Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (210)

Search Parameters:
Keywords = snakebite envenomings

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 4713 KB  
Article
X Marks the Clot: Evolutionary and Clinical Implications of Divergences in Procoagulant Australian Elapid Snake Venoms
by Holly Morecroft, Christina N. Zdenek, Abhinandan Chowdhury, Nathan Dunstan, Chris Hay and Bryan G. Fry
Toxins 2025, 17(8), 417; https://doi.org/10.3390/toxins17080417 - 18 Aug 2025
Viewed by 2161
Abstract
Australian elapid snakes possess potent procoagulant venoms, capable of inducing severe venom-induced consumption coagulopathy (VICC) in snakebite victims through rapid activation of the coagulation cascade by converting the FVII and prothrombin zymogens into their active forms. These venoms fall into two mechanistic categories: [...] Read more.
Australian elapid snakes possess potent procoagulant venoms, capable of inducing severe venom-induced consumption coagulopathy (VICC) in snakebite victims through rapid activation of the coagulation cascade by converting the FVII and prothrombin zymogens into their active forms. These venoms fall into two mechanistic categories: FXa-only venoms, which hijack host factor Va, and FXa:FVa venoms, containing a complete venom-derived prothrombinase complex. While previous studies have largely focused on human plasma, the ecological and evolutionary drivers behind prey-selective venom efficacy remain understudied. Here, thromboelastography was employed to comparatively evaluate venom coagulotoxicity across prey classes (amphibian, avian, rodent) and human plasma, using a taxonomically diverse selection of Australian snakes. The amphibian-specialist species Pseudechis porphyriacus (Red-Bellied Black Snake) exhibited significantly slower effects on rodent plasma, suggesting evolutionary refinement towards ectothermic prey. In contrast, venoms from dietary generalists retained broad efficacy across all prey types. Intriguingly, notable divergence was observed within Pseudonaja textilis (Eastern Brown Snake): Queensland populations of this species, and all other Pseudonaja (brown snake) species, formed rapid but weak clots in prey and human plasma. However, the South Australian populations of P. textilis produced strong, stable clots across prey plasmas and in human plasma. This is a trait shared with Oxyuranus species (taipans) and therefore represents an evolutionary reversion towards the prothrombinase phenotype present in the Oxyuranus and Pseudonaja last common ancestor. Clinically, this distinction has implications for the pathophysiology of human envenomation, potentially influencing clinical progression, including variations in clinical coagulopathy tests, and antivenom effectiveness. Thus, this study provides critical insight into the ecological selection pressures shaping venom function, highlights intraspecific venom variation linked to geographic and phylogenetic divergence, and underscores the importance of prey-focused research for both evolutionary toxinology and improved clinical management of snakebite. Full article
(This article belongs to the Special Issue Biochemistry, Pathology and Applications of Venoms)
Show Figures

Graphical abstract

19 pages, 2691 KB  
Review
Mapping Evidence on the Regulations Affecting the Accessibility, Availability, and Management of Snake Antivenom Globally: A Scoping Review
by Ramsha Majeed, Janette Bester, Kabelo Kgarosi and Morné Strydom
Trop. Med. Infect. Dis. 2025, 10(8), 228; https://doi.org/10.3390/tropicalmed10080228 - 14 Aug 2025
Viewed by 553
Abstract
The World Health Organization (WHO) declared snakebite envenoming (SBE) as a neglected tropical disease in 2017. Antivenom is the gold standard of treatment, but many healthcare barriers exist, and hence, affected populations are often unable to access it. The challenge is further perpetuated [...] Read more.
The World Health Organization (WHO) declared snakebite envenoming (SBE) as a neglected tropical disease in 2017. Antivenom is the gold standard of treatment, but many healthcare barriers exist, and hence, affected populations are often unable to access it. The challenge is further perpetuated by the lack of attention from national health authorities, poor regulatory systems and policies, and mismanagement of antivenom. This study aims to map the evidence regarding snake antivenom regulations globally and identify gaps in the literature to inform future research and policy. This review was conducted using the original Arksey and O’Malley framework by three independent reviewers, and the results were reported using the Preferred Reporting Items for Systematic reviews and Meta-Analysis Extension for Scoping Reviews (PRISMA-ScR). A search strategy was developed with assistance from a librarian, and six databases were searched: PubMed, SCOPUS, ProQuest Central, Africa Wide Web, Academic Search Output, and Web of Science. Screening was conducted independently by the reviewers, using Rayyan, and conflicts were resolved with discussions. A total of 84 articles were included for data extraction. The major themes that emerged from the included studies were regarding antivenom availability, accessibility, manufacturing, and regulations. The study revealed massive gaps in terms of policies governing antivenom management, especially in Asia and Africa. The literature does not offer sufficient evidence on management guidelines for antivenom in the endemic regions, despite identifying the challenges in supply. However, significant information from Latin America revealed self-sufficient production, involvement of national health bodies in establishing efficient regulations, effective distribution nationally and regionally, and technology sharing to reduce SBE-related mortality. Full article
(This article belongs to the Special Issue Recent Advances in Snakebite Envenoming Research)
Show Figures

Figure 1

21 pages, 1250 KB  
Review
Snakebites in the Central American Region: More Government Attention Required
by Eduardo Alberto Fernandez and Ivan Santiago Fernandez Funez
Trop. Med. Infect. Dis. 2025, 10(8), 225; https://doi.org/10.3390/tropicalmed10080225 - 12 Aug 2025
Viewed by 600
Abstract
A review was conducted on snakebites in Central America. Information was extracted using the databases of PubMed, SciELO, and LILACS. Information included retrospective studies, case reports, and case series; in this way, valuable information was retrieved from limited sources. The identified studies comprised [...] Read more.
A review was conducted on snakebites in Central America. Information was extracted using the databases of PubMed, SciELO, and LILACS. Information included retrospective studies, case reports, and case series; in this way, valuable information was retrieved from limited sources. The identified studies comprised those discussing envenoming snakebites. Several species were identified, but three of them had major epidemiological features impacting envenoming by snakebites: Bothrops asper, Crotalus simus, and Micrurus sp. Adolescents and young adult males living in rural areas and engaged in agricultural activities were identified as the main victims of snakebites by clinical records. Symptoms of local damage in the bite sites included edema and skin and muscle necrosis. In addition, the cardiovascular system was affected, with symptoms like hypotension, bleeding, and coagulation disorders. Neurotoxicity causing sensitivity and motricity problems was also reported. For El Salvador, accidents caused by Crotalus simus and Micrurus spp. were given more attention due to their greater relevance. The role of Bothrops species was more relevant in the envenoming reported by other countries. Treatment was found to be provided based on antivenoms produced in Costa Rica, and the recovery of the patients depended on the time elapsed between the accident and the initial treatment in the healthcare system. Full article
(This article belongs to the Special Issue Recent Advances in Snakebite Envenoming Research)
Show Figures

Figure 1

18 pages, 1147 KB  
Article
Geographic Variation in Venom Proteome and Toxicity Profiles of Chinese Naja atra: Implications for Antivenom Optimization
by Jianqi Zhao, Xiao Shi, Guangyao Liu, Yang Yang and Chunhong Huang
Toxins 2025, 17(8), 404; https://doi.org/10.3390/toxins17080404 - 12 Aug 2025
Viewed by 497
Abstract
Differences in venom within snake species can affect the efficacy of antivenom, but how this variation manifests across broad geographical scales remains poorly understood. Naja atra envenoming causes severe morbidity in China, yet whether intraspecific venom variation exists across mainland regions is unknown. [...] Read more.
Differences in venom within snake species can affect the efficacy of antivenom, but how this variation manifests across broad geographical scales remains poorly understood. Naja atra envenoming causes severe morbidity in China, yet whether intraspecific venom variation exists across mainland regions is unknown. We collected venom samples from seven biogeographical regions (spanning > 2000 km latitude). Venom lethality, systemic toxicity (organ damage biomarkers and coagulopathy), and histopathology of major organs were assessed. Neutralization by antivenom and label-free quantitative proteomics (LC-MS/MS) were also performed. The results revealed a non-uniform LD50, with venom from Yunnan exhibiting the highest lethality (2.1-fold higher than venom from Zhejiang, p < 0.001). Commercial antivenom showed lower neutralization efficacy against the venom from the Yunnan, Guangxi, and Guangdong regions. Regarding organ damage and coagulopathy, venom from Yunnan caused severe liver damage, while venom from the Zhejiang region induced significant coagulopathy. Finally, proteomic profiles identified 175 proteins: venom from Yunnan was dominated by phospholipases, contrasting with eastern regions (Anhui/Zhejiang: cytotoxins CTXs > 30%). Venom from Guangdong contained higher levels of the weak neurotoxin NNAM2 (5.2%). Collectively, significant geographical divergence exists in Chinese Cobra venom composition, systemic toxicity, and antivenom susceptibility, driven by differential expression of key toxins. Our study provides a molecular basis for precision management of snakebites, and we call for optimized antivenom production tailored to regional variations. Full article
(This article belongs to the Special Issue Animal Venoms: Unraveling the Molecular Complexity (2nd Edition))
Show Figures

