Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (226)

Search Parameters:
Keywords = smoothed particle hydrodynamics (SPH) methods

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 2523 KiB  
Article
Computational Simulation of Aneurysms Using Smoothed Particle Hydrodynamics
by Yong Wu, Fei Wang, Xianhong Sun, Zibo Liu, Zhi Xiong, Mingzhi Zhang, Baoquan Zhao and Teng Zhou
Mathematics 2025, 13(15), 2439; https://doi.org/10.3390/math13152439 - 29 Jul 2025
Viewed by 151
Abstract
Modeling and simulation of aneurysm formation, growth, and rupture plays an essential role in a wide spectrum of application scenarios, ranging from risk stratification to stability prediction, and from clinical decision-making to treatment innovation. Unfortunately, it remains a non-trivial task due to the [...] Read more.
Modeling and simulation of aneurysm formation, growth, and rupture plays an essential role in a wide spectrum of application scenarios, ranging from risk stratification to stability prediction, and from clinical decision-making to treatment innovation. Unfortunately, it remains a non-trivial task due to the difficulties imposed by the complex and under-researched pathophysiological mechanisms behind the different development stages of various aneurysms. In this paper, we present a novel computational method for aneurysm simulation using smoothed particle hydrodynamics (SPH). Firstly, we consider blood in a vessel as a kind of incompressible fluid and model its flow dynamics using the SPH method; and then, to simulate aneurysm growth and rupture, the relationship between the aneurysm development and the properties of fluid particles is established by solving the motion control equation. In view of the prevalence of aneurysms in bifurcation vessels, we further enhance the capability of the model by introducing a solution for bifurcation aneurysms simulation according to Murray’s law. In addition, a CUDA parallel computing scheme is also designed to speed up the simulation process. To evaluate the performance of the proposed method, we conduct extensive experiments with different physical parameters associated with morphological characteristics of an aneurysm. The experimental results demonstrate the effectiveness and efficiency of proposed method in modeling and simulating aneurysm formation, growth, and rupture. Full article
Show Figures

Figure 1

19 pages, 2774 KiB  
Article
Numerical Modeling on the Damage Behavior of Concrete Subjected to Abrasive Waterjet Cutting
by Xueqin Hu, Chao Chen, Gang Wang and Jenisha Singh
Buildings 2025, 15(13), 2279; https://doi.org/10.3390/buildings15132279 - 28 Jun 2025
Viewed by 274
Abstract
Abrasive waterjet technology is a promising sustainable and green technology for cutting underground structures. Abrasive waterjet usage in demolition promotes sustainable and green construction practices by reduction of noise, dust, secondary waste, and disturbances to the surrounding infrastructure. In this study, a numerical [...] Read more.
Abrasive waterjet technology is a promising sustainable and green technology for cutting underground structures. Abrasive waterjet usage in demolition promotes sustainable and green construction practices by reduction of noise, dust, secondary waste, and disturbances to the surrounding infrastructure. In this study, a numerical framework based on a coupled Smoothed Particle Hydrodynamics (SPH)–Finite Element Method (FEM) algorithm incorporating the Riedel–Hiermaier–Thoma (RHT) constitutive model is proposed to investigate the damage mechanism of concrete subjected to abrasive waterjet. Numerical simulation results show a stratified damage observation in the concrete, consisting of a crushing zone (plastic damage), crack formation zone (plastic and brittle damage), and crack propagation zone (brittle damage). Furthermore, concrete undergoes plastic failure when the shear stress on an element exceeds 5 MPa. Brittle failure due to tensile stress occurs only when both the maximum principal stress (σ1) and the minimum principal stress (σ3) are greater than zero at the same time. The damage degree (χ) of the concrete is observed to increase with jet diameter, concentration of abrasive particles, and velocity of jet. A series of orthogonal tests are performed to analyze the influence of velocity of jet, concentration of abrasive particles, and jet diameter on the damage degree and impact depth (h). The parametric numerical studies indicates that jet diameter has the most significant influence on damage degree, followed by abrasive concentration and jet velocity, respectively, whereas the primary determinant of impact depth is the abrasive concentration followed by jet velocity and jet diameter. Based on the parametric analysis, two optimized abrasive waterjet configurations are proposed: one tailored for rock fragmentation in tunnel boring machine (TBM) operations; and another for cutting reinforced concrete piles in shield tunneling applications. These configurations aim to enhance the efficiency and sustainability of excavation and tunneling processes through improved material removal performance and reduced mechanical wear. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

