Effect of an Innovative Solarization Method on Crops, Soil-Borne Pathogens, and Living Fungal Biodiversity
Abstract
1. Introduction
2. Materials and Methods
2.1. Protocol of Application of the New Solarization Method
2.2. Treatments and Crops Compared and Experimental Sites
2.3. Temperature Measurements
2.4. Effects of Solarization Treatments on Survival of Pathogens Propagules
2.5. Effect on Live Cultivable Fungal Diversity
2.6. Assessment of Biometric, Yield Parameters of Tested Crops
2.7. Quality of Romanesco Broccoli
2.7.1. Colour and Chlorophyll Content
2.7.2. Bioactive Compounds and Antioxidant Activity
2.8. Statistical Analysis
3. Results
3.1. Temperature Measurements
3.2. Effect of Solarization Treatments on Survival of Pathogens Propagules
3.3. Effect on Live Cultivable Fungal Diversity
3.4. Assessment of Biometric, Yield Parameters of Tested Crops
3.4.1. Green Beans
Green Beans 2022
Green Beans 2023
3.4.2. Lettuce
3.4.3. Romanesco Broccoli
3.5. Quality of Romanesco Broccoli
Colour and Chlorophyll Content
4. Discussion
4.1. Impact on Pathogens
4.2. Environmental Impact and Sustainability
4.3. Social, Health and Economic Benefits
4.4. Agronomical Performances Post-Solarization
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Katan, J.; Greenberger, A.; Alon, H.; Grinstein, A. Solar heating by polyethylene mulching for the control of diseases caused by soilborne pathogens. Phytopathology 1976, 66, 683–688. [Google Scholar] [CrossRef]
- Katan, J.; De Vay, J.E. Soil Solarization; CRC Press: Boca Raton, FL, USA, 1991. [Google Scholar]
- Katan, J. Soil Solarization Research as a model for the development of new methods of disease control. Phytoparasitica 1992, 20, S133–S135. [Google Scholar] [CrossRef]
- Katan, J.; Gamliel, A. Plant Health Management: Soil Solarization. Encycl. Agric. Food Syst. 2014, 4, 460–471. [Google Scholar]
- Stapleton, J.J.; Quick, J.; De Vay, J.E. Soil solarization: Effects on soil properties, crop fertilization and plant growth. Soil Biol. Biochem. 1985, 17, 369–373. [Google Scholar] [CrossRef]
- Gurtler, J.B. Pathogen Decontamination of Food Crop Soil: A Review. J. Food Prot. 2017, 80, 1461–1470. [Google Scholar] [CrossRef]
- Gill, H.K.; Aujla, I.S.; De Bellis, L.; Luvisi, A. The Role of Soil Solarization in India: How an Unnoticed Practice Could Support Pest Control. Front. Plant Sci. 2017, 8, 1515. [Google Scholar] [CrossRef]
- Díaz-López, M.; Nicolás, E.; López-Mondéjar, R.; Galera, L.; Garrido, I.; Fenoll, J.; Bastida, F. Combined ozonation and solarization for the removal of pesticides from soil: Effects on soil microbial communities. Sci. Total Environ. 2021, 758, 143950. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, L.; Gu, J.; Feng, Y.; He, K.; Jiang, H. Effects of soil solarization combined with manure-amended on soil ARGs and microbial communities during summer fallow. Environ. Pollut. 2023, 333, 121950. [Google Scholar] [CrossRef]