Figure 1

14 pages, 1470 KB  
Article
Coffea arabica Extracts and Metabolites with Potential Inhibitory Activity of the Major Enzymes in Bothrops asper Venom
by Erika Páez, Yeisson Galvis-Pérez, Jaime Andrés Pereañez, Lina María Preciado and Isabel Cristina Henao-Castañeda
Pharmaceuticals 2025, 18(8), 1151; https://doi.org/10.3390/ph18081151 - 1 Aug 2025
Viewed by 367
Abstract
Background/Objectives: Most snakebite incidents in Latin America are caused by species of the Bothrops genus. Their venom induces severe local effects, against which antivenom therapy has limited efficacy. Metabolites derived from Coffea arabica have demonstrated anti-inflammatory and anticoagulant properties, suggesting their potential [...] Read more.
Background/Objectives: Most snakebite incidents in Latin America are caused by species of the Bothrops genus. Their venom induces severe local effects, against which antivenom therapy has limited efficacy. Metabolites derived from Coffea arabica have demonstrated anti-inflammatory and anticoagulant properties, suggesting their potential as therapeutic agents to inhibit the local effects induced by B. asper venom. Methods: Three enzymatic assays were performed: inhibition of the procoagulant and amidolytic activities of snake venom serine proteinases (SVSPs); inhibition of the proteolytic activity of snake venom metalloproteinases (SVMPs); and inhibition of the catalytic activity of snake venom phospholipases A2 (PLA2s). Additionally, molecular docking studies were conducted to propose potential inhibitory mechanisms of the metabolites chlorogenic acid, caffeine, and caffeic acid. Results: Green and roasted coffee extracts partially inhibited the enzymatic activity of SVSPs and SVMPs. Notably, the green coffee extract, at a 1:20 ratio, effectively inhibited PLA2 activity. Among the individual metabolites tested, partial inhibition of SVSP and PLA2 activities was observed, whereas no significant inhibition of SVMP proteolytic activity was detected. Chlorogenic acid was the most effective metabolite, significantly prolonging plasma coagulation time and achieving up to 82% inhibition at a concentration of 62.5 μM. Molecular docking analysis revealed interactions between chlorogenic acid and key active site residues of SVSP and PLA2 enzymes from B. asper venom. Conclusions: The roasted coffee extract demonstrated the highest inhibitory effect on venom toxins, potentially due to the formation of bioactive compounds during the Maillard reaction. Molecular modeling suggests that the tested inhibitors may bind to and occupy the substrate-binding clefts of the target enzymes. These findings support further in vivo research to explore the use of plant-derived polyphenols as adjuvant therapies in the treatment of snakebite envenoming. Full article
Show Figures

Graphical abstract

13 pages, 2474 KB  
Article
Renal Effects and Nitric Oxide Response Induced by Bothrops atrox Snake Venom in an Isolated Perfused Kidney Model
by Terentia Batista Sa Norões, Antonio Rafael Coelho Jorge, Helena Serra Azul Monteiro, Ricardo Parente Garcia Vieira and Breno De Sá Barreto Macêdo
Toxins 2025, 17(8), 363; https://doi.org/10.3390/toxins17080363 - 24 Jul 2025
Viewed by 429
Abstract
The snakes from the genus Bothrops are responsible for most of the ophidic accidents in Brazil, and Bothrops atrox represents one of these species. Envenomation by these snakes results in systemic effects and is often associated with early mortality following snakebite incidents. The [...] Read more.
The snakes from the genus Bothrops are responsible for most of the ophidic accidents in Brazil, and Bothrops atrox represents one of these species. Envenomation by these snakes results in systemic effects and is often associated with early mortality following snakebite incidents. The present study investigates the pharmacological properties of Bothrops atrox venom (VBA), focusing specifically on its impact on renal blood flow. Following the renal perfusion procedure, kidney tissues were processed for histopathological examination. Statistical analysis of all evaluated parameters was conducted using ANOVA and Student’s t-test, with significance set at p < 0.005. Administration of VBA resulted in a marked reduction in both perfusion pressure and renal vascular resistance. In contrast, there was a significant elevation in urinary output and glomerular filtration rate. Histological changes observed in the perfused kidneys were mild. The involvement of nitric oxide in the pressor effects of Bothrops atrox venom was not investigated in renal perfusion systems or in in vivo models. Treatment with VBA led to elevated nitrite levels in the bloodstream of the experimental animals. This effect was completely inhibited following pharmacological blockade with L-NAME. Based on these findings, we conclude that VBA alters renal function and promotes increased nitric oxide production. Full article
(This article belongs to the Special Issue Clinical Evidence for Therapeutic Effects and Safety of Animal Venoms)
Show Figures

Figure 1

14 pages, 1611 KB  
Article
Explaining Echis: Proteotranscriptomic Profiling of Echis carinatus carinatus Venom
by Salil Javed, Prasad Gopalkrishna Gond, Arpan Samanta, Ajinkya Unawane, Muralidhar Nayak Mudavath, Anurag Jaglan and Kartik Sunagar
Toxins 2025, 17(7), 353; https://doi.org/10.3390/toxins17070353 - 16 Jul 2025
Viewed by 1454
Abstract
Snakebite remains the most neglected tropical disease globally, with India experiencing the highest rates of mortality and morbidity. While most envenomation cases in India are attributed to the ‘big four’ snakes, research has predominantly focused on Russell’s viper (Daboia russelii), [...] Read more.
Snakebite remains the most neglected tropical disease globally, with India experiencing the highest rates of mortality and morbidity. While most envenomation cases in India are attributed to the ‘big four’ snakes, research has predominantly focused on Russell’s viper (Daboia russelii), spectacled cobra (Naja naja), and common krait (Bungarus caeruleus), leading to a considerable gap in our understanding of saw-scaled viper (Echis carinatus carinatus) venoms. For instance, the venom gland transcriptome and inter- and intra-population venom variation in E. c. carinatus have largely remained uninvestigated. A single study to date has assessed the effectiveness of commercial antivenoms against this species under in vivo conditions. To address these crucial knowledge gaps, we conducted a detailed investigation of E. c. carinatus venom and reported the first venom gland transcriptome. A proteotranscriptomic evaluation revealed snake venom metalloproteinases, C-type lectins, L-amino acid oxidases, phospholipase A2s, and snake venom serine proteases as the major toxins. Moreover, we assessed the intra-population venom variation in this species using an array of biochemical analyses. Finally, we determined the venom toxicity and the neutralising efficacy of a commercial antivenom using a murine model of snake envenoming. Our results provide a thorough molecular and functional profile of E. c. carinatus venom. Full article
(This article belongs to the Special Issue Venom Genes and Genomes of Venomous Animals: Evolution and Variation)
Show Figures