19 pages, 4217 KiB  
Review
Optimization of Rock-Cutting Tools: Improvements in Structural Design and Process Efficiency
by Yuecao Cao, Qiang Zhang, Shucheng Zhang, Ying Tian, Xiangwei Dong, Xiaojun Song and Dongxiang Wang
Computation 2025, 13(7), 152; https://doi.org/10.3390/computation13070152 - 23 Jun 2025
Viewed by 520
Abstract
Rock-breaking cutters are critical components in tunneling, mining, and drilling operations, where efficiency, durability, and energy consumption are paramount. Traditional cutter designs and empirical process optimization methods often fail to address the dynamic interaction between heterogeneous rock masses and tool structures, leading to [...] Read more.
Rock-breaking cutters are critical components in tunneling, mining, and drilling operations, where efficiency, durability, and energy consumption are paramount. Traditional cutter designs and empirical process optimization methods often fail to address the dynamic interaction between heterogeneous rock masses and tool structures, leading to premature wear, high specific energy, and suboptimal performance. Topology optimization, as an advanced computational design method, offers transformative potential for lightweight, high-strength cutter structures and adaptive cutting process control. This review systematically examines recent advancements in topology-optimized cutter design and its integration with rock-cutting mechanics. The structural innovations in cutter geometry and materials are analyzed, emphasizing solutions for stress distribution, wear/fatigue resistance, and dynamic load adaptation. The numerical methods for modeling rock–tool interactions are introduced, including discrete element method (DEM) simulations, smoothed particle hydrodynamics (SPH) methods, and machine learning (ML)-enhanced predictive models. The cutting process optimization strategies that leverage topology optimization to balance objectives such as energy efficiency, chip formation control, and tool lifespan are evaluated. Full article
(This article belongs to the Special Issue Advanced Topology Optimization: Methods and Applications)
Show Figures

Figure 1

40 pages, 4107 KiB  
Review
A Review of Soil Constitutive Models for Simulating Dynamic Soil–Structure Interaction Processes Under Impact Loading
by Tewodros Y. Yosef, Chen Fang, Ronald K. Faller, Seunghee Kim, Qusai A. Alomari, Mojtaba Atash Bahar and Gnyarienn Selva Kumar
Geotechnics 2025, 5(2), 40; https://doi.org/10.3390/geotechnics5020040 - 12 Jun 2025
Viewed by 1337
Abstract
The accurate modeling of dynamic soil–structure interaction processes under impact loading is critical for advancing the design of soil-embedded barrier systems. Full-scale crash testing remains the benchmark for evaluating barrier performance; however, such tests are costly, logistically demanding, and subject to variability that [...] Read more.
The accurate modeling of dynamic soil–structure interaction processes under impact loading is critical for advancing the design of soil-embedded barrier systems. Full-scale crash testing remains the benchmark for evaluating barrier performance; however, such tests are costly, logistically demanding, and subject to variability that limits repeatability. Recent advancements in computational methods, particularly the development of large-deformation numerical schemes, such as the multi-material arbitrary Lagrangian–Eulerian (MM-ALE) and smoothed particle hydrodynamics (SPH) approaches, offer viable alternatives for simulating soil behavior under impact loading. These methods have enabled a more realistic representation of granular soil dynamics, particularly that of the Manual for Assessing Safety Hardware (MASH) strong soil, a well-graded gravelly soil commonly used in crash testing of soil-embedded barriers and safety features. This soil exhibits complex mechanical responses governed by inter-particle friction, dilatancy, confining pressure, and moisture content. Nonetheless, the predictive fidelity of these simulations is governed by the selection and implementation of soil constitutive models, which must capture the nonlinear, dilatant, and pressure-sensitive behavior of granular materials under high strain rate loading. This review critically examines the theoretical foundations and practical applications of a range of soil constitutive models embedded in the LS-DYNA hydrocode, including elastic, elastoplastic, elasto-viscoplastic, and multi-yield surface formulations. Emphasis is placed on the unique behaviors of MASH strong soil, such as confining-pressure dependence, limited elastic range, and strong dilatancy, which must be accurately represented to model the soil’s transition between solid-like and fluid-like states during impact loading. This paper addresses existing gaps in the literature by offering a structured basis for selecting and evaluating constitutive models in simulations of high-energy vehicular impact events involving soil–structure systems. This framework supports researchers working to improve the numerical analysis of impact-induced responses in soil-embedded structural systems. Full article
(This article belongs to the Special Issue Recent Advances in Soil–Structure Interaction)
Show Figures