- Shinde, Y.A.; Jagtap, M.P.; Patil, M.G.; Khatri, N. Experimental investigation on the effect of soil solarization incorporating black, silver, and transparent polythene, and straw as mulch, on the microbial population and weed growth. Chemosphere 2023, 336, 139263. [Google Scholar] [CrossRef]
- Wang, Q.; Yan, D.; Wang, X.; Lu, P.; Cao, A. Research advances in soil fumigants. J. Plant Prot. 2017, 44, 529–543. [Google Scholar]
- Castellano-Hinojosa, A.; Boyd, N.S.; Strauss, S.L. Impact of fumigants on non-target soil microorganisms: A review. J. Hazard. Mater. 2022, 427, 128149. [Google Scholar] [CrossRef] [PubMed]
- Gu, G.; Murphy, C.M.; Zheng, J.; Nou, X.; Rideout, S.L.; Strawn, L.K. Effects of Fumigation on the Reduction of Salmonella enterica in Soil. Foodborne Pathog. Dis. 2023, 20, 563–569. [Google Scholar] [CrossRef] [PubMed]
- Du, S.; Ge, A.H.; Liang, Z.H.; Xiang, J.F.; Xiao, J.L.; Zhang, Y.; Liu, Y.R.; Zhang, L.M.; Shen, J.P. Fumigation practice combined with organic fertilizer increase antibiotic resistance in watermelon rhizosphere soil. Sci. Total Environ. 2022, 805, 150426. [Google Scholar] [CrossRef] [PubMed]
- Yan, D.; Wang, Q.; Li, Y.; Guo, M.; Guo, X.; Ouyang, C.; Migheli, Q.; Xu, J.; Cao, A. Efficacy and economics evaluation of seed rhizome treatment combined with preplant soil fumigation on ginger soilborne disease, plant growth, and yield promotion. J. Sci. Food Agric. 2022, 102, 1894–1902. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, D.; Song, Z.; Ren, L.; Jin, X.; Fang, W.; Yan, D.; Li, Y.; Wang, Q.; Cao, A. Organic fertilizer activates soil beneficial micro-organisms to promote strawberry growth and soil health after fumigation. Environ. Pollut. 2022, 295, 118653. [Google Scholar] [CrossRef]
- Wang, X.; Wang, Q.; Li, W.; Zhang, D.; Fang, W.; Li, Y.; Wang, Q.; Cao, A.; Yan, D. Long-term effects of chloropicrin fumigation on soil microbe recovery and growth promotion of Panax notoginseng. Front. Microbiol. 2023, 14, 1225944. [Google Scholar] [CrossRef]
- Bell, C.H. Fumigation in the 21st century. Crop. Prot. 2000, 19, 563–569. [Google Scholar] [CrossRef]
- Li, J.; Huang, Q.; Li, Y.; Fang, W.; Yan, D.; Guo, M.; Cao, A. Effect of fumigation with chloropicrin on soil bacterial communities and genes encoding key enzymes involved in nitrogen cycling. Environ. Pollut. 2017, 227, 534–542. [Google Scholar] [CrossRef]
- Gilreath, J.P.; Motis, T.N.; Santos, B.M.; Mirusso, J.M.; Gilreath, P.R.; Noling, J.W.; Jones, J.P. Influence of supplementary in-bed chloropicrin application on soilborne pest control in tomato (Lycopersicon esculentum). Crop. Prot. 2005, 24, 779–784. [Google Scholar] [CrossRef]
- Anastassiadou, M.; Arena, M.; Auteri, D.; Brancato, A.; Bura, L.; Cabrera, L.C.; Chaideftou, E.; Chiusolo, A.; Court Marques, D.; Crivellente, F.; et al. Conclusion on the peer review of the pesticide risk assessment of the active substance chloropicrin. EFSA J. 2020, 18, 5985. [Google Scholar]
- Polakala, S.R.; Rayalu, K.S.R.; Behara, M.; Kala, A.S.; Prasad, N.H.; Chandra, K.J. Management of charcoal rot by soil solarization and biosolarization. In Macrophomina Phaseolina: Ecobiology Pathology and Management; Kumar, P., Dubey, R.C., Eds.; Academic Press: Cambridge, MA, USA, 2023; Volume 20, pp. 301–312. [Google Scholar]
