Strophanthus sarmentosus Extracts and the Strophanthus Cardenolide Ouabain Inhibit Snake Venom Proteases from Echis ocellatus
Abstract
:1. Introduction
2. Results
2.1. Determination of Lethal Dose (LD50) of S. sarmentosus Extracts
2.2. Anti-Hemorrhagic Activity of S. sarmentosus Extracts
2.3. Anti-Hemolytic Activity of S. sarmentosus Extracts
2.4. Coagulation Experiments
2.5. Cleavage of Dabsylated Bradykinin by Snake Venom
3. Discussion
3.1. Phytochemical Screening
3.2. Hemorrhage, Hemolysis, and Coagulation
3.3. Inhibition of Venom Enzymes by Cardiac Glycosides
4. Materials and Methods
4.1. Animals
4.2. Preparation of S. sarmentosus Extracts
4.3. Determination of Lethal Dose (LD50) of Plant Extract
4.4. Hemorrhage Assay
4.5. Hemolysis Assay
4.6. Coagulation Assay
4.7. DBK Degradation Assay
4.8. Data Analysis
5. Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SVMP | snake venom metalloproteinase |
PLA2 | phospholipase A2 |
DBK | dabsylated bradykinin |
DBK1-7 (or 1-5, 1-8) | enzymatic fragment 1-7 (or 1-5, 1-8) of DBK |
RBC | red blood cell |
ACE | angiotensin-converting enzyme |
CPN | carboxypeptidase N |
NKA | Na+/K+-ATPase |
PBS | phosphate-buffered saline |
References
- Gutiérrez, J.M.; Maduwage, K.; Iliyasu, G.; Habib, A. Snakebite envenoming in different national contexts: Costa Rica, Sri Lanka, and Nigeria. Toxicon X 2021, 9–10, 100066. [Google Scholar] [CrossRef] [PubMed]
- Snakebite Envenoming. Available online: https://www.who.int/news-room/fact-sheets/detail/snakebite-envenoming (accessed on 19 November 2024).
- Kasturiratne, A.; Wickremasinghe, A.R.; de Silva, N.; Gunawardena, N.K.; Pathmeswaran, A.; Premaratna, R.; Savioli, L.; Lalloo, D.G.; de Silva, H.J. The global burden of snakebite: A literature analysis and modelling based on regional estimates of envenoming and deaths. PLoS Med. 2008, 5, e218. [Google Scholar] [CrossRef]
- Afroz, A.; Siddiquea, B.N.; Chowdhury, H.A.; Jackson, T.N.; Watt, A.D. Snakebite envenoming: A systematic review and meta-analysis of global morbidity and mortality. PLoS Neglected Trop. Dis. 2024, 18, e0012080. [Google Scholar] [CrossRef]
- Kasturiratne, A.; Lalloo, D.G.; de Silva, H.J. Chronic health effects and cost of snakebite. Toxicon X 2021, 9–10, 100074. [Google Scholar] [CrossRef]
- Damm, M.; Hempel, B.-F.; Süssmuth, R.D. Old World Vipers-A Review about Snake Venom Proteomics of Viperinae and Their Variations. Toxins 2021, 13, 427. [Google Scholar] [CrossRef]
- Alencar, L.R.V.; Quental, T.B.; Grazziotin, F.G.; Alfaro, M.L.; Martins, M.; Venzon, M.; Zaher, H. Diversification in vipers: Phylogenetic relationships, time of divergence and shifts in speciation rates. Mol. Phylogenetics Evol. 2016, 105, 50–62. [Google Scholar] [CrossRef]
- Tasoulis, T.; Isbister, G.K. A current perspective on snake venom composition and constituent protein families. Arch. Toxicol. 2023, 97, 133–153. [Google Scholar] [CrossRef] [PubMed]
- Smith, C.F.; Nikolakis, Z.L.; Ivey, K.; Perry, B.W.; Schield, D.R.; Balchan, N.R.; Parker, J.; Hansen, K.C.; Saviola, A.J.; Castoe, T.A.; et al. Snakes on a plain: Biotic and abiotic factors determine venom compositional variation in a wide-ranging generalist rattlesnake. BMC Biol. 2023, 21, 136. [Google Scholar] [CrossRef] [PubMed]
- Casewell, N.R.; Jackson, T.N.W.; Laustsen, A.H.; Sunagar, K. Causes and Consequences of Snake Venom Variation. Trends Pharmacol. Sci. 2020, 41, 570–581. [Google Scholar] [CrossRef]
- Oliveira, A.L.; Viegas, M.F.; Da Silva, S.L.; Soares, A.M.; Ramos, M.J.; Fernandes, P.A. The chemistry of snake venom and its medicinal potential. Nat. Rev. Chem. 2022, 6, 451–469. [Google Scholar] [CrossRef]
- Jungo, F.; de Castro, E. Echis Ocellatus~VenomZone. Available online: https://venomzone.expasy.org/3396 (accessed on 4 February 2025).