Figure 1

25 pages, 2915 KiB  
Article
Meshless Numerical Simulation on Dry Shrinkage Cracking of Concrete Piles for Offshore Wind Power Turbine
by Cong Hu, Jianfeng Xue, Taicheng Li, Haiying Mao, Haotian Chang and Wenbing Zhang
Buildings 2025, 15(12), 2006; https://doi.org/10.3390/buildings15122006 - 11 Jun 2025
Viewed by 311
Abstract
Against the backdrop of the global energy transition, offshore wind power has undergone rapid development. As a vital component of offshore wind power infrastructure, dry shrinkage cracking in concrete piles poses a significant threat to the safe and stable operation of offshore wind [...] Read more.
Against the backdrop of the global energy transition, offshore wind power has undergone rapid development. As a vital component of offshore wind power infrastructure, dry shrinkage cracking in concrete piles poses a significant threat to the safe and stable operation of offshore wind power systems. However, the fundamental mechanism of concrete pile cracking during dry shrinkage—particularly the coupled effects of moisture diffusion, meso-structural heterogeneity, and stress evolution—remains poorly understood, lacking a unified theoretical framework. This knowledge gap hinders the development of targeted anti-cracking strategies for offshore concrete structures. Hence, investigating the mechanism of dry shrinkage cracking is of substantial importance. This paper employs numerical simulation to explore the patterns and influencing factors of dry shrinkage cracking in concrete piles for offshore wind turbines, aiming to provide theoretical support for enhancing pile performance. A meshless numerical simulation method based on the smoothed particle hydrodynamics (SPH) framework is developed, which generates concrete meso-structures via a specific algorithm, discretizes the moisture diffusion equation, defines dry shrinkage stress terms, and introduces a fracture coefficient to characterize particle failure, enabling the simulation of concrete dry shrinkage cracking processes. Simulation schemes are designed for varying aggregate percentages, aggregate particle sizes, dry shrinkage coefficients, and moisture diffusion coefficients, using a 100 mm-diameter circular concrete model. Qualitative results reveal the following: Increased aggregate percentages lead to more uniform moisture diffusion, with dry shrinkage crack number and length first increasing and then decreasing; larger aggregate particle sizes exacerbate moisture diffusion non-uniformity and intensify dry shrinkage cracking; higher dry shrinkage coefficients correlate with increased crack number and length; elevated moisture diffusion coefficients accelerate surface water loss, with cracking severity first increasing and then decreasing. The proposed SPH-based meshless method effectively simulates dry shrinkage cracking in offshore wind turbine concrete piles, demonstrating the significant impact of different factors on moisture diffusion and cracking patterns. This study offers insights for applying the SPH method in related fields, deepens the understanding of concrete dry shrinkage cracking mechanisms, and provides a theoretical foundation for the design and optimization of offshore wind power concrete piles. Full article
(This article belongs to the Special Issue Low Carbon and Green Materials in Construction—3rd Edition)
Show Figures