Figure 1

20 pages, 3412 KB  
Article
Snake Venom Metalloproteinases from Puff Adder and Saw-Scaled Viper Venoms Cause Cytotoxic Effects in Human Keratinocytes
by Keirah E. Bartlett, Adam Westhorpe, Mark C. Wilkinson and Nicholas R. Casewell
Toxins 2025, 17(7), 328; https://doi.org/10.3390/toxins17070328 - 28 Jun 2025
Viewed by 1173
Abstract
Snakebite envenoming is a neglected tropical disease that causes substantial mortality and morbidity globally. The puff adder (Bitis arietans) and saw-scaled viper (Echis romani) have cytotoxic venoms that cause permanent injury via dermonecrosis around the bite site. Identifying the [...] Read more.
Snakebite envenoming is a neglected tropical disease that causes substantial mortality and morbidity globally. The puff adder (Bitis arietans) and saw-scaled viper (Echis romani) have cytotoxic venoms that cause permanent injury via dermonecrosis around the bite site. Identifying the cytotoxic toxins within these venoms will allow for the development of targeted treatments to prevent snakebite morbidity. In this study, venoms from both species were fractionated using gel filtration chromatography, and a combination of cytotoxicity approaches, SDS-PAGE gel electrophoresis, and enzymatic assays were applied to identify the venom cytotoxins in the resulting fractions. Our results indicate that snake venom metalloproteinase (SVMP) toxins are responsible for causing cytotoxic effects across both venoms. The PI subclass of SVMPs is likely the main driver of cytotoxicity following envenoming by B. arietans, while the structurally distinct PIII subclass of SVMPs is mostly responsible for conveying this effect in E. romani venom. Identifying distinct SVMPs as cytotoxicity-causing toxins in these two African viper venoms will facilitate the future design and development of novel therapeutics targeting these medically important venoms, which in turn could help to mitigate the severe life- and limb-threatening consequences of tropical snakebites. Full article
Show Figures

Figure 1

17 pages, 1021 KB  
Article
Strophanthus sarmentosus Extracts and the Strophanthus Cardenolide Ouabain Inhibit Snake Venom Proteases from Echis ocellatus
by Julius Abiola, Olapeju Aiyelaagbe, Akindele Adeyi, Babafemi Ajisebiola and Simone König
Molecules 2025, 30(12), 2625; https://doi.org/10.3390/molecules30122625 - 17 Jun 2025
Viewed by 771
Abstract
Strophanthus sarmentosus is recognised for various ethnomedicinal applications, including treatment after snakebites. However, only limited scientific evidence exists on its antivenomous capabilities. This study investigates the efficacy of methanol and ethylacetate extracts from S. sarmentosus leaves and roots against Echis ocellatus venom. A [...] Read more.
Strophanthus sarmentosus is recognised for various ethnomedicinal applications, including treatment after snakebites. However, only limited scientific evidence exists on its antivenomous capabilities. This study investigates the efficacy of methanol and ethylacetate extracts from S. sarmentosus leaves and roots against Echis ocellatus venom. A non-toxic range for the extracts was determined in rats, and assays were performed to test their anti-hemorrhagic and anti-hemolytic activity as well as their influence on venom-induced blood clotting. In all of these experiments, the extracts demonstrated significant positive effects equal to or better than antivenom. Moreover, the extracts strongly inhibited and even abolished the digestion of the vasoactive neuropeptide bradykinin by snake venom metalloproteinases. Strophantus plants are known for their high content of cardiac glycosides, one of which is the commercially available ouabain, that by itself also considerably inhibited venom-induced bradykinin cleavage. Although ouabain is only present in low amounts in S. sarmentosus when compared to other cardenolides of similar structure, it can be hypothesized that members of this substance class may also have inhibitory properties against venom proteases. S. sarmentosus additionally contains bioactive substances such as flavonoids, terpenoids, tannins, saponins, and alkaloids, which contribute to its protective effects. The study provides scientific data to explain the success of the traditional use of S. sarmentosus plant extracts as a first aid against envenomation in rural Africa. Full article
(This article belongs to the Section Applied Chemistry)
Show Figures

