Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (577)

Search Parameters:
Keywords = soil-borne pathogens

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2667 KiB  
Article
VdSOX1 Negatively Regulates Verticillium dahliae Virulence via Enhancing Effector Expression and Suppressing Host Immune Responses
by Di Xu, Xiaoqiang Zhao, Can Xu, Chongbo Zhang and Jiafeng Huang
J. Fungi 2025, 11(8), 576; https://doi.org/10.3390/jof11080576 (registering DOI) - 1 Aug 2025
Abstract
The soil-borne fungal pathogen Verticillium dahliae causes devastating vascular wilt disease in numerous crops, including cotton. In this study, we reveal that VdSOX1, a highly conserved sarcosine oxidase gene, is significantly upregulated during host infection and plays a multifaceted role in fungal [...] Read more.
The soil-borne fungal pathogen Verticillium dahliae causes devastating vascular wilt disease in numerous crops, including cotton. In this study, we reveal that VdSOX1, a highly conserved sarcosine oxidase gene, is significantly upregulated during host infection and plays a multifaceted role in fungal physiology and pathogenicity. Functional deletion of VdSOX1 leads to increased fungal virulence, accompanied by enhanced microsclerotia formation, elevated carbon source utilization, and pronounced upregulation of effector genes, including over 50 predicted secreted proteins genes. Moreover, the VdSOX1 knockout strains suppress the expression of key defense-related transcription factors in cotton, such as WRKY, MYB, AP2/ERF, and GRAS families, thereby impairing host immune responses. Transcriptomic analyses confirm that VdSOX1 orchestrates a broad metabolic reprogramming that links nutrient acquisition to immune evasion. Our findings identify VdSOX1 as a central regulator that promotes V. dahliae virulence by upregulating effector gene expression and suppressing host immune responses, offering novel insights into the molecular basis of host–pathogen interactions and highlighting potential targets for disease management. Full article
(This article belongs to the Section Fungal Pathogenesis and Disease Control)
Show Figures

Figure 1

17 pages, 1448 KiB  
Article
Nursery Propagation Systems for High-Quality Strawberry (Fragaria × ananassa Duch.) Plug Plant Production from Micropropagated, Soilless-Grown Mother Plants
by Valentina Morresi, Franco Capocasa, Francesca Balducci, Jacopo Diamanti and Bruno Mezzetti
Horticulturae 2025, 11(8), 888; https://doi.org/10.3390/horticulturae11080888 (registering DOI) - 1 Aug 2025
Abstract
The commercial propagation of strawberries is increasingly constrained by the incidence of both established and emerging soilborne pathogens, particularly under soil cultivation systems. Micropropagation represents an effective strategy to ensure the production of virus-free, true-to-type mother plants suitable for high-efficiency propagation. In this [...] Read more.
The commercial propagation of strawberries is increasingly constrained by the incidence of both established and emerging soilborne pathogens, particularly under soil cultivation systems. Micropropagation represents an effective strategy to ensure the production of virus-free, true-to-type mother plants suitable for high-efficiency propagation. In this study, micropropagated mother plants of four short-day cultivars (‘Francesca’, ‘Silvia’, ‘Lauretta’, and ‘Dina’) and one ever-bearing advanced selection (‘AN12,13,58’) were cultivated under a controlled soilless system. Quantitative parameters including number of runners per plant, runner length, and number of tips per runner and per plant were assessed to evaluate propagation performance. Micropropagated mother plants exhibited a significantly higher stoloniferous potential compared to in vivo-derived mother plants (frigo plants type A), with the latter producing approximately 50% fewer propagules. Rooted tips of ‘Dina’ were further assessed under different fertigation regimes. The NPK 20–20–20 nutrient solution enhanced photosynthetic activity and shoot and root biomass (length, diameter, and volume via WinRHIZO analysis). These results confirm the suitability of micropropagated mother plants grown in soilless conditions for efficient, high-quality clonal propagation and support the integration of such systems into certified nursery production schemes. Full article
(This article belongs to the Section Propagation and Seeds)
Show Figures

