Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (37)

Search Parameters:
Keywords = smog particles

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1990 KB  
Article
Photocatalytic NOx Removal Performance of TiO2-Coated Permeable Concrete: Laboratory Optimization and Field Demonstration
by Han-Na Kim and Hyeok-Jung Kim
Materials 2026, 19(1), 148; https://doi.org/10.3390/ma19010148 - 31 Dec 2025
Viewed by 228
Abstract
Nitrogen oxides (NOx) emitted mainly from vehicle exhaust significantly contribute to urban air pollution, leading to photochemical smog and secondary particulate matter. Photocatalytic technology has emerged as a promising solution for continuous NOx decomposition under ultraviolet (UV) irradiation. This study [...] Read more.
Nitrogen oxides (NOx) emitted mainly from vehicle exhaust significantly contribute to urban air pollution, leading to photochemical smog and secondary particulate matter. Photocatalytic technology has emerged as a promising solution for continuous NOx decomposition under ultraviolet (UV) irradiation. This study developed an eco-friendly permeable concrete incorporating activated loess and zeolite to improve roadside air quality. The high porosity and adsorption capability of the concrete provided a suitable substrate for a TiO2-based photocatalytic coating. A single-component coating system was optimized by introducing colloidal silica to enhance TiO2 particle dispersibility and adding a binder to secure durable adhesion on the concrete surface. The produced permeable concrete met sidewalk quality standards specified in SPS-F-KSPIC-001-2006. Photocatalytic NOx removal performance evaluated by ISO 22197-1 showed a maximum removal efficiency of 77.5%. Even after 300 h of accelerated weathering, the activity loss remained within 13.8%, retaining approximately 80% of the initial performance. Additionally, outdoor mock-up testing under natural light confirmed NOx concentration removal and formation of nitrate by-products, demonstrating practical applicability in real environments. Overall, the integration of permeable concrete and a durