this reason, a single feed horn has been manufactured to compare the measured reflection coefficient and the radiated far-field diagram with the results of the electromagnetic simulations, performed using the CST® Suite Studio 2024 and Ansys HFSS® Electromagnetics Suite 2021 R1 (To make the S-parameters and the radiation diagram measurement procedure feasible, the single feed horn has been connected to two adapters: a circular-to-rectangular waveguide adapter and a coax-to-rectangular waveguide adapter. The results of the measurements performed in the anechoic chamber are in very good agreement with the simulated results. Additionally, the feed horn phase center position is evaluated, merging the measurements and simulations results for an optimal installation on the primary focus of the SRT. Full article
(This article belongs to the Special Issue Microwave Devices: Analysis, Design, and Application)
Show Figures

Figure 1

14 pages, 2915 KB  
Article
Black Holes as Gravitational Mirrors
by Luis C. N. Santos, Franciele M. da Silva, Celio R. Muniz and Valdir B. Bezerra
Universe 2025, 11(5), 152; https://doi.org/10.3390/universe11050152 - 7 May 2025
Viewed by 606
Abstract
Retrolensing is a gravitational lensing effect in which light emitted by a background source is deflected by a black hole and redirected toward the observer after undergoing nearly complete loops around the black hole. In this context, we explore the possibility of seeing [...] Read more.
Retrolensing is a gravitational lensing effect in which light emitted by a background source is deflected by a black hole and redirected toward the observer after undergoing nearly complete loops around the black hole. In this context, we explore the possibility of seeing objects of the solar system in past eras through telescope observations by using black holes as a gravitational mirror. We consider the motion of the light around Reissner–Nordström space–time and discuss the properties of the trajectories of boomerang photons. It was shown that, depending on the angle of emission and the position of the source, the photons could return to the emission point. Afterward, we explore the possibility of considering the returning photons in retrolensing geometry where the observer is between the source and the lens in which two classes of black holes are explored: The supermassive Sgr A* black hole at the galactic center and a nearby stellar black hole. For the first time in the literature, we propose the study of the returning photons of planets instead of stars in retrolensing geometry. Full article
(This article belongs to the Collection Open Questions in Black Hole Physics)
Show Figures

Figure 1

12 pages, 4134 KB  
Article
From Self-Cleaning to Self-Aware Solar Mirror Skin
by Anna Castaldo, Emilia Gambale and Giuseppe Vitiello
Appl. Sci. 2025, 15(7), 3696; https://doi.org/10.3390/app15073696 - 27 Mar 2025
Viewed by 426
Abstract
Self-cleaning coatings for solar mirrors aim to reduce water usage for cleaning, cut down on maintenance costs for solar fields, and lower the overall electricity production costs in concentrated solar power (CSP) systems. Various approaches have been developed for mirrors with back surface [...] Read more.
Self-cleaning coatings for solar mirrors aim to reduce water usage for cleaning, cut down on maintenance costs for solar fields, and lower the overall electricity production costs in concentrated solar power (CSP) systems. Various approaches have been developed for mirrors with back surface (BSM) and front surface (FSM) architectures, all sharing the characteristic that the self-cleaning coating serves as the outermost layer, acting as a “skin” that protects against fouling. A recent trend in this field is to enhance this “skin” with sensing capabilities, allowing it to self-monitor its performance in terms of soiling or failure, contributing to the digitalization of solar fields and CSP technology. Building on previous work with auxetic aluminum nitrides and ZnO transparent composites, which were developed to replace alumina as the self-cleaning layer in BSMs, this study explores the potential of adding sensing properties to these coatings. The approach leverages the piezoelectric properties of the materials, which can be linked to dust accumulation and surface soiling, as well as their electrical resistive behavior, which can help monitor potential failures. The promising d33 values of sputtered piezoelectric AlN and the tailored electrical properties of ZnO composites, combined with their self-cleaning effects and optical clarity across the full solar spectrum, suggest that these coatings could serve as an intelligent, self-aware skin for solar mirrors. Full article
(This article belongs to the Section Applied Thermal Engineering)
Show Figures