Graphical abstract

20 pages, 2181 KiB  
Article
Metabarcoding Analysis Reveals Microbial Diversity and Potential Soilborne Pathogens Associated with Almond Dieback and Decline
by André Albuquerque, Mariana Patanita, Joana Amaro Ribeiro, Maria Doroteia Campos, Filipa Santos, Tomás Monteiro, Margarida Basaloco and Maria do Rosário Félix
Plants 2025, 14(15), 2309; https://doi.org/10.3390/plants14152309 - 26 Jul 2025
Viewed by 328
Abstract
Almond decline and dieback have become significant challenges in newly established orchards, with symptoms including internal necrosis, canker, and external gummosis. This work aims to explore the potential fungal and bacterial causative agents through metabarcoding and traditional culture plate isolation across six almond [...] Read more.
Almond decline and dieback have become significant challenges in newly established orchards, with symptoms including internal necrosis, canker, and external gummosis. This work aims to explore the potential fungal and bacterial causative agents through metabarcoding and traditional culture plate isolation across six almond cultivars. Our results emphasize the multifactorial nature of almond decline and dieback, with possible co-infections by opportunistic fungi and bacteria playing a central role. Classical isolation identified 47 fungal species or genera, including Diaporthe amygdali, Diplodia corticola, Phytophthora sp., and several Fusarium species. Almond metabarcoding revealed a more diverse microbial community, highlighting the prevalence of soilborne pathogens such as Neocosmospora rubicola, Dactylonectria estremocensis, and Plectosphaerella niemeijerarum. Soil metabarcoding suggested that these pathogens likely originate from nursery substrates or soils shared with other crops, such as olives and vineyards, that serve as a source of inoculum. ‘Soleta’ generally presented lower richness when compared to the other tested cultivars, suggesting a higher degree of biotic stress and decreased plant resilience. This study highlights the value of integrating NGS approaches to comprehensively study complex diseases and the need for further research on pathogen interactions and cultivar susceptibility for the future development of new sustainable, targeted management strategies in almond orchards. Full article
Show Figures

Figure 1

12 pages, 1633 KiB  
Article
Responses of Rhizospheric Microbial Communities to Brevibacillus laterosporus-Enhanced Reductive Soil Disinfestation in Continuous Cropping Systems
by Risheng Xu, Haijiao Liu, Yafei Chen, Zhen Guo, Juan Liu, Yue Li, Jingyi Mei, Tengfei Ma and Yanlong Chen
Agronomy 2025, 15(8), 1775; https://doi.org/10.3390/agronomy15081775 - 24 Jul 2025
Viewed by 217
Abstract
Reductive soil disinfestation (RSD) significantly alters soil characteristics, yet its combined effects with bacterial inoculation on subsequent rhizospheric microbial community composition remains poorly understood. To address this knowledge gap, we investigated the effects of RSD and endophytic Brevibacillus laterosporus inoculation on the composition, [...] Read more.
Reductive soil disinfestation (RSD) significantly alters soil characteristics, yet its combined effects with bacterial inoculation on subsequent rhizospheric microbial community composition remains poorly understood. To address this knowledge gap, we investigated the effects of RSD and endophytic Brevibacillus laterosporus inoculation on the composition, network, and predicted function of peanut rhizospheric bacteria and fungi. Our results demonstrated that RSD and B. laterosporus inoculation substantially increased rhizospheric bacterial diversity while reducing fungal diversity. Specifically, B. laterosporus-enhanced RSD significantly reshaped the bacterial community, resulting in increased relative abundances of Chloroflexi, Desulfobacterota, and Myxococcota while decreasing those of Firmicutes, Gemmatimonadota, and Acidobacteriota. The fungal community exhibited a more consistent response to RSD and B. laterosporus amendment, with reduced proportions of Ascomycota and Gemmatimonadota but an increase in Chytridiomycota. Network analysis revealed that B. laterosporus inoculation and RSD enhanced the bacterial species complexity and keystone taxa. Furthermore, canonical correspondence analysis indicated strong associations between the soil bacterial community and soil properties, including Eh, EC, NO3-N, and SOC. Our findings highlight that the shifts in bacterial taxa induced by B. laterosporus inoculation and RSD, particularly the keystone taxa identified in the network, may contribute to the suppression of soil-borne pathogens. Overall, this study provides a novel insight into the shifts in rhizospheric bacterial and fungal communities and their ecological functions after bacteria inoculation and RSD treatment. Full article
(This article belongs to the Section Agricultural Biosystem and Biological Engineering)
Show Figures