- Dingwoke, E.J.; Adamude, F.A.; Salihu, A.; Abubakar, M.S.; Sallau, A.B. Toxicological analyses of the venoms of Nigerian vipers Echis ocellatus and Bitis arietans. Trop. Med. Health 2024, 52, 15. [Google Scholar] [CrossRef] [PubMed]
- Olaoba, O.T.; Dos Santos, P.K.; Selistre-de-Araujo, H.S.; de Souza, D.H.F. Snake Venom Metalloproteinases (SVMPs): A structure-function update. Toxicon X 2020, 7, 100052. [Google Scholar] [CrossRef]
- Sampat, G.H.; Hiremath, K.; Dodakallanavar, J.; Patil, V.S.; Harish, D.R.; Biradar, P.; Mahadevamurthy, R.K.; Barvaliya, M.; Roy, S. Unraveling snake venom phospholipase A2: An overview of its structure, pharmacology, and inhibitors. Pharmacol. Rep. 2023, 75, 1454–1473. [Google Scholar] [CrossRef]
- Berling, I.; Isbister, G.K. Hematologic effects and complications of snake envenoming. Transfus. Med. Rev. 2015, 29, 82–89. [Google Scholar] [CrossRef]
- World Health Organization. Guidelines for the Prevention and Clinical Management of Snakebite in Africa; WHO/AFR/EDM/EDP/10.01; Regional Office for Africa: Addis Ababa, Ethiopia, 2016; Available online: https://iris.who.int/handle/10665/204458 (accessed on 10 January 2025).
- Gopal, G.; Muralidar, S.; Prakash, D.; Kamalakkannan, A.; Indhuprakash, S.T.; Thirumalai, D.; Ambi, S.V. The concept of Big Four: Road map from snakebite epidemiology to antivenom efficacy. Int. J. Biol. Macromol. 2023, 242, 124771. [Google Scholar] [CrossRef] [PubMed]
- Uko, S.O.; Malami, I.; Ibrahim, K.G.; Lawal, N.; Bello, M.B.; Abubakar, M.B.; Imam, M.U. Revolutionizing snakebite care with novel antivenoms: Breakthroughs and barriers. Heliyon 2024, 10, e25531. [Google Scholar] [CrossRef] [PubMed]
- de Silva, H.A.; Ryan, N.M.; de Silva, H.J. Adverse reactions to snake antivenom, and their prevention and treatment. Br. J. Clin. Pharmacol. 2016, 81, 446–452. [Google Scholar] [CrossRef]
- Habib, A.G.; Musa, B.M.; Iliyasu, G.; Hamza, M.; Kuznik, A.; Chippaux, J.-P. Challenges and prospects of snake antivenom supply in sub-Saharan Africa. PLoS Neglected Trop. Dis. 2020, 14, e0008374. [Google Scholar] [CrossRef]
- Gupta, Y.K.; Peshin, S.S. Do herbal medicines have potential for managing snake bite envenomation? Toxicol. Int. 2012, 19, 89–99. [Google Scholar] [CrossRef]
- König, S. The Composition and Biochemical Properties of Strophantus (Apocynaceae), with a Focus on S. sarmentosus. Molecules 2024, 29, 2847. [Google Scholar] [CrossRef]
- Abiola, J.L.; Aiyelaagbe, O.O. Phytochemical, Antimicrobial and Cytotoxic Activities of Strophanthus sarmentosus DC. Biol. Med. Nat. Prod. Chem. 2022, 12, 119–126. [Google Scholar] [CrossRef]
- Kumar, A.; P, N.; Kumar, M.; Jose, A.; Tomer, V.; Oz, E.; Proestos, C.; Zeng, M.; Elobeid, T.; K, S.; et al. Major Phytochemicals: Recent Advances in Health Benefits and Extraction Method. Molecules 2023, 28, 887. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez, J.M.; Rucavado, A.; Escalante, T.; Díaz, C. Hemorrhage induced by snake venom metalloproteinases: Biochemical and biophysical mechanisms involved in microvessel damage. Toxicon 2005, 45, 997–1011. [Google Scholar] [CrossRef]
- Condrea, E. Hemolytic Effects of Snake Venoms. Snake Venoms; Springer: Berlin/Heidelberg, Germany, 1979; pp. 448–479. ISBN 978-3-642-66913-2. [Google Scholar]
- Eagle, H. THE COAGULATION OF BLOOD BY SNAKE VENOMS AND ITS PHYSIOLOGIC SIGNIFICANCE. J. Exp. Med. 1937, 65, 613–639. [Google Scholar] [CrossRef] [PubMed]
- Abiola, J.; Berg, A.M.; Aiyelaagbe, O.; Adeyi, A.; König, S. Dabsylated Bradykinin Is Cleaved by Snake Venom Proteases from Echis ocellatus. Biomedicines 2024, 12, 1027. [Google Scholar] [CrossRef]
- Bejček, J.; Jurášek, M.; Spiwok, V.; Rimpelová, S. Quo vadis Cardiac Glycoside Research? Toxins 2021, 13, 344. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.C.; Shin, D.H.; Kim, S.H.; Kim, J.K.; Park, S.C.; Son, W.C.; Lee, H.S.; Suh, J.E.; Kim, C.Y.; Ha, C.S.; et al. Subacute toxicity evaluation of a new camptothecin anticancer agent CKD-602 administered by intravenous injection to rats. Regul. Toxicol. Pharmacol. 2004, 40, 356–369. [Google Scholar] [CrossRef]
- Zhai, X.; He, Q.; Chen, M.; Yu, L.; Tong, C.; Chen, Y.; Wang, J.; Fan, X.; Xie, H.; Liang, Z.; et al. Pinellia ternata-containing traditional Chinese medicine combined with 5-HT3RAs for chemotherapy-induced nausea and vomiting: A PRISMA-compliant systematic review and meta-analysis of 22 RCTs. Phytomed. Int. J. Phytother. Phytopharm. 2023, 115, 154823. [Google Scholar] [CrossRef]
- Matsui, T.; Fujimura, Y.; Titani, K. Snake venom proteases affecting hemostasis and thrombosis. Biochim. Biophys. Acta 2000, 1477, 146–156. [Google Scholar] [CrossRef]
- Xie, C.; Bittenbinder, M.A.; Slagboom, J.; Arrahman, A.; Bruijns, S.; Somsen, G.W.; Vonk, F.J.; Casewell, N.R.; García-Vallejo, J.J.; Kool, J. Erythrocyte haemotoxicity profiling of snake venom toxins after nanofractionation. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2021, 1176, 122586. [Google Scholar] [CrossRef]
- Kini, R.M. Anticoagulant proteins from snake venoms: Structure, function and mechanism. Biochem. J. 2006, 397, 377–387. [Google Scholar] [CrossRef] [PubMed]
- Chatepa, L.E.C.; Mwamatope, B.; Chikowe, I.; Masamba, K.G. Effects of solvent extraction on the phytoconstituents and in vitro antioxidant activity properties of leaf extracts of the two selected medicinal plants from Malawi. BMC Complement. Med. Ther. 2024, 24, 317. [Google Scholar] [CrossRef] [PubMed]
- Dias, M.C.; Pinto, D.C.G.A.; Silva, A.M.S. Plant Flavonoids: Chemical Characteristics and Biological Activity. Molecules 2021, 26, 5377. [Google Scholar] [CrossRef] [PubMed]
- Middleton, E.; Kandaswami, C.; Theoharides, T.C. The effects of plant flavonoids on mammalian cells: Implications for inflammation, heart disease, and cancer. Pharmacol. Rev. 2000, 52, 673–751. [Google Scholar] [CrossRef]