- Scopa, A.; Dumontet, S. Soil Solarization: Effects on Soil Microbiological Parameters. J. Plant Nutr. 2007, 30, 537–547. [Google Scholar] [CrossRef]
- Stapleton, J.J. Soil solarization in various agricultural production systems. Crop. Prot. 2000, 19, 837–841. [Google Scholar] [CrossRef]
- Morra, L.; Carrieri, R.; Fornasier, F.; Mormile, P.; Rippa, M.; Baiano, S.; Cermola, M.; Piccirillo, G.; Lahoz, E. Solarization working like a solar hot panel after compost addition sanitizes soil in thirty days and preserves soil fertility. Appl. Soil Ecol. 2018, 126, 65–74. [Google Scholar] [CrossRef]
- Mormile, P.; Malinconico, M.; Immirzi, B.; Trifuggi, M.; Tucci, E.; Yan, C. New experimental results on a black body based soil solarization system. Acta Hortic. 2019, 1252, 213–217. [Google Scholar] [CrossRef]
- Rippa, M.; Yan, C.; Liu, Q.; Tucci, E.; Mormile, P. Comparison between an Innovative Solarization System and Dazomet-Based Fumigation. Soil Syst. 2023, 7, 20. [Google Scholar] [CrossRef]
- Waksman, S.A. Microbiological Analysis of Soil as an Index of Soil Fertility: II. Methods Of the Study of Numbers of Microörganisms in the Soil. Soil Sci. 1922, 14, 283–298. [Google Scholar] [CrossRef]
- Abbott, W.S. A Method of Computing the Effectiveness of an Insecticide. J. Econ. Entomol. 1925, 18, 265–267. [Google Scholar] [CrossRef]
- Simpson, E.H. Measurement of Diversity. Nature 1949, 163, 688. [Google Scholar] [CrossRef]
- McGuire, R.G. Reporting of objective colour measurements. HortScience 1992, 27, 1254–1255. [Google Scholar] [CrossRef]
- Wellburn, A.R. The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J. Plant Physiol. 1994, 144, 307–313. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colourimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar] [CrossRef]
- Petriccione, M.; De Sanctis, F.; Pasquariello, M.S.; Mastrobuoni, F.; Rega, P.; Scortichini, M.; Mencarelli, F. The effect of chitosan coating on the quality and nutraceutical traits of sweet cherry during postharvest life. Food Bioprocess Technol. 2015, 8, 394–408. [Google Scholar] [CrossRef]
- Jia, Z.; Tang, M.; Wu, J. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 1999, 64, 555–559. [Google Scholar]
- Cice, D.; Ferrara, E.; Pecoraro, M.T.; Capriolo, G.; Petriccione, M. An Innovative Layer-by-Layer Edible Coating to Regulate Oxidative Stress and Ascorbate–Glutathione Cycle in Fresh-Cut Melon. Horticulturae 2024, 10, 465. [Google Scholar] [CrossRef]
- Kramer, C.Y. Extension of Multiple Range Tests to Group Means with Unequal Numbers of Replications. Biometrics 1956, 12, 309–310. [Google Scholar] [CrossRef]
- Regione Campania—Assessorato Agricoltura—Centro Agrometeorologico Regionale. Available online: https://agricoltura.regione.campania.it/meteo/agrometeo.htm (accessed on 2 June 2025).
- Yun, C.; Liu, E.; Rippa, M.; Mormile, P.; Sun, D.; Yan, C.; Liu, Q. Effects of Chemical and Solar Soil-Disinfection Methods on Soil Bacterial Communities. Sustainability 2020, 12, 9833. [Google Scholar] [CrossRef]