Figure 1

29 pages, 9335 KiB  
Review
Plant Disease Suppressiveness Enhancement via Soil Health Management
by Chinmayee Priyadarshini, Rattan Lal, Pu Yuan, Wenshan Liu, Ashna Adhikari, Santosh Bhandari and Ye Xia
Biology 2025, 14(8), 924; https://doi.org/10.3390/biology14080924 - 23 Jul 2025
Viewed by 379
Abstract
Managing soil-borne pathogens and diseases in plants is particularly challenging because the pathogens that cause them can persist in the soil for extended periods, often resulting in repeated crop damage in affected areas. These destructive diseases compromise plant health by weakening the root [...] Read more.
Managing soil-borne pathogens and diseases in plants is particularly challenging because the pathogens that cause them can persist in the soil for extended periods, often resulting in repeated crop damage in affected areas. These destructive diseases compromise plant health by weakening the root systems, which makes the plants more susceptible to environmental stress and nutritional deficiencies. Every year in the United States, a whopping $9.6 million is allocated to reverse the harmful effects of pesticides on humans, plants, animals, and the environment. On the contrary, disease-suppressive soils offer an effective strategy for controlling pathogens while ensuring the least contamination of the environment. These soils can be managed by both conventional and advanced methods, such as reduced tillage, crop rotation, organic amendments, nanoparticles, omics approaches, and biofumigation. However, these soils can be local in nature, and their properties might be disrupted by common agricultural practices like tillage and agro-chemical application. This review synthesizes the concepts and mechanisms of disease suppression in soils and explores the ways that can be improved through the management of soil health for enhanced plant health and yield. Full article
(This article belongs to the Special Issue Advances in Research on Diseases of Plants (2nd Edition))
Show Figures

Figure 1

13 pages, 2110 KiB  
Article
Comparison of Rhizosphere Microbial Diversity in Soybean and Red Kidney Bean Under Continuous Monoculture and Intercropping Systems
by Huibin Qin, Aohui Li, Shuyu Zhong, Yingying Zhang, Chuhui Li, Zhixin Mu, Haiping Zhang and Jing Wu
Agronomy 2025, 15(7), 1705; https://doi.org/10.3390/agronomy15071705 - 15 Jul 2025
Viewed by 325
Abstract
The long-term monocropping of red kidney beans in agricultural fields can lead to the occurrence of soil-borne diseases. Alterations in the composition of the soil microbial community are a primary cause of soil-borne diseases and a key factor in continuous cropping obstacles. Research [...] Read more.
The long-term monocropping of red kidney beans in agricultural fields can lead to the occurrence of soil-borne diseases. Alterations in the composition of the soil microbial community are a primary cause of soil-borne diseases and a key factor in continuous cropping obstacles. Research exploring how different cultivation modes can modify the diversity and composition of the rhizosphere microbial community in red kidney beans, and thus mitigate the effects of continuous cropping obstacles, is ongoing. This study employed three cultivation modes: the continuous monocropping of red kidney beans, continuous monocropping of soybeans, and red kidney bean–soybean intercropping. To elucidate the composition and diversity of rhizosphere microbial communities, we conducted amplicon sequencing targeting the V3-V4 hypervariable regions of the bacterial 16S rRNA gene and the ITS1 region of fungal ribosomal DNA across distinct growth stages. The obtained sequencing data provide a robust basis for estimating soil microbial diversity. We observed that, under the intercropping mode, the composition of both bacteria and fungi more closely resembled that of soybean monocropping. The monocropping of red kidney beans increased the richness of rhizosphere bacteria and fungi and promoted the accumulation of pathogenic microorganisms. In contrast, intercropping cultivation and soybean monocropping favored the accumulation of beneficial bacteria such as Bacillus and Streptomyce, reduced pathogenic fungi including Alternaria and Mortierell, and exhibited less microbial variation across different growth stages. Compared to the monocropping of red kidney beans, these systems demonstrated more stable microbial structure and composition. The findings of this study will inform sustainable agricultural practices and soil management strategies. Full article
Show Figures