Figure 1

21 pages, 3436 KiB  
Article
Numerical Analysis of Pipe–Soil Interaction Using Smoothed Particle Hydrodynamics (SPH)
by Xiyu Tong, Jun Tan, Hang Liu, Tao Xu and Man Hu
Processes 2025, 13(6), 1797; https://doi.org/10.3390/pr13061797 - 5 Jun 2025
Viewed by 592
Abstract
Pipe–soil interaction encompasses the study of stress distributions and deformation mechanisms occurring between buried pipelines and their surrounding soil. Understanding the mechanical behavior of this coupled system is essential for the analysis of deformation patterns and failure modes in buried pipelines, thereby providing [...] Read more.
Pipe–soil interaction encompasses the study of stress distributions and deformation mechanisms occurring between buried pipelines and their surrounding soil. Understanding the mechanical behavior of this coupled system is essential for the analysis of deformation patterns and failure modes in buried pipelines, thereby providing critical guidance for construction design and risk assessment protocols. Traditional analytical approaches have relied on classical mechanics theories and experimental methodologies; however, these approaches often incorporate excessive simplifications and assumptions that inadequately represent the complex properties of both soil and pipeline structures. Numerical simulation methodologies have emerged as viable alternatives for investigating pipe–soil interaction. Among these numerical approaches, Smoothed Particle Hydrodynamics (SPH)—an advanced Lagrangian meshless particle method—offers distinct advantages in modeling complex behaviors, including free surfaces, deformable boundaries, and large deformation scenarios that characterize pipe–soil interaction. This research establishes a pipe–soil interaction model for buried pipelines utilizing the SPH method, incorporating elastic–plastic constitutive relationships to represent soil behavior. The investigation examines lateral interaction mechanisms, vertical interaction responses in sandy soils, and the parametric influence of various soil properties on pipe–soil interaction characteristics. This study contributes insights into the application of meshfree numerical simulation techniques for pipe–soil interaction analysis, offering both engineering utility and theoretical advancement for pipeline infrastructure design and safety assessment. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

30 pages, 14479 KiB  
Article
Exploring Dissipation Terms in the SPH Momentum Equation for Wave Breaking on a Vertical Pile
by Corrado Altomare, Yuzhu Pearl Li and Angelantonio Tafuni
J. Mar. Sci. Eng. 2025, 13(6), 1005; https://doi.org/10.3390/jmse13061005 - 22 May 2025
Viewed by 610
Abstract
Accurate simulation of fluid flow around vertical cylinders is essential in numerous engineering applications, particularly in the design and assessment of offshore structures, bridge piers, and coastal defenses. This study employs the smoothed particle hydrodynamics (SPH) method to investigate the complex dynamics of [...] Read more.
Accurate simulation of fluid flow around vertical cylinders is essential in numerous engineering applications, particularly in the design and assessment of offshore structures, bridge piers, and coastal defenses. This study employs the smoothed particle hydrodynamics (SPH) method to investigate the complex dynamics of breaking waves impacting a vertical pile, a scenario marked by strong free-surface deformation, turbulence, and the wave–structure interaction. The mesh-free nature of SPH makes it especially suitable for capturing such highly nonlinear and transient hydrodynamic phenomena. The primary objective of the research is to evaluate the performance of different SPH dissipation schemes, namely artificial viscosity, laminar viscosity, and sub-particle scale (SPS) turbulence models, in reproducing key hydrodynamic features. Numerical results obtained with each scheme are systematically compared against experimental data to assess their relative accuracy and physical fidelity. Specifically, the laminar + SPS model reproduced the peak horizontal wave force within 5% of experimental values, while the artificial viscosity model overestimated the force by up to 25%. The predicted wave impact occurred at a non-dimensional time of t/T0.28, closely matching the experimental observation. Furthermore, force and elevation predictions with the laminar + SPS model remained consistent across three particle spacings (dp=0.05m,0.065m,0.076m), demonstrating good numerical convergence. This work provides critical insights into the suitability of SPH for modeling wave–structure interactions under breaking wave conditions and highlights the importance of proper dissipation modeling in achieving realistic simulations. The performance of the dissipation schemes remained robust across three tested particle spacings, confirming consistency in force and elevation predictions. Additionally, it underscores the sensitivity of SPH predictions to spatial resolution, highlighting the need for careful calibration to ensure robust and reliable outcomes. The study contributes to advancing SPH as a practical tool for engineering design and hazard assessment in coastal and offshore environments. Full article
Show Figures