- Stapleton, J.J.; De Vay, J.E. Soil solarization: A non-chemical approach for management of plant pathogens and pests. Crop. Prot. 1986, 5, 190–198. [Google Scholar] [CrossRef]
- Kanaan, H.; Frenk, S.; Raviv, M.; Medina, S.; Minz, D. Long and short term effects of solarization on soil microbiome and agricultural production. Appl. Soil Ecol. 2018, 124, 54–61. [Google Scholar] [CrossRef]
- Yokoe, K.; Maesaka, M.; Murase, J.; Asakawa, S. Solarization makes a great impact on the abundance and composition of microbial communities in soil. SSPN 2015, 61, 641–652. [Google Scholar] [CrossRef]
- Gamliel, A.; Katan, J. Soil Solarization: Theory and Practice; APS Press: St Paul, MN, USA, 2012. [Google Scholar]
- Mauromicale, G.; Lo Monaco, A.; Longo, A.M.G. Improved efficiency of soil solarization for growth and yield of greenhouse tomatoes. Agron. Sustain. Dev. 2010, 30, 753–761. [Google Scholar] [CrossRef]
- Ibarra-Jiménez, L.; Lira-Saldivar, H.; Cárdenas-Flores, A.; Valdez-Aguilar, L.A. Soil solarization enhances growth and yield in dry beans. Acta Agric. Scand. B Soil Plant Sci. 2012, 62, 541–546. [Google Scholar] [CrossRef]
- Lo Scalzo, R.; Bianchi, G.; Picchi, V.; Campanelli, G.; Ficcadenti, N.; Treccarichi, S.; Arena, D.; Sestili, S.; Branca, F. Compositional traits of hybrid populations of Brassica oleracea L. var. italica (broccoli) and Brassica oleracea L. var. botrytis (cauliflower) during four organic breeding cycles. J. Food Compos. Anal. 2024, 131, 106209. [Google Scholar] [CrossRef]
- Salic, A.; Samec, D. Changes in the content of glucosinolates, polyphenols and carotenoids during lactic-acid fermentation of cruciferous vegetables: A mini review. Food Chem. 2022, 16, 100457. [Google Scholar]
- Volden, J.; Bengtsson, G.B.; Wicklund, T. Glucosinolates, L-ascorbic acid, total phenols, anthocyanins, antioxidant capacities and colour in cauliflower (Brassica oleracea L. ssp. botrytis); effects of long-term freezer storage. Food Chem. 2009, 112, 967–976. [Google Scholar]
- Schonhof, I.; Krumbein, A.; Bruckner, B. Genotypic effects on glucosinolates and sensory properties of broccoli and cauliflower. Nahr. Food 2004, 48, 25–33. [Google Scholar] [CrossRef]
- Sabatino, L.; D’Anna, F.; Prinzivalli, C.; Iapichino, G. Soil Solarization and Calcium Cyanamide Affect Plant Vigor, Yield, Nutritional Traits, and Nutraceutical Compounds of Strawberry Grown in a Protected Cultivation System. Agronomy 2019, 9, 513. [Google Scholar] [CrossRef]
- Castronuovo, D.; De Feo, V.; DeMartino, L.; Cardone, L.; Sica, R.; Caputo, L.; Amato, G.; Candido, V. Yield Response and Antioxidant Activity of Greenhouse Organic Pumpkin (Cucurbita moschata Duch.) as Affected by Soil Solarization and Biofumigation. Horticulturae 2023, 9, 427. [Google Scholar] [CrossRef]
- Lamont, W.J., Jr. Plastics: Modifying the Microclimate for the Production of Vegetable Crops. HortTechnology 2005, 15, 477–481. [Google Scholar] [CrossRef]
Farm | Trial Location | Type of Trail | Crop |
---|---|---|---|