Figure 1

23 pages, 2535 KiB  
Article
Defining Soilborne Pathogen Complexes Provides a New Foundation for the Effective Management of Faba Bean Root Diseases in Ethiopia
by Solomon Yilma, Berhanu Bekele, Joop Van Leur, Ming Pei You, Seid-Ahmed Kemal, Danièle Giblot-Ducray, Kelly Hill, Thangavel Selvaraji, Alemu Lencho, Lemma Driba and Martin J. Barbetti
Pathogens 2025, 14(7), 695; https://doi.org/10.3390/pathogens14070695 - 14 Jul 2025
Viewed by 769
Abstract
Soilborne diseases cause losses of 45–70% in faba bean in Ethiopia. Studies were undertaken to define soilborne pathogens and their complexes in Ethiopia. First, the severity of root rot was assessed in 150 field sites across seven Ethiopian regions. Soil samples were collected, [...] Read more.
Soilborne diseases cause losses of 45–70% in faba bean in Ethiopia. Studies were undertaken to define soilborne pathogens and their complexes in Ethiopia. First, the severity of root rot was assessed in 150 field sites across seven Ethiopian regions. Soil samples were collected, and the DNA of 29 pests and pathogens was quantified using a commercial quantitative PCR (qPCR) soil testing service. There was a very high incidence rate of Macrophomina phaseolina, as well as Pythium clades F and I. The other detected species in order of incidence included Fusarium redolens, Rhizoctonia solani, Aphanomyces euteiches, Phytophthora megasperma, Sclerotinia sclerotiorum and S. minor, and Verticillium dahliae, as well as low levels of Thielaviopsis basicola. Five anastomosis groups (AG) of R. solani, namely AG2.1, AG2.2, AG3, AG4, and AG5, were detected, of which AG2.2 and AG4 were most prevalent. We believe this is the first report of occurrence for Ethiopia of A. euteiches, Ph. megasperma, T. basicola, and the five AGs for R. solani. There were very high incidence rates of the foliar pathogens Botrytis cinerea, B. fabae, Didymella pinodes, and Phoma pinodella and of the nematode Pratylenchus thornei, followed by P. neglectus and P. penetrans. The root rot severity and distribution varied significantly across regions, as well as with soil types, soil pH, and soil drainage. Subsequently, metabarcoding of the soil DNA was undertaken using three primer pairs targeting fungi (ITS2), Fusarium species (TEF1 α), and Oomycetes (ITS1Oo). The ITS2 and TEF1α primers emphasized F. oxysporum as the most abundant soilborne fungal pathogen and highlighted F. ananatum, F. brachygibbosum, F. brevicaudatum, F. clavum, F. flagelliforme, F. keratoplasticum, F. napiforme, F. nelsonii, F. neocosmosporiellum, F. torulosum, and F. vanettenii as first reports of occurrence for Ethiopia. The ITS1Oo primer confirmed Pythium spp. as the most prevalent of all Oomycetes. Full article
(This article belongs to the Special Issue An Update on Fungal Infections)
Show Figures

Figure 1

28 pages, 950 KiB  
Review
Review—Seed Treatment: Importance, Application, Impact, and Opportunities for Increasing Sustainability
by Simona Paulikienė, Domas Benesevičius, Kristina Benesevičienė and Tomas Ūksas
Agronomy 2025, 15(7), 1689; https://doi.org/10.3390/agronomy15071689 - 12 Jul 2025
Viewed by 594
Abstract
Climate change, soil degradation, and the spread of seed-borne pathogens pose serious challenges to global food security and agricultural sustainability. Although chemical seed treatment provides pathogen control, it poses environmental and health risks. This review analyses innovative seed treatment technologies, with particular emphasis [...] Read more.
Climate change, soil degradation, and the spread of seed-borne pathogens pose serious challenges to global food security and agricultural sustainability. Although chemical seed treatment provides pathogen control, it poses environmental and health risks. This review analyses innovative seed treatment technologies, with particular emphasis on ozonation as an ecologically viable alternative. The mechanisms of action of ozone, its effects on seed germination, reduction of microbial contamination, and crop establishment are discussed. Chemical, physical, and biological treatment methods are comparatively evaluated, analyzing their effectiveness, environmental impact, and application limitations. Full article
(This article belongs to the Section Farming Sustainability)
Show Figures