Figure 1

14 pages, 3395 KiB  
Article
Numerical Analysis Method of Water Inrush During Blasting in Water-Resistant Rock Mass Tunnels Based on FEM-SPH Coupling Algorithm
by Yanqing Men, Zixuan Zhang, Jing Wang, Xiao Yu, Chuan Wang, Kai Wang and Xingzhi Ba
Buildings 2025, 15(11), 1765; https://doi.org/10.3390/buildings15111765 - 22 May 2025
Cited by 1 | Viewed by 412
Abstract
In recent years, geological disasters such as water inrush during drilling and blasting operations have posed significant challenges in tunnel engineering. This paper presents a novel continuous-discrete coupling method based on LS-DYNA, combining the finite element method (FEM) and smoothed particle hydrodynamics (SPH), [...] Read more.
In recent years, geological disasters such as water inrush during drilling and blasting operations have posed significant challenges in tunnel engineering. This paper presents a novel continuous-discrete coupling method based on LS-DYNA, combining the finite element method (FEM) and smoothed particle hydrodynamics (SPH), to simulate the water inrush phenomenon in blasting engineering. The proposed FEM-SPH model effectively captures the propagation of explosion shock waves, simulates small deformation areas with solid grids, and models water behavior using SPH. This study systematically investigates the dynamic evolution of water inrush, divided into three distinct phases: the rupture of the water-resistant rock layer, the emergence of fluid-conducting channels, and the onset of large-scale water influx. Results indicate that under blasting load, the stress of the surrounding rock increases sharply, leading to instantaneous water inrush. The FEM-SPH model demonstrates superior performance in simulating the complex interactions between blasting stress waves, water pressure, and rock mass damage. This research provides new insights and methods for water control in tunnel engineering and offers significant potential for preventing water inrush disasters in underground construction. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

23 pages, 17020 KiB  
Article
An Unresolved SPH-DEM Coupling Framework for Bubble–Particle Interactions in Dense Multiphase Systems
by Ying Tian, Guanhua An, Xiangwei Dong, Rui Chen, Zhen Guo, Xuhe Zheng and Qiang Zhang
Processes 2025, 13(5), 1291; https://doi.org/10.3390/pr13051291 - 23 Apr 2025
Viewed by 485
Abstract
This study presents a novel unresolved SPH-DEM coupling framework to investigate the complex interactions between rising gas bubbles and sinking solid particles in multiphase systems. Traditional numerical methods often struggle with large deformations, multiphase interfaces, and computational efficiency when simulating dense particle-laden flows. [...] Read more.
This study presents a novel unresolved SPH-DEM coupling framework to investigate the complex interactions between rising gas bubbles and sinking solid particles in multiphase systems. Traditional numerical methods often struggle with large deformations, multiphase interfaces, and computational efficiency when simulating dense particle-laden flows. To address these challenges, the proposed model leverages SPH’s Lagrangian nature to resolve fluid motion and bubble dynamics, while the DEM captures particle–particle and particle–bubble interactions. An unresolved coupling strategy is introduced to bridge the scales between fluid and particle phases, enabling efficient simulations of large-scale systems with discrete bubbles/particles. The model is validated against benchmark cases, including single bubbles rising and single particle’s sedimentation. Simulation studies reveal the effects of particle/bubble number and initial distance on phase interaction patterns and clustering behaviors. Results further illustrate the model’s capability to capture complex phenomena such as particle entrainment by bubble wakes and hindered settling in dense suspensions. The framework offers a robust and efficient tool for optimizing industrial processes like mineral flotation, where bubble–particle dynamics play a critical role. Full article
Show Figures