Figure 1

20 pages, 903 KB  
Article
A Hybrid Solar–Thermoelectric System Incorporating Molten Salt for Sustainable Energy Storage Solutions
by Mahmoud Z. Mistarihi, Ghazi M. Magableh and Saba M. Abu Dalu
Technologies 2025, 13(3), 104; https://doi.org/10.3390/technologies13030104 - 5 Mar 2025
Viewed by 1673
Abstract
Green sustainable energy, especially renewable energy, is gaining huge popularity and is considered a vital energy in addressing energy conservation and global climate change. One of the most significant renewable energy sources in the UAE is solar energy, due to the country’s high [...] Read more.
Green sustainable energy, especially renewable energy, is gaining huge popularity and is considered a vital energy in addressing energy conservation and global climate change. One of the most significant renewable energy sources in the UAE is solar energy, due to the country’s high solar radiation levels. This paper focuses on advanced technology that integrates parabolic trough mirrors, molten salt storage, and thermoelectric generators (TEGs) to provide a reliable and effective solar system in the UAE. Furthermore, the new system can be manufactured in different sizes suitable for consumption whether in ordinary houses or commercial establishments and businesses. The proposed design theoretically achieves the target electrical energy of 2.067 kWh/day with 90% thermal efficiency, 90.2% optical efficiency, and 8% TEG efficiency that can be elevated to higher values reaching 149% using the liquid-saturated porous medium, ensuring the operation of the system throughout the day. This makes it a suitable solar system in off-grid areas. Moreover, this system is a cost-effective, carbon-free, and day-and-night energy source that can be dispatched on the electric grid like any fossil fuel plant under the proposed method, with less maintenance, thus contributing to the UAE’s renewable energy strategy. Full article
(This article belongs to the Section Environmental Technology)
Show Figures

Figure 1

18 pages, 12745 KB  
Article
Characterization of a Densely Packed Photovoltaic Array with RXX Homogenizer in a High-Flux Solar Furnace
by Ernesto Anguera Romero, Nidia Aracely Cisneros-Cárdenas and Claudio A. Estrada Gasca
Solar 2025, 5(1), 5; https://doi.org/10.3390/solar5010005 - 15 Feb 2025
Viewed by 807
Abstract
A theoretical and experimental evaluation was conducted on a prototype radiative flux homogenizer (HOFRAC) specifically designed for the Solar Furnace at Instituto de Energías Renovables (HoSIER) of Universidad Nacional Autónoma de México. The development of HOFRAC included three versions (HOFRAC-PRO, HOFRAC-PRI, and HOFRAC-PRIK); [...] Read more.
A theoretical and experimental evaluation was conducted on a prototype radiative flux homogenizer (HOFRAC) specifically designed for the Solar Furnace at Instituto de Energías Renovables (HoSIER) of Universidad Nacional Autónoma de México. The development of HOFRAC included three versions (HOFRAC-PRO, HOFRAC-PRI, and HOFRAC-PRIK); each iteration incorporated improvements based on theoretical modeling and experimental results. Evaluations were performed using ray-tracing simulations and experimental tests capturing radiative flux distribution images. The last two versions were used to characterize a densely packed photovoltaic array operated in the solar furnace. Some results of this study show that misaligned mirrors in the furnace were identified as the main problem in achieving a high flux uniformity degree for photovoltaic concentration applications. Full article
Show Figures