Figure 1

17 pages, 2081 KiB  
Article
Transcriptomic Analysis Reveals Candidate Hub Genes and Putative Pathways in Arabidopsis thaliana Roots Responding to Verticillium longisporum Infection
by Qiwei Zheng, Yangpujia Zhou and Sui Ni
Curr. Issues Mol. Biol. 2025, 47(7), 536; https://doi.org/10.3390/cimb47070536 - 10 Jul 2025
Viewed by 341
Abstract
Verticillium longisporum, a soil-borne fungus responsible for Verticillium wilt, primarily colonizes members of the Brassicaceae family. Using Arabidopsis thaliana roots as an experimental host, we systematically identify V. longisporum-responsive genes and pathways through comprehensive transcriptomic analysis, alongside screening of potential hub [...] Read more.
Verticillium longisporum, a soil-borne fungus responsible for Verticillium wilt, primarily colonizes members of the Brassicaceae family. Using Arabidopsis thaliana roots as an experimental host, we systematically identify V. longisporum-responsive genes and pathways through comprehensive transcriptomic analysis, alongside screening of potential hub genes and evaluation of infection-associated regulatory mechanisms. The GSE62537 dataset was retrieved from the Gene Expression Omnibus database. After performing GEO2R analysis and filtering out low-quality data, 222 differentially expressed genes (DEGs) were identified, of which 184 were upregulated. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses were performed on these DEGs. A protein–protein interaction network was constructed using the STRING database. CytoHubba and CytoNCA plugins in Cytoscape v3.10.3 were used to analyze and evaluate this network; six hub genes and four functional gene modules were identified. The GeneMANIA database was used to construct a co-expression network for hub genes. Systematic screening of transcription factors within the 14 DEGs revealed the inclusion of the hub gene NAC042. Integrative bioinformatics analysis centered on NAC042 enabled prediction of a pathogen-responsive regulatory network architecture. We report V. longisporum-responsive components in Arabidopsis, providing insights for disease resistance studies in Brassicaceae crops. Full article
(This article belongs to the Special Issue Molecular Mechanisms in Plant Stress Tolerance)
Show Figures

Figure 1

19 pages, 822 KiB  
Article
Arbuscular Mycorrhizal Fungi in Common Bean Roots: Agricultural Impact and Environmental Influence
by Ana Paula Rodiño, Olga Aguín, Juan Leonardo Tejada-Hinojoza and Antonio Miguel De Ron
Agriculture 2025, 15(13), 1452; https://doi.org/10.3390/agriculture15131452 - 5 Jul 2025
Viewed by 437
Abstract
Although many plant families are predominantly mycorrhizal, few symbiotic relationships between plants and arbuscular mycorrhizal fungi (AMF) have been thoroughly studied. Mycorrhized plants tend to exhibit greater tolerance to soil-borne pathogens and enhanced plant defence. Legumes, including common bean (Phaseolus vulgaris L.), [...] Read more.
Although many plant families are predominantly mycorrhizal, few symbiotic relationships between plants and arbuscular mycorrhizal fungi (AMF) have been thoroughly studied. Mycorrhized plants tend to exhibit greater tolerance to soil-borne pathogens and enhanced plant defence. Legumes, including common bean (Phaseolus vulgaris L.), are essential sources of protein globally. To improve common bean productivity, identifying efficient native microsymbionts is crucial. This study aimed to identify native AMF associated with common bean roots that could act as biostimulants and protect against soil diseases under varying environmental conditions. Agronomic trials were conducted at MBG-CSIC (Pontevedra, Spain) in 2021 and 2022, testing combinations of nitrogen fertilization, Burkholderia alba, Trichoderma harzianum, and a control. Traits such as nodulation, biomass, plant vigor, disease severity, nutrient content, and yield were evaluated. Four AMF species across three genera were identified. No consistent pattern was observed in AMF influence on agronomic traits. However, reduced mycorrhization in 2022 was associated with decreased nodulation, likely due to higher temperatures. Surprisingly, yields were higher in 2022 despite lower colonization. These findings suggest that intelligent use of AMF could reduce pesticide use, enhance sustainability, and promote healthier food systems. Continued research and conservation efforts are essential to optimize their benefits in legume production. Full article
(This article belongs to the Section Agricultural Systems and Management)
Show Figures