Figure 1

17 pages, 5735 KB  
Article
Combination of Rhamnetin and RXP03 Mitigates Venom-Induced Toxicity in Murine Models: Preclinical Insights into Dual-Target Antivenom Therapy
by Jianqi Zhao, Guangyao Liu, Xiao Shi and Chunhong Huang
Toxins 2025, 17(6), 280; https://doi.org/10.3390/toxins17060280 - 4 Jun 2025
Cited by 1 | Viewed by 725
Abstract
Snakebite is a significant global public health challenge, and the limited application of antivenom has driven the exploration of novel therapies. Combination therapy using small-molecule drugs targeting phospholipases A2 (PLA2) and metalloproteinases (SVMP) in venom shows great potential. Although Rhamnetin and RXP03 [...] Read more.
Snakebite is a significant global public health challenge, and the limited application of antivenom has driven the exploration of novel therapies. Combination therapy using small-molecule drugs targeting phospholipases A2 (PLA2) and metalloproteinases (SVMP) in venom shows great potential. Although Rhamnetin and RXP03 exhibit notable anti-phospholipase and anti-metalloproteinase activities, respectively, their antiophidic potential remains poorly explored. This study aims to evaluate the inhibitory effects of Rhamnetin and RXP03 on snake venom toxicity. Methodologically, we conducted in vitro enzymatic assays to quantify PLA2/SVMP inhibition, murine models of envenomation (subcutaneous/intramuscular venom injection) to assess local tissue damage and systemic toxicity, and histopathological/biochemical analyses. In vitro experiments demonstrated that Rhamnetin effectively inhibited PLA2 activity while RXP03 showed potent suppression of SVMP activity, with their combination significantly reducing venom-induced hemorrhagic activity. In murine models, the combined therapy markedly alleviated venom-triggered muscle toxicity and ameliorated oxidative stress. Furthermore, the combination enhanced motor performance and survival rate in mice, improved serum biochemical parameters, corrected coagulation disorders, and attenuated pathological damage in liver, kidney, heart, and lung tissues. This research demonstrates that dual-targeted therapy against metalloproteinases and phospholipases in snake venom can effectively prevent a series of injuries caused by snake venom. Collectively, the combined application of Rhamnetin and RXP03 exhibits significant inhibitory effects on a variety of venom-induced toxicities, providing pharmacological evidence for the development of antivenom therapies. However, the efficacy validation in this study was limited to murine models, and there is a discrepancy with clinical needs for delayed treatment in real-world envenomation scenarios. Despite these limitations, the findings provide robust preclinical evidence supporting the Rhamnetin–RXP03 combination therapy as a cost-effective, broad-spectrum antivenom strategy. Future studies are required to optimize dosing regimens and evaluate clinical translatability. Full article
(This article belongs to the Section Animal Venoms)
Show Figures

Figure 1

13 pages, 1734 KB  
Review
Implementing Interventions Under “National Action Plan for Snakebite Envenoming (NAPSE) in India”: Challenges, Lessons Learnt and Way Forward for Stakeholders Participatory Approach
by Ajit Dadaji Shewale, Dipti Mishra, Simmi Tiwari, Tushar Nanasaheb Nale, Jitesh Kuwatada and Nidhi Khandelwal
Trop. Med. Infect. Dis. 2025, 10(5), 132; https://doi.org/10.3390/tropicalmed10050132 - 14 May 2025
Viewed by 1089
Abstract
Snakebite envenoming remains a critical yet underrecognized public health issue, particularly in tropical and subtropical regions, with India bearing nearly half of the global burden of snakebite-related deaths. Despite its significant impact, underreporting, delayed medical intervention, and insufficiently trained healthcare professionals continue to [...] Read more.
Snakebite envenoming remains a critical yet underrecognized public health issue, particularly in tropical and subtropical regions, with India bearing nearly half of the global burden of snakebite-related deaths. Despite its significant impact, underreporting, delayed medical intervention, and insufficiently trained healthcare professionals continue to exacerbate the problem. In response, the Government of India launched the National Action Plan for Prevention and Control of Snakebite Envenoming (NAPSE) in March 2024, aiming to halve snakebite-related deaths by 2030. Key challenges during the development and implementation of NAPSE included the limited multisectoral engagement initially, variations in state-level capacities, and logistical barriers in reaching remote populations. Lessons learned include the value of early stakeholder consultations, the importance of inter-ministerial collaboration, and the need for continuous community engagement. This comprehensive strategy emphasizes strengthening surveillance systems, enhancing anti-snake venom (ASV) distribution and quality, improving healthcare infrastructure, and promoting community awareness through a One Health approach. The plan also addresses critical challenges such as inadequate training at primary healthcare levels, inconsistent ASV supply, and inefficient emergency referral systems. By fostering multisectoral collaboration and targeted interventions, such as strengthening Regional Venom Centres and establishing Poison Information Centre, targeted training, and awareness campaigns, NAPSE aims to reduce mortality and disability associated with snakebite envenoming, aligning with global health objectives and setting an example for regional efforts in Southeast Asia. Full article
(This article belongs to the Special Issue Snake Bite: Prevention, Diagnosis and Treatment)
Show Figures