D’Ambrosio | Giugliano in Campania (NA) 40°56′52.1″ N 14°03′56.4″ E | greenhouse | Lactuca sativa L. (Lettuce) |
Palmieri Emilio | Mondragone (CE) 41°04′50.6″ N 13°55′12.2″ E | greenhouse | Phaseolus vulgaris L. (Green bean) |
Natura Verde | Falciano del Massico (CE) 41°08′58.1″ N 13°57′59.6″ E | open field | Brassica oleracea L. var. italica (Romanesco broccoli) |
Pathogens | Abbreviation | Concentration (CFU · g−1 of Sand) |
---|---|---|
Fusarium oxysporum f.sp. lactucae | Fol | 1 × 106 |
Rhizoctonia solani | Rs | 2 × 103 |
Sclerotinia sclerotiorum | Ss | 3 × 102 |
Crop/Cv | Transplanting/Sowing Date | Harvesting Dates | Nr. of Plants ha−1 | Assessed Parameters | |
---|---|---|---|---|---|
Lettuce/Bretzel | Trial 1 | 10 July 2022 | 18 December | 90,000 | fresh and dry weight of 30 lettuce heads per replicate and yield on 5 m−2 |
Trial 2 | 8 September 2023 | 9 November | |||
Green bean/SV1545GA | Trial 1 | 8 September 2022 | 18 and 23 November | 180,000 | plant height, number of pods, weight of pods per plant, plant fresh and dry weight on 25 plants/replicates and yield on 5 m−2/replicate |
Trial 2 | 1 September 2023 | 5 and 9 November |
Crop/Cv | Sowing Date | Harvesting Dates | Nr. of Plants ha−1 | Assessed Parameters | |
---|---|---|---|---|---|
Romanesco broccoli/Veronica | Trial 1 | 2 October 2022 | 21 February 2023 | 20,000 | plant height, fresh weight, dry weight (g), inflorescence weight and diameter on 15 plants per replicate and yield on 5 m−2/replicate |
Trial 2 | 10 October 2023 | 20 February 2024 |
Treatment | 2022 | 2023 | ||||||
---|---|---|---|---|---|---|---|---|
∑ h > 38 °C | ∑ h > 40 °C | ∑ h > 38 °C | ∑ h > 40 °C | |||||
F1 | F2 | F1 | F2 | F1 | F2 | F1 | F2 | |
US4 | 168 | 228 | 152 | 191 | 270 | 261 | 98 | 129 |
S1 | 811 | 803 | 792 | 784 | 1235 | 1215 | 994 | 974 |
S2 | 633 | 798 | 612 | 772 | 1111 | 1098 | 938 | 925 |
S3 | 626 | 789 | 600 | 756 | 1110 | 1100 | 937 | 927 |
Treatment | Year 2022 | Year 2023 | ||
---|---|---|---|---|
∑ h > 38 °C | ∑ h > 40 °C | ∑ h > 38 °C | ∑ h > 40 °C | |
US4 | 0 | 0 | 0 | 0 |
S1 | 883 | 715 | 1425 | 1112 |
S2 | 665 | 318 | 1277 | 739 |
S3 | 620 | 239 | 1310 | 1025 |
Treatments | Propagules Survival (%) | |||||
---|---|---|---|---|---|---|
Greenhouse | Open Field | |||||
Fol | Rs | Ss | Fol | Rs | Ss | |
US4 | 100 a | 94.0 a | 97.0 a | 90.0 a | 95.4 a | 96.1 a |
S1 | 0.8 d | 3.0 d | 0.0 c | 0.0 d | 1.4 d | 0.0 d |
S2 | 14.5 c | 15.6 c | 8.4 c | 8.6 c | 12.3 c | 10.5 c |
S3 | 28.0 b | 22.6 b | 19.0 b | 32.9 b | 28.4 b | 29.3 b |
Treatments | Fol on Lettuce | Ss on Green Bean | ||
---|---|---|---|---|
Incidence (%) | Efficacy (Abbott) | Incidence (%) | Efficacy (Abbott) | |
US4 | 5.4 a | - | 35.0 a | - |
S1 | 0.1 c | 98.1 a | 0.0 c | 100 a |
S2 | 1.0 b | 81.5 b | 0.0 c | 100 a |
S3 | 1.5 b | 72.2 c | 5.0 b | 85.7 b |
Plants | Pods | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Treatments | Height (mm) | Fresh Weight (g) | Dry Weight (g) | Nr. Plant −1 | Weight (g) | Yield (t ha−1) | ||||||
2022 | 2023 | 2022 | 2023 | 2022 | 2023 | 2022 | 2023 | 2022 | 2023 | 2022 | 2023 | |