Figure 1

15 pages, 17950 KiB  
Article
Transcriptome Analysis Reveals Key Pathways and Candidate Genes for Resistance to Plasmodiophora brassicae in Radish
by Yinbo Ma, Xinyuan Li, Feng Cui, Qian Yu, Baoyang Liu, Xinyi Guo and Liwang Liu
Horticulturae 2025, 11(7), 777; https://doi.org/10.3390/horticulturae11070777 - 3 Jul 2025
Viewed by 385
Abstract
Clubroot disease, caused by the soil-borne pathogen Plasmodiophora brassicae, poses a severe threat to the global production of Brassicaceae crops, including radish (Raphanus sativus L.). Although resistance breeding is an important method for sustainable disease management, the molecular mechanism underlying clubroot [...] Read more.
Clubroot disease, caused by the soil-borne pathogen Plasmodiophora brassicae, poses a severe threat to the global production of Brassicaceae crops, including radish (Raphanus sativus L.). Although resistance breeding is an important method for sustainable disease management, the molecular mechanism underlying clubroot resistance remains elusive in radish compared to other Brassicaceae species. In this study, 52 radish inbred lines were screened for disease responses following P. brassicae inoculation, with the resistant line T6 and the susceptible line T14 selected for transcriptome analysis. RNA-Seq was performed at 10, 20, and 30 days post inoculation (DPI) to elucidate transcriptional responses. The susceptible line T14 exhibited a higher number of differentially expressed genes (DEGs) and persistent upregulation across all time points, indicating ineffective defense responses and metabolic hijacking by the pathogen. In contrast, the resistant line T6 displayed temporally coordinated defense activation marked by rapid induction of core immune mechanisms: enhanced plant–pathogen interaction recognition, MAPK cascade signaling, and phytohormone transduction pathways, consistent with effector-triggered immunity priming and multilayered defense orchestration. These findings indicate that resistance in T6 could be mediated by the rapid activation of multilayered defense mechanisms, including R gene-mediated recognition, MAPK-Ca2+-ROS signaling, and jasmonic acid (JA) pathway modulation. The outcomes of this study would not only facilitate clarifying the molecular mechanism underlying clubroot resistance, but also provide valuable resources for genetic improvement of clubroot resistance in radish. Full article
(This article belongs to the Special Issue Biotic and Abiotic Stress Responses of Horticultural Plants)
Show Figures

Figure 1

17 pages, 2905 KiB  
Article
Water Stress Is Differently Tolerated by Fusarium-Resistant and -Susceptible Chickpea Genotypes During Germination
by Ümmühan Kaşıkcı Şimşek, Murat Dikilitas, Talap Talapov and Canan Can
Life 2025, 15(7), 1050; https://doi.org/10.3390/life15071050 - 30 Jun 2025
Viewed by 265
Abstract
Chickpea is a legume that grows in most parts of the world. It is negatively affected by abiotic and biotic factors like drought and fungal diseases, respectively. One of the most important soil-borne pathogens affecting chickpeas is Fusarium oxysporum f.sp. ciceris (Foc [...] Read more.
Chickpea is a legume that grows in most parts of the world. It is negatively affected by abiotic and biotic factors like drought and fungal diseases, respectively. One of the most important soil-borne pathogens affecting chickpeas is Fusarium oxysporum f.sp. ciceris (Foc). Its population dynamics in the soil are affected by fluctuations in soil water content and host characteristics. For the last three decades, drought has been common in most areas of the world due to global warming. Drought stress decreases the quality and quantity of the chickpeas, particularly where soil-borne pathogens are the main stress factor for plants. The use of both drought-tolerant and disease-resistant cultivars may be the only option for cost-effective yield production. In this study, we screened the seeds of twelve chickpea genotypes WR-315, JG-62, C-104, JG-74, CPS-1, BG-212, ANNIGERI, CHAFFA, BG-215, UC-27, ILC-82, and K-850 for drought tolerance at increasing polyethylene glycol (PEG) concentrations (0-, 5-, 7.5-, 10-, 15-, 20-, 25-, 30- and 50%) to create drought stress conditions at different severities. The performances of genotypes that were previously tested in Foc resistance/susceptibility studies were assessed in terms of percentage of germination, radicle and hypocotyl length, germination energy, germination rate index, mean germination time, and vigor index in drought conditions. We determined the genotypes of C-104, CPS-1, and WR-315 as drought-susceptible, moderately drought-tolerant, and drought-tolerant, respectively. We then elucidated the stress levels of selected genotypes (20-day-old seedlings) at 0–15% PEG conditions via measuring proline and malondialdehyde (MDA) contents. Our findings showed that genotypes that were resistant to Foc also exhibited drought tolerance. The responses of chickpea genotypes infected with Foc under drought conditions are the next step to assess the combined stress on chickpea genotypes. Full article
(This article belongs to the Special Issue Physiological Responses of Plants Under Abiotic Stresses)
Show Figures