- Cushnie, T.P.T.; Lamb, A.J. Antimicrobial activity of flavonoids. Int. J. Antimicrob. Agents 2005, 26, 343–356. [Google Scholar] [CrossRef]
- Osibemhe, M.; Omaji, G.O.; Onoagbe, I.O. Sub-chronic toxicity of extracts of strophanthus hispidus stem bark in normal rats. Pharmacologyonline 2017, 2, 140–161. [Google Scholar]
- Kruk, J.; Aboul-Enein, B.H.; Duchnik, E.; Marchlewicz, M. Antioxidative properties of phenolic compounds and their effect on oxidative stress induced by severe physical exercise. J. Physiol. Sci. 2022, 72, 19. [Google Scholar] [CrossRef]
- Nouruzi, S.; Farahani, A.V.; Rezaeizadeh, H.; Ghafouri, P.; Ghorashi, S.M.; Omidi, N. Platelet Aggregation Inhibition: An Evidence-Based Systematic Review on the Role of Herbs for Primary Prevention Based on Randomized Controlled Trials. Iran. J. Med. Sci. 2022, 47, 505–516. [Google Scholar] [CrossRef]
- Wagner, H.; Ulrich-Merzenich, G. Synergy research: Approaching a new generation of phytopharmaceuticals. Phytomed. Int. J. Phytother. Phytopharm. 2009, 16, 97–110. [Google Scholar] [CrossRef]
- Chávez-González, M.L.; Sepúlveda, L.; Verma, D.K.; Luna-García, H.A.; Rodríguez-Durán, L.V.; Ilina, A.; Aguilar, C.N. Conventional and Emerging Extraction Processes of Flavonoids. Processes 2020, 8, 434. [Google Scholar] [CrossRef]
- Rice-Evans, C.A.; Miller, N.J.; Paganga, G. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic. Biol. Med. 1996, 20, 933–956. [Google Scholar] [CrossRef] [PubMed]
- Lamponi, S. Bioactive Natural Compounds with Antiplatelet and Anticoagulant Activity and Their Potential Role in the Treatment of Thrombotic Disorders. Life 2021, 11, 1095. [Google Scholar] [CrossRef] [PubMed]
- Williamson, G.; Manach, C. Bioavailability and bioefficacy of polyphenols in humans. II. Review of 93 intervention studies. Am. J. Clin. Nutr. 2005, 81, 243S–255S. [Google Scholar] [CrossRef]
- Sharifi-Rad, J.; Quispe, C.; Shaheen, S.; El Haouari, M.; Azzini, E.; Butnariu, M.; Sarac, I.; Pentea, M.; Ramírez-Alarcón, K.; Martorell, M.; et al. Flavonoids as potential anti-platelet aggregation agents: From biochemistry to health promoting abilities. Crit. Rev. Food Sci. Nutr. 2022, 62, 8045–8058. [Google Scholar] [CrossRef] [PubMed]
- Balykina, A.; Naida, L.; Kirkgöz, K.; Nikolaev, V.O.; Fock, E.; Belyakov, M.; Whaley, A.; Whaley, A.; Shpakova, V.; Rukoyatkina, N.; et al. Antiplatelet Effects of Flavonoid Aglycones Are Mediated by Activation of Cyclic Nucleotide-Dependent Protein Kinases. Int. J. Mol. Sci. 2024, 25, 4864. [Google Scholar] [CrossRef]
- Burton, G.W.; Ingold, K.U. Vitamin E as an in vitro and in vivo antioxidant. Ann. N. Y. Acad. Sci. 1989, 570, 7–22. [Google Scholar] [CrossRef]
- Pietta, P.G. Flavonoids as antioxidants. J. Nat. Prod. 2000, 63, 1035–1042. [Google Scholar] [CrossRef]
- Halliwell, B.; Gutteridge, J.M.C. Free Radicals in Biology and Medicine; Oxford University Press: Oxford, UK, 2015; ISBN 9780191802133. [Google Scholar]
- Ferreira, O.; Pinho, S.P. Solubility of Flavonoids in Pure Solvents. Ind. Eng. Chem. Res. 2012, 51, 6586–6590. [Google Scholar] [CrossRef]
- Dai, J.; Mumper, R.J. Plant phenolics: Extraction, analysis and their antioxidant and anticancer properties. Molecules 2010, 15, 7313–7352. [Google Scholar] [CrossRef]
- Prior, R.L.; Cao, G. Antioxidant Phytochemicals in Fruits and Vegetables: Diet and Health Implications. HortScience 2000, 35, 588–592. [Google Scholar] [CrossRef]
- Scalbert, A.; Manach, C.; Morand, C.; Rémésy, C.; Jiménez, L. Dietary polyphenols and the prevention of diseases. Crit. Rev. Food Sci. Nutr. 2005, 45, 287–306. [Google Scholar] [CrossRef] [PubMed]
- Marcińczyk, N.; Gromotowicz-Popławska, A.; Tomczyk, M.; Chabielska, E. Tannins as Hemostasis Modulators. Front. Pharmacol. 2021, 12, 806891. [Google Scholar] [CrossRef]
- Xiang, Z.; Liu, L.; Xu, Z.; Kong, Q.; Feng, S.; Chen, T.; Zhou, L.; Yang, H.; Xiao, Y.; Ding, C. Solvent Effects on the Phenolic Compounds and Antioxidant Activity Associated with Camellia polyodonta Flower Extracts. ACS Omega 2024, 9, 27192–27203. [Google Scholar] [CrossRef] [PubMed]
- Formagio, A.S.N.; Volobuff, C.R.F.; Santiago, M.; Cardoso, C.A.L.; Vieira, M.D.C.; Pereira, Z.V. Evaluation of Antioxidant Activity, Total Flavonoids, Tannins and Phenolic Compounds in Psychotria Leaf Extracts. Antioxidants 2014, 3, 745–757. [Google Scholar] [CrossRef]
- Adrião, A.A.X.; Dos Santos, A.O.; de Lima, E.J.S.P.; Maciel, J.B.; Paz, W.H.P.; Da Silva, F.M.A.; Pucca, M.B.; Moura-da-Silva, A.M.; Monteiro, W.M.; Sartim, M.A.; et al. Plant-Derived Toxin Inhibitors as Potential Candidates to Complement Antivenom Treatment in Snakebite Envenomations. Front. Immunol. 2022, 13, 842576. [Google Scholar] [CrossRef] [PubMed]
- Bayer, M.; König, S. A vote for robustness: Monitoring serum enzyme activity by thin-layer chromatography of dabsylated bradykinin products. J. Pharm. Biomed. Anal. 2017, 143, 199–203. [Google Scholar] [CrossRef]
- Rex, D.A.B.; Deepak, K.; Vaid, N.; Dagamajalu, S.; Kandasamy, R.K.; Flo, T.H.; Prasad, T.S.K. A modular map of Bradykinin-mediated inflammatory signaling network. J. Cell Commun. Signal. 2022, 16, 301–310. [Google Scholar] [CrossRef]
- Rex, D.A.B.; Vaid, N.; Deepak, K.; Dagamajalu, S.; Prasad, T.S.K. A comprehensive review on current understanding of bradykinin in COVID-19 and inflammatory diseases. Mol. Biol. Rep. 2022, 49, 9915–9927. [Google Scholar] [CrossRef]
- König, S.; Bayer, M.; Dimova, V.; Herrnberger, M.; Escolano-Lozano, F.; Bednarik, J.; Vlckova, E.; Rittner, H.; Schlereth, T.; Birklein, F. The serum protease network-one key to understand complex regional pain syndrome pathophysiology. PAIN 2019, 160, 1402–1409. [Google Scholar] [CrossRef]
- Tepasse, P.-R.; Vollenberg, R.; Steinebrey, N.; König, S. High Angiotensin-Converting Enzyme and Low Carboxypeptidase N Serum Activity Correlate with Disease Severity in COVID-19 Patients. J. Pers. Med. 2022, 12, 406. [Google Scholar] [CrossRef]
- König, S.; Vollenberg, R.; Tepasse, P.-R. The Renin-Angiotensin System in COVID-19: Can Long COVID Be Predicted? Life 2023, 13, 1462. [Google Scholar] [CrossRef]
- Contreras, R.G.; Torres-Carrillo, A.; Flores-Maldonado, C.; Shoshani, L.; Ponce, A. Na+/K+-ATPase: More than an Electrogenic Pump. Int. J. Mol. Sci. 2024, 25, 6122. [Google Scholar] [CrossRef]
- Okonkwo, P. Adenosine triphosphatase and phosphatase in some African viperine venoms. West Afr. J. Pharmacol. Drug Res. 2010, 6. [Google Scholar] [CrossRef]
- Glynn, I.M. The action of cardiac glycosides on sodium and potassium movements in human red cells. J. Physiol. 1957, 136, 148–173. [Google Scholar] [CrossRef]
- GILL, T.J.; Solomon, A.K. Effect of ouabain on sodium flux in human red cells. Nature 1959, 183, 1127–1128. [Google Scholar] [CrossRef]
- Khalili, M.; Ebrahimzadeh, M.A.; Safdari, Y. Antihaemolytic activity of thirty herbal extracts in mouse red blood cells. Arch. Ind. Hyg. Toxicol. 2014, 65, 399–406. [Google Scholar] [CrossRef]
- Hemker, H.C.; van Dam-Mieras, M.C.; Devilée, P.P. The action of Echis carinatus venom on the blood coagulation system. Demonstration of an activator of factor X. Thromb. Res. 1984, 35, 1–9. [Google Scholar] [CrossRef]
- Fechtig, B.; Schindler, O.; Reichstein, T. Die Glykoside von Strophanthus sarmentosus P. DC. 10. Mitt. Untersuchung der stark polaren Cardenolide aus der var. senegambiae (A. DC. (MONACHINO)). Glykoside und Aglykone, 215. Mitteilung. Helv. Chim. Acta 1960, 43, 727–754. [Google Scholar] [CrossRef]
- Blaustein, M.P.; Hamlyn, J.M. Sensational site: The sodium pump ouabain-binding site and its ligands. Am. J. Physiol. Cell Physiol. 2024, 326, C1120–C1177. [Google Scholar] [CrossRef]
- Tomaz, M.A.; Fernandes, F.F.A.; El-Kik, C.Z.; Moraes, R.A.M.; Calil-Elias, S.; Saturnino-Oliveira, J.; Martinez, A.M.B.; Ownby, C.L.; Melo, P.A. Increase of the cytotoxic effect of Bothrops jararacussu venom on mouse extensor digitorum longus and soleus by potassium channel blockers and by Na+/K+-ATPase inhibition. Toxicon 2008, 52, 551–558. [Google Scholar] [CrossRef]
- Kaplia, A.A.; Kravtsova, V.V.; Kravtsov, A.V. Vliianie fosfolipazy A2 iz iada Naja naja oxiana na aktivnost' izofermentov Na+, K+-ATPazy mozga krysy. Biokhimiia 1996, 61, 998–1005. [Google Scholar]
- Hong, S.J.; Chang, C.C. Electrophysiological studies of myotoxin a, isolated from prairie rattlesnake (Crotalus viridis viridis) venom, on murine skeletal muscles. Toxicon 1985, 23, 927–937. [Google Scholar] [CrossRef]
- Shivashankar, S.; Sangeetha, M.K. The Natural Ligand for Metalloproteinase-A Multifaceted Drug Target. Appl. Biochem. Biotechnol. 2022, 194, 1716–1739. [Google Scholar] [CrossRef]
- Chinedu, E.; Arome, D.; Ameh, F.S. A new method for determining acute toxicity in animal models. Toxicol. Int. 2013, 20, 224–226. [Google Scholar] [CrossRef]
- Marcussi, S.; Stábeli, R.G.; Santos-Filho, N.A.; Menaldo, D.L.; Pereira, L.L.S.; Zuliani, J.P.; Calderon, L.A.; Da Silva, S.L.; Antunes, L.M.G.; Soares, A.M. Genotoxic effect of Bothrops snake venoms and isolated toxins on human lymphocyte DNA. Toxicon Off. J. Int. Soc. Toxinology 2013, 65, 9–14. [Google Scholar] [CrossRef]
- Adeyi, A.O.; Ajisebiola, S.B.; Adeyi, E.O.; Alimba, C.G.; Okorie, U.G. Antivenom activity of Moringa oleifera leave against pathophysiological alterations, somatic mutation and biological activities of Naja nigricollis venom. Sci. Afr. 2020, 8, e00356. [Google Scholar] [CrossRef]
- Mukherjee, A.K.; Doley, R.; Saikia, D. Isolation of a snake venom phospholipase A2 (PLA2) inhibitor (AIPLAI) from leaves of Azadirachta indica (Neem): Mechanism of PLA2 inhibition by AIPLAI in vitro condition. Toxicon 2008, 51, 1548–1553. [Google Scholar] [CrossRef]
- Gomes, A.; De, P. Hannahpep: A novel fibrinolytic peptide from the Indian King Cobra (Ophiophagus hannah) venom. Biochem. Biophys. Res. Commun. 1999, 266, 488–491. [Google Scholar] [CrossRef]
Extract/mg/kg | Lesion Area/mm2 | |||||
---|---|---|---|---|---|---|
Leaf | Root | |||||
Methanol | Ethylacetate | Methanol | Ethylacetate | |||
Venom | 943 | |||||
Antivenom | 205 | |||||
Saline | No foci | |||||
Venom | 100 | 457 | 569 | 1026 | 363 | |
200 | 334 | 446 | 737 | 333 | ||
300 | 687 | 148 | 380 | 141 |
Extract | Methanol | Ethylacetate |
---|---|---|
Leaf | 161.90 | 104.45 |
Root | 188.89 | 166.70 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abiola, J.; Aiyelaagbe, O.; Adeyi, A.; Ajisebiola, B.; König, S. Strophanthus sarmentosus Extracts and the Strophanthus Cardenolide Ouabain Inhibit Snake Venom Proteases from Echis ocellatus. Molecules 2025, 30, 2625. https://doi.org/10.3390/molecules30122625
Abiola J, Aiyelaagbe O, Adeyi A, Ajisebiola B, König S. Strophanthus sarmentosus Extracts and the Strophanthus Cardenolide Ouabain Inhibit Snake Venom Proteases from Echis ocellatus. Molecules. 2025; 30(12):2625. https://doi.org/10.3390/molecules30122625
Chicago/Turabian StyleAbiola, Julius, Olapeju Aiyelaagbe, Akindele Adeyi, Babafemi Ajisebiola, and Simone König. 2025. "Strophanthus sarmentosus Extracts and the Strophanthus Cardenolide Ouabain Inhibit Snake Venom Proteases from Echis ocellatus" Molecules 30, no. 12: 2625. https://doi.org/10.3390/molecules30122625
APA StyleAbiola, J., Aiyelaagbe, O., Adeyi, A., Ajisebiola, B., & König, S. (2025). Strophanthus sarmentosus Extracts and the Strophanthus Cardenolide Ouabain Inhibit Snake Venom Proteases from Echis ocellatus. Molecules, 30(12), 2625. https://doi.org/10.3390/molecules30122625