US4 | 563 c | 277 b | 24.2 c | 28.2 c | 10.5 | 15.9 b | 9.9 c | 9.0 c | 2.2 ns | 1.9 b | 3.92 c | 3.12 c |
S1 | 699 a | 510 a | 43.1 a | 62.5 a | 12.9 a | 18.7 a | 15.4 a | 15 a | 2.6 | 2.4 a | 19.2 a | 6.48 a |
S2 | 660 b | 513 a | 34.9 b | 62.2 a | 10.6 b | 18.9 a | 12.1 b | 12 b | 2.6 | 2.4 a | 6.48 b | 5.18 b |
S3 | 676 b | 529 a | 32.9 b | 55.0 b | 9.8 b | 15.4 b | 13.1 b | 12 b | 2.5 | 2.0 b | 6.36 b | 4.32 b |
Treatments | Head Fresh Weight | Head Dry Matter | Yield | |||
---|---|---|---|---|---|---|
(g) | (%) | (t ha−1) | ||||
2022 | 2023 | 2022 | 2023 | 2022 | 2023 | |
US4 | 495 bc | 468.8 b | 3.0 b | 3.1 c | 25.7 c | 18.9 d |
S1 | 581 a | 550.2 a | 4.1 a | 4.2 a | 33.3 a | 32.5 a |
S2 | 527 b | 499.1 b | 3.6 b | 3.8 b | 30.1 b | 28.4 b |
S3 | 515 b | 487.7 b | 3.1 b | 3.5 bc | 29.5 b | 23.3 c |
Treatment | Plant Height (cm) | Fresh Weight (g) | Dry Weight (g) |
---|---|---|---|
US4 | 50.3 c | 554.2 c | 67.5 c |
S1 | 67.5 a | 1240.0 a | 150.0 a |
S2 | 60.5 b | 1010.8 b | 123.3 b |
S3 | 62.2 ab | 1054.2 b | 119.2 b |
Treatment | L* | C* | H* |
---|---|---|---|
US4 | 41.23 ± 2.34 a | 36.86 ± 1.62 a | 99.43 ± 0.41 a |
S1 | 46.21 ± 2.80 b | 43.66 ± 1.77 b | 102.14 ± 0.56 c |
S2 | 46.52 ± 2.96 b | 43.46 ± 2.44 b | 102.08 ± 0.62 c |
S3 | 44.31 ± 2.95 b | 38.73 ± 2.96 a | 100.58 ± 0.49 b |
Treatment | Polyphenol (mg GAE/100 g DW) | Flavonoids (mg CE/100 g DW) | Antioxidant Activity (µmol/g DW) |
---|---|---|---|
US4 | 8.78 ± 2.24 a | 1.11 ± 0.19 a | 39.20 ± 7.33 a |
S1 | 13.02 ± 2.40 b | 1.83 ± 0.05 c | 56.42 ± 2.44 c |
S2 | 13.72 ± 1.16 b | 1.69 ± 0.11 c | 53.49 ± 1.43 c |
S3 | 9.27 ± 0.58 a | 1.30 ± 0.22 b | 48.06 ± 3.47 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rippa, M.; Lahoz, E.; Mormile, P.; Sorrentino, M.C.; Errico, E.; Frattolillo, M.; Petriccione, M.; Maione, F.; Ferrara, E.; Battaglia, V. Effect of an Innovative Solarization Method on Crops, Soil-Borne Pathogens, and Living Fungal Biodiversity. Agronomy 2025, 15, 1391. https://doi.org/10.3390/agronomy15061391
Rippa M, Lahoz E, Mormile P, Sorrentino MC, Errico E, Frattolillo M, Petriccione M, Maione F, Ferrara E, Battaglia V. Effect of an Innovative Solarization Method on Crops, Soil-Borne Pathogens, and Living Fungal Biodiversity. Agronomy. 2025; 15(6):1391. https://doi.org/10.3390/agronomy15061391
Chicago/Turabian StyleRippa, Massimo, Ernesto Lahoz, Pasquale Mormile, Maria Cristina Sorrentino, Erica Errico, Mariateresa Frattolillo, Milena Petriccione, Federica Maione, Elvira Ferrara, and Valerio Battaglia. 2025. "Effect of an Innovative Solarization Method on Crops, Soil-Borne Pathogens, and Living Fungal Biodiversity" Agronomy 15, no. 6: 1391. https://doi.org/10.3390/agronomy15061391
APA StyleRippa, M., Lahoz, E., Mormile, P., Sorrentino, M. C., Errico, E., Frattolillo, M., Petriccione, M., Maione, F., Ferrara, E., & Battaglia, V. (2025). Effect of an Innovative Solarization Method on Crops, Soil-Borne Pathogens, and Living Fungal Biodiversity. Agronomy, 15(6), 1391. https://doi.org/10.3390/agronomy15061391