Figure 1

18 pages, 4564 KiB  
Article
A Novel Neotropical Bacillus siamensis Strain Inhibits Soil-Borne Plant Pathogens and Promotes Soybean Growth
by Rodrigo F. Moreira, Elizabeth B. E. Pires, Odaiza F. Sousa, Giselly B. Alves, Luis O. Viteri Jumbo, Gil R. Santos, Luís J. Maia, Bergmann M. Ribeiro, Guy Smagghe, Elvio H. B. Perino, Rudolf Hausmann, Eugenio E. Oliveira and Raimundo W. S. Aguiar
Microorganisms 2025, 13(6), 1366; https://doi.org/10.3390/microorganisms13061366 - 12 Jun 2025
Viewed by 587
Abstract
Soil-borne fungal pathogens such as Sclerotium spp., Rhizoctonia spp., and Macrophomina spp. pose significant threats to global agriculture, with soybean crops among the most severely affected due to damping-off disease. These pathogens cause substantial yield losses, making their management a critical concern. In [...] Read more.
Soil-borne fungal pathogens such as Sclerotium spp., Rhizoctonia spp., and Macrophomina spp. pose significant threats to global agriculture, with soybean crops among the most severely affected due to damping-off disease. These pathogens cause substantial yield losses, making their management a critical concern. In this study, we investigated the potential of Bacillus siamensis BCL, a novel Neotropical strain, as an eco-friendly solution for managing Sclerotium, Rhizoctonia, and Macrophomina species. The strain exhibited strong antifungal activity, significantly inhibiting fungal growth in vitro, with the greatest suppression observed against Macrophomina spp., reaching up to 81%. In vivo assays further confirmed the biocontrol potential of B. siamensis. When applied at 106 colony-forming units (CFU)/mL, the strain reduced disease symptoms and improved plant growth parameters—including root length, shoot biomass, and leaf number—compared to untreated, infected controls. The protective effect varied by pathogen, with the most significant recovery in root length observed against Macrophomina spp. (85%) and Sclerotium spp. (78%). In preventive treatments, fermentation extracts of the B. siamensis strain suppressed disease progression, although they did not promote seedling growth. A genomic analysis of B. siamensis BCL revealed genes encoding antimicrobial secondary metabolites, including terpenes, fengycins, and surfactins. These findings highlight B. siamensis BCL as a promising candidate for sustainable crop protection and a valuable resource for developing novel antimicrobial strategies in agriculture. Full article
Show Figures