Figure 1

21 pages, 10168 KiB  
Article
Theoretical and Numerical Study on a Scale Model Test of Planetary Cratering Impact
by He Lv, Qiguang He and Xiaowei Chen
Aerospace 2025, 12(4), 333; https://doi.org/10.3390/aerospace12040333 - 12 Apr 2025
Viewed by 421
Abstract
Our investigation delves into the scaling law governing planetary cratering impacts. We meticulously analyze the interplay between dimensionless parameters driving crater growth and the morphological transition of craters and construct the scaling analysis between the scale model tests and the prototype tests by [...] Read more.
Our investigation delves into the scaling law governing planetary cratering impacts. We meticulously analyze the interplay between dimensionless parameters driving crater growth and the morphological transition of craters and construct the scaling analysis between the scale model tests and the prototype tests by numerical simulation. With practical engineering applications in mind, we design scale model tests based on the experimental setups of geotechnical centrifuges, ensuring the robust validity of test designs. This meticulous approach is integral to achieving fidelity between simulations and experimental scenarios. Validation of our scale model tests is conducted through a numerical modeling framework, coupling the finite element-smoothed particle hydrodynamics adaptive method (FE-SPH). This validation procedure serves to bolster the reliability and credibility of our methodology, facilitating an accurate depiction of the cratering mechanism. Of particular interest is the investigation into the depth-to-diameter ratio of impact craters, wherein we explore its intricate relationship with projectile diameter and gravity. Through rigorous analysis, we delineate the transition diameter at which terrestrial impact craters manifest a transition from simple to complex morphologies, thereby shedding light on the underlying dynamics of crater formation. Moreover, our study meticulously scrutinizes the relationship of crater formation time between the scaling model tests and the prototype tests. Our research underscores the consistency of the crater depth–diameter ratio in the scale model tests and the prototype tests and affirms applicability in replicating prototype tests by scale model tests. Notably, our findings reveal compelling correlations between the depth-to-diameter ratio of impact craters and gravity, as well as projectile diameter, providing valuable insights into the governing dynamics of impact crater formation. These insights not only advance our fundamental understanding of planetary cratering processes but also hold implications for practical applications in planetary science and engineering. Full article
(This article belongs to the Special Issue Lunar, Planetary, and Small-Body Exploration)
Show Figures

Figure 1

13 pages, 4470 KiB  
Article
Simulation Analysis and Experimental Verification of High-Speed Impact of Rocky Asteroids
by Fan Huang, Zhiqing Geng, Binqiang Luo, Yuming Peng, Liang Xu, Wei Wang, Biyue Pan and Dongyu Li
Sensors 2025, 25(7), 2055; https://doi.org/10.3390/s25072055 - 25 Mar 2025
Viewed by 397
Abstract
Kinetic impact is an effective way to deal with threatening asteroids, and the momentum transfer coefficient during the impact process is an effective indicator for evaluating the impact effect. This article is based on the use of the Smoothed Particle Hydrodynamics (SPH) method [...] Read more.
Kinetic impact is an effective way to deal with threatening asteroids, and the momentum transfer coefficient during the impact process is an effective indicator for evaluating the impact effect. This article is based on the use of the Smoothed Particle Hydrodynamics (SPH) method to establish a simulation model of high-speed impact of flying discs on granite targets, and obtain parameters such as the shape of the splashing material and the distribution of the target damage during the impact process. An analysis was conducted on the influence of different impact velocities on the kinetic energy transfer coefficient, and it was found that the momentum transfer coefficient increased with the increase in impact velocity, from 1.59 at 5 km/s to 1.96 at 11.7 km/s. A ground high-speed impact system with a speed of over 10 km/s has been established, and the actual momentum transfer coefficient has increased from 1.73 at 7 km/s to around 2.06 at 11.7 km/s. The variation trend of kinetic energy transfer coefficients obtained from experiments and simulations is consistent, with an error of basically within 10%, and the simulation results are effective. The simulation and experimental analysis of high-speed kinetic impact can provide a reference for the engineering implementation of asteroid impact defense missions. Full article
(This article belongs to the Section Remote Sensors)
Show Figures

Figure 1

21 pages, 2835 KiB  
Article
Numerical Simulation of Casting Filling Process Based on SPH-FEM Coupling Method
by Yanan Zhang, Peigang Jiao, Weibo Du, Guoqing Qi and Bowen Chen
Symmetry 2025, 17(4), 494; https://doi.org/10.3390/sym17040494 - 25 Mar 2025
Viewed by 620
Abstract
The coordinated optimization of free-surface dynamics tracking and solid deformation computation remains a persistent challenge in casting filling simulations. While the traditional smoothed particle hydrodynamics (SPH) method suffers from prohibitive computational costs limiting practical applications, the delayed interface updates of the finite element [...] Read more.
The coordinated optimization of free-surface dynamics tracking and solid deformation computation remains a persistent challenge in casting filling simulations. While the traditional smoothed particle hydrodynamics (SPH) method suffers from prohibitive computational costs limiting practical applications, the delayed interface updates of the finite element method (FEM) compromise simulation fidelity. This study proposes a symmetric SPH-FEM coupling algorithm that integrates real-time particle-grid data exchange, and validation through ring filling simulations demonstrated close agreement with Schmid’s benchmark experiments, confirming flow field reconstruction reliability. Furthermore, bottom-injection plate experiments verified the method’s thermal modeling stability, achieving fully coupled flow–thermal–stress simulations with enhanced computational efficiency. The proposed symmetric coupling framework achieves engineering-ready simulation speeds without compromising accuracy, and this advancement establishes a novel computational tool for predicting casting defects including porosity and hot tears, significantly advancing the implementation of high-fidelity numerical simulation in foundry engineering applications. Full article
Show Figures

Figure 1

31 pages, 7591 KiB  
Article
Enhancing Particle Breakage and Energy Utilization in Ball Mills: An Integrated DEM and SPH Approach
by Wallace Santos Soares, Elisan dos Santos Magalhães and Nicolin Govender
Mining 2025, 5(1), 18; https://doi.org/10.3390/mining5010018 - 10 Mar 2025
Cited by 1 | Viewed by 1163
Abstract
This study examines the conversion of an overflow ball mill into a new discharge system via Discrete Element Method (DEM) and Smoothed Particle Hydrodynamics (SPH) simulations, demonstrating significant performance improvements. The methodology integrates SPH to assess the effects of the slurry on energy [...] Read more.
This study examines the conversion of an overflow ball mill into a new discharge system via Discrete Element Method (DEM) and Smoothed Particle Hydrodynamics (SPH) simulations, demonstrating significant performance improvements. The methodology integrates SPH to assess the effects of the slurry on energy dissipation, power loss, breakage rates, and material transport. The findings highlight significant operational inefficiencies in the overflow setup, extensive dead zones, and excessive charge volume that hinder milling efficiency by limiting grinding media interaction with the ore and reducing energy for comminution. Additionally, slurry pooling shifts the center of gravity, causing torque losses and direct material bypass to the discharge zone. Our simulations replicate these challenges and benchmark them against industrial-scale operations, identifying critical charge excesses that constrain throughput and elevate power consumption. The new proposed discharge system decouples the filling charge from the evacuation mechanism, releasing the effective volume in the mill, in addition to tackling common issues in the traditional grate discharge setups like backflow and carry-over. This arrangement substantially improved grinding efficiency, as demonstrated by enhanced breakage rates and diminished specific energy consumption. The results provide a robust framework for mill design and operational optimization, underscoring the value of integrated slurry behavior analysis in mill performance enhancement. Full article
(This article belongs to the Special Issue Feature Papers in Sustainable Mining Engineering)
Show Figures

Figure 1

19 pages, 14484 KiB  
Article
SPH Simulation of Gear Meshing with Lubricating Fluid–Solid Coupling and Heat-Transfer Process
by Chunxiang Shi, Xiangkun Song, Weipeng Xu, Ying Tian, Liu Yang, Xiangwei Dong and Qiang Zhang
Processes 2025, 13(3), 730; https://doi.org/10.3390/pr13030730 - 3 Mar 2025
Viewed by 1106
Abstract
This study employs the meshfree Smoothed Particle Hydrodynamics (SPH) method to simulate the fluid–solid coupling process of gear meshing rotation with lubricating oil or oil jet lubrication fluids, considering the heat-transfer process under preset initial temperature conditions. While traditional grid methods face challenges [...] Read more.
This study employs the meshfree Smoothed Particle Hydrodynamics (SPH) method to simulate the fluid–solid coupling process of gear meshing rotation with lubricating oil or oil jet lubrication fluids, considering the heat-transfer process under preset initial temperature conditions. While traditional grid methods face challenges in simulating the dynamic interaction between gear-meshing rotation and lubricating fluids, such as time-dependent contact in fluid–solid coupling and heat transfer, difficulties in handling meshing gaps, and the complexity of dynamic mesh setup, our approach leverages the unique advantages of meshless methods. In the established fluid–solid–heat coupling model, gears are considered as rigid bodies, and both fluids and gears are discretized into SPH particles, achieving fluid–solid coupling through the interaction between fluid particles and solid SPH particles. The model considers three cooling scenarios: oil pool cooling, oil jet cooling, and combined cooling. Simulation results show that oil pool cooling is more effective than oil jet cooling, but oil jet cooling can achieve localized spot cooling. The model exhibits good computational stability and efficiency in simulating the fluid–solid coupling and heat-transfer processes of gear rotation, oil jetting, and oil pool fluids. This study provides an effective numerical simulation method for gear lubrication cooling and has significant application potential for simulating complex scenarios such as gear operation and oil pool sloshing in coal mining machine arms. Compared to previous SPH work, this study couples a thermodynamic model in the simulation, thus enabling the modeling of fluid–thermal–solid coupled processes. Full article
(This article belongs to the Section Particle Processes)
Show Figures

Figure 1

19 pages, 2934 KiB  
Article
Numerical Simulation of Crack Propagation in Rocks with Random Pores Based on Improved Smoothed Particle Hydrodynamics Method
by Wei Sun, Xuhua Ren, Jixun Zhang and Hesi Xu
Appl. Sci. 2025, 15(4), 1826; https://doi.org/10.3390/app15041826 - 11 Feb 2025
Viewed by 854
Abstract
This study aims to explore the influence of random pore characteristics inside rock mass on the fracture mechanical properties of rock under tensile stress. By means of numerical simulation based on the improved smoothed particle hydrodynamics (SPH) method, a specific kernel function approximate [...] Read more.
This study aims to explore the influence of random pore characteristics inside rock mass on the fracture mechanical properties of rock under tensile stress. By means of numerical simulation based on the improved smoothed particle hydrodynamics (SPH) method, a specific kernel function approximate integral interpolation form and discrete particle superposition expression form are constructed to handle physical processes. The maximum tensile stress criterion and fracture marker ω are introduced to improve the traditional smooth kernel function for dealing with crack propagation. Meanwhile, the center and radius information of circular pores are generated using random numbers to create a rock model with random pores. The research results show that in terms of crack propagation morphology, as the pore percentage increases, the crack gradually changes from a straight propagation slightly disturbed by pores to an overall fragmentation propagation with frequent branching and coalescence; when the pore size increases, the crack propagation changes from a complex network-like shape frequently disturbed by small pores to a relatively simple through fracture controlled by key nodes of large pores. In terms of the stress–strain law, the increase in pore percentage leads to a decrease in the elastic modulus and peak strength of the rock and a weakened post-peak ductility; when the pore size increases, the elastic modulus first decreases and then increases, the peak strength changes similarly, and the post-peak characteristics change from complex fluctuations to a stable transition. The conclusion indicates that the pore percentage and size have a significant and complex influence on the mechanical properties of the rock. Full article
Show Figures

Figure 1

Back to TopTop