Figure 1

20 pages, 4150 KB  
Article
Determination of the Installation Efficiency of Vertical Stationary Photovoltaic Modules with a Double-Sided “East–West”-Oriented Solar Panel
by Gennadii Golub, Egidijus Blažauskas, Nataliya Tsyvenkova, Egidijus Šarauskis, Algirdas Jasinskas, Savelii Kukharets, Volodymyr Nadykto and Anna Holubenko
Appl. Sci. 2025, 15(3), 1635; https://doi.org/10.3390/app15031635 - 6 Feb 2025
Cited by 5 | Viewed by 2403
Abstract
The objects of this research are double-sided stationary vertical photovoltaic modules (PV-modules) with an “East–West”-oriented solar panel. The tilt angles of the Sun’s rays on PV-modules at a latitude of 50° were determined, and the installation efficiencies of both double-sided stationary vertical PV-modules [...] Read more.
The objects of this research are double-sided stationary vertical photovoltaic modules (PV-modules) with an “East–West”-oriented solar panel. The tilt angles of the Sun’s rays on PV-modules at a latitude of 50° were determined, and the installation efficiencies of both double-sided stationary vertical PV-modules with an “East–West” oriented panel and PV-modules installed at an angle of latitude with a “South” oriented panel were compared. The horizontal azimuth of the fall of the Sun’s rays during the day when using PV-modules with an “East–West”-oriented panel reaches a minimum at noon. The vertical azimuth of the Sun’s rays remains constant throughout the day and can vary from 66.55° to 113.45°. The weighted average daily installation efficiency of PV-modules with an “East–West”-oriented panel has the same value as that of PV-modules with a “South”-oriented panel, and can vary between 45.87 and 50% on different days. However, these installation options have a “mirror” value of the cosines of the Sun’s rays falling on the surface of the PV-modules and can have values from 0.917 to 1. The results can be used as a basis for evaluating the efficiency of double-sided vertical stationary solar PV-modules with an “East–West”-oriented panel. Full article
(This article belongs to the Special Issue New Insights into Solar Cells and Their Applications)
Show Figures

Figure 1

14 pages, 3379 KB  
Article
Recovery and Reuse of Acetone from Pharmaceutical Industry Waste by Solar Distillation
by Eva Carina Tarango Brito, Carlos Eduardo Barrera Díaz, Liliana Ivette Ávila Córdoba, Bernardo Antonio Frontana Uribe and Dora Alicia Solís Casados
Processes 2025, 13(2), 361; https://doi.org/10.3390/pr13020361 - 28 Jan 2025
Viewed by 2265
Abstract
Solvents are particularly hazardous among the mixture of pollutants found in the air, as their low vapor pressure allows them to reach the atmosphere, causing damage to ecosystems, and producing secondary deleterious effects on living organisms through a wide variety of possible reactions. [...] Read more.
Solvents are particularly hazardous among the mixture of pollutants found in the air, as their low vapor pressure allows them to reach the atmosphere, causing damage to ecosystems, and producing secondary deleterious effects on living organisms through a wide variety of possible reactions. In response, innovative, sustainable, and ecological methods are being developed to recover solvents from industrial wastewater, which is typically contaminated with other organic compounds. This study describes the procedure for recovering acetone from a residue from the pharmaceutical industry. This compound contains a high amount of solid organic compounds, which are generated during the manufacture of medicines. The treatment consisted of performing a simple solar distillation using a single-slope glass solar still, which separated the acetone from the mother solution. Under ideal circumstances, the use of solar radiation allowed an efficiency rate of 80% using solar concentration by means of mirrors to increase the temperature and 85% without the use of mirrors in the production of distilled acetone, which was characterized to evaluate its quality using instrumental analytical techniques: NMR, IR, and GC. The results obtained indicate that the acetone recovered by this procedure has a good quality of 84%; however, due to this percentage obtained, its reuse is limited for certain applications where a high degree of purity is required, such as its reuse for pharmaceutical use; for this reason, it was proposed to use said compound to eliminate the organic impurities contained in the catalyst waste granules used in a Mexican oil refinery. The resulting material was examined by SEM and EDS, revealing a high initial carbon content that decreased by 29% after treatment. Likewise, as an additional study, a study was carried out to evaluate the characteristics of the residues obtained at the end of the distillation where rubidium, silicon, carbon, nitrogen, oxygen, and chlorine contents were observed. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Graphical abstract

Back to TopTop