Figure 1

25 pages, 2812 KB  
Article
Dual Proteomics Strategies to Dissect and Quantify the Components of Nine Medically Important African Snake Venoms
by Damien Redureau, Fernanda Gobbi Amorim, Thomas Crasset, Imre Berger, Christiane Schaffitzel, Stefanie Kate Menzies, Nicholas R. Casewell and Loïc Quinton
Toxins 2025, 17(5), 243; https://doi.org/10.3390/toxins17050243 - 13 May 2025
Viewed by 1406
Abstract
Snakebite envenoming constitutes a significant global health issue, particularly in Africa, where venomous species such as Echis vipers and Dendroaspis mambas pose substantial risks to human health. This study employs a standardized venomics workflow to comprehensively characterize and comparatively quantify the venom composition [...] Read more.
Snakebite envenoming constitutes a significant global health issue, particularly in Africa, where venomous species such as Echis vipers and Dendroaspis mambas pose substantial risks to human health. This study employs a standardized venomics workflow to comprehensively characterize and comparatively quantify the venom composition of nine medically relevant snake species chosen from among the deadliest in Africa. Utilizing shotgun venom proteomics and venom gland transcriptomics, we report detailed profiles of venom complexity, highlighting the relative abundance of dominant toxin families such as three-finger toxins and Kunitz-type proteins in Dendroaspis, and metalloproteinases and phospholipases A2 in Echis. We delineate here the relative abundance and structural diversity of venom components. Key to our proteomic approach is the implementation of Multi-Enzymatic Limited Digestion (MELD), which improved protein sequence coverage and enabled the identification of rare toxin families such as hyaluronidases and renin-like proteases, by multiplying the overlap of generated peptides and enhancing the characterization of both toxin and non-toxin components within the venoms. The culmination of these efforts resulted in the construction of a detailed toxin database, providing insights into the biological roles and potential therapeutic targets of venom proteins and peptides. The findings here compellingly validate the MELD technique, reinforcing its reproducibility as a valuable characterization approach applied to venomics. This research significantly advances our understanding of venom complexity in African snake species, including representatives of both Viperidae and Elapidae families. By elucidating venom composition and toxin profiles, our study paves the way for the development of targeted therapies aimed at mitigating the morbidity and mortality associated with snakebite envenoming globally. Full article
(This article belongs to the Special Issue Toxins: From the Wild to the Lab)
Show Figures

Graphical abstract

4 pages, 172 KB  
Editorial
Snake Venom: Toxicology and Associated Countermeasures
by Nicholas J. Youngman
Toxins 2025, 17(5), 237; https://doi.org/10.3390/toxins17050237 - 10 May 2025
Viewed by 684
Abstract
This Special Issue aims to provide insight into the understudied toxicological effects induced by snakebite envenoming, as well as to highlight current and future countermeasures for reducing the extreme morbidity and mortality associated with this globally neglected tropical disease [...] Full article
(This article belongs to the Special Issue Snake Venom: Toxicology and Associated Countermeasures)
11 pages, 4941 KB  
Article
Consistent Killers: Conservation of Thrombin-Like Action on Fibrinogen by Bushmaster (Lachesis Species) Venoms Underpins Broad Antivenom Cross-Reactivities
by Lee Jones and Bryan G. Fry
Toxins 2025, 17(5), 224; https://doi.org/10.3390/toxins17050224 - 2 May 2025
Viewed by 2126
Abstract
Snakebite represents a significant public health challenge in Central and South America, with Lachesis (Bushmaster) species posing unique clinical challenges due to their severe envenomation effects arising from a combination of potent venom and copious venom yields. Using in vitro coagulation assays, we [...] Read more.
Snakebite represents a significant public health challenge in Central and South America, with Lachesis (Bushmaster) species posing unique clinical challenges due to their severe envenomation effects arising from a combination of potent venom and copious venom yields. Using in vitro coagulation assays, we analyzed the coagulotoxic venom effects from four distinct localities: L. muta from Surinam and French Guiana and L. stenophrys from Costa Rica and Panama. This study examined the venom’s impact on human plasma and fibrinogen and evaluated the efficacy of two regionally available antivenoms (PoliVal-ICP and Antivipmyn-Tri) in neutralizing the pathophysiological effects. Our results demonstrated a remarkable consistency in the pseudo-procoagulant venom activity (also known as: thrombin-like) across different species and localities. Antivenom efficacy testing revealed that both the PoliVal-ICP and Antivipmyn-Tri antivenoms effectively neutralized the venom effects across localities for both species, with the ICP antivenom showing the highest neutralization capacity. These toxicology findings highlight the biochemical conservation of venom composition across Lachesis species which underpins effective cross-neutralization in antivenom treatment. Full article
(This article belongs to the Section Animal Venoms)
Show Figures

Graphical abstract

17 pages, 1736 KB  
Article
Electrical Cell Impedance Sensing (ECIS): Feasibility of a Novel In Vitro Approach to Studying Venom Toxicity and Potential Therapeutics
by Abhinandan Choudhury, Kaitlin Linne, Tommaso C. Bulfone, Tanvir Hossain, Abu Ali Ibn Sina, Philip L. Bickler, Bryan G. Fry and Matthew R. Lewin
Toxins 2025, 17(4), 193; https://doi.org/10.3390/toxins17040193 - 11 Apr 2025
Viewed by 1996
Abstract
Snakebite envenoming is often discussed in terms of lethality and limb loss, but local tissue injury and coagulotoxic effects of venom are significantly more common acute manifestations of snakebite envenoming (SBE). Local tissue injury and the hemorrhagic and coagulotoxic effects of venom are [...] Read more.
Snakebite envenoming is often discussed in terms of lethality and limb loss, but local tissue injury and coagulotoxic effects of venom are significantly more common acute manifestations of snakebite envenoming (SBE). Local tissue injury and the hemorrhagic and coagulotoxic effects of venom are challenging to study in live animals and can be ethically fraught due to animal welfare concerns such that attention to the 3Rs of animal welfare motivates the development of in vitro techniques in this arena. Herein, we tested the use of a wound-healing study technique known as Electric Cell-Substrate Impedance Sensing (ECIS) to assess populations of cultured cells exposed to venom with or without sPLA2 and/or metalloprotease inhibitors (varespladib and marimastat, respectively). For comparison, the StarMax coagulation analyzer for coagulotoxicity was further used to evaluate the venoms and the neutralizing capabilities of the abovementioned direct toxin inhibitors (DTIs) against the same venoms examined using ECIS. Three viper and three elapid venoms that were examined for their effects on H1975 cells were Agkistrodon contortrix (Eastern Copperhead), Crotalus helleri (Southern Pacific Rattlesnake), and Vipera ammodytes (Horned Viper) and Naja atra (Chinese Cobra), Naja mossambica (Mozambique Spitting Cobra), and Naja nigricollis (Black-necked Spitting Cobra), respectively. The combination of cellular and coagulation techniques appears to usefully discriminate the in vitro capabilities and limitations of specific inhibitors to inhibit specific venom effects. This study suggests that ECIS with or without concomitant coagulation testing is a feasible method to generate reproducible, meaningful preclinical data and could be used with any type of cell line. Importantly, this approach is both quantitative and has the potential of reducing animal use and suffering during the evaluation of potential therapeutics. To further evaluate the potential of this method, rescue studies should be performed. Full article
(This article belongs to the Special Issue Venoms and Drugs)
Show Figures

Figure 1

Back to TopTop