Figure 1

19 pages, 3870 KiB  
Article
Biocontrol Mechanisms of Trichoderma longibrachiatum SMF2 Against Lanzhou Lily Wilt Disease Caused by Fusarium oxysporum and Fusarium solani
by Xing Cao, Jiahui Liang, Ze Wu, Mingshun Zhang, Haiyan Li, Tao Liu, Wenxiu Yue, Yanan Wang, Liangbao Jiang, Guiqing Wang, Peibao Zhao, Yanrong Zhou, Xiulan Chen, Juanjuan Sui, Dong Hou, Xiaoyan Song and Xiusheng Zhang
Horticulturae 2025, 11(6), 660; https://doi.org/10.3390/horticulturae11060660 - 10 Jun 2025
Cited by 1 | Viewed by 526
Abstract
Lanzhou lily is a plant native to China with high edible, medicinal, and ornamental value that is relatively susceptible to Fusarium wilt. In this study, the application of Trichoderma longibrachiatum SMF2 (TlSMF2) effectively controlled Lanzhou lily wilt disease caused by Fusarium [...] Read more.
Lanzhou lily is a plant native to China with high edible, medicinal, and ornamental value that is relatively susceptible to Fusarium wilt. In this study, the application of Trichoderma longibrachiatum SMF2 (TlSMF2) effectively controlled Lanzhou lily wilt disease caused by Fusarium oxysporum and F. solani. TlSMF2 and the antimicrobial peptaibols trichokonins (TKs) produced by TlSMF2 inhibited the mycelial growth and spore germination of these two pathogens. Transcriptome analysis revealed that the TKs-induced defense responses of Lanzhou lily were mainly related to the production of plant hormones and defense enzymes. In detail, TKs treatment increased the levels of salicylic acid (SA) and jasmonic acid (JA) and the expression of their related genes and upregulated the activities of chitinase and phenylalanine ammonia-lyase (PAL). Moreover, TKs caused the induction of LzWRKY26 and LzWRKY75, which is highly homologous to LrWRKY3 that positively regulates Lilium regale resistance to F. oxysporum. LzWRKY26 expression was also induced by SA and MeJA treatments and F. oxysporum infection, which was consistent with the findings that many cis-acting elements associated with phytohormones and stress responses are present in the promoter region of LzWRKY26. Therefore, the biocontrol mechanisms of TlSMF2 against Lanzhou lily wilt disease involve substrate competition and toxicity against pathogens, as well as the induction of systemic resistance in plants. Our results highlight a promising biological control agent for soil-borne fungal diseases and offer deeper insights into the biocontrol mechanisms of TlSMF2. Full article
Show Figures

Figure 1

20 pages, 6416 KiB  
Article
Effect of an Innovative Solarization Method on Crops, Soil-Borne Pathogens, and Living Fungal Biodiversity
by Massimo Rippa, Ernesto Lahoz, Pasquale Mormile, Maria Cristina Sorrentino, Erica Errico, Mariateresa Frattolillo, Milena Petriccione, Federica Maione, Elvira Ferrara and Valerio Battaglia
Agronomy 2025, 15(6), 1391; https://doi.org/10.3390/agronomy15061391 - 5 Jun 2025
Viewed by 570
Abstract
Recently, a new solarization method gained a great deal of attention thanks to various advantages in comparison with both the traditional one and soil fumigation (alternative soil treatment based on the use of chemical agents). This method implements traditional solarization by spraying a [...] Read more.
Recently, a new solarization method gained a great deal of attention thanks to various advantages in comparison with both the traditional one and soil fumigation (alternative soil treatment based on the use of chemical agents). This method implements traditional solarization by spraying a biodegradable black liquid over the soil surface before the application of a thermic film. This creates a thin black film that acts like a “black body”, significantly increasing soil temperatures at various depths. Thanks to higher temperatures, it is possible to eliminate most of the pathogens in shorter times compared to traditional solarization. In the present paper, the results of different trials carried out on green beans, Romanesco broccoli, and lettuce were reported. The aims of this work were to demonstrate the efficacy on soil borne pathogens, its lower impact on living soil fungal biodiversity and the agronomical performance of the new solarization method. All crops tested showed a significant yield increase when grown in soil treated with the innovative solarization method. Romanesco broccoli also exhibited improved inflorescence quality. Solarization had a positive impact on overall crop productivity: green beans showed a maximum yield increase of 165.3%, lettuce yields rose by 47.5%, and Romanesco broccoli yields were 111.5% higher compared to the non-solarized control. These results confirm that the new solarization method is more effective, as well as environmentally, economically, and socially sustainable compared to traditional methods. Full article
(This article belongs to the Special Issue Sustainable Agriculture: Plant Protection and Crop Production)
Show Figures

Figure 1

Back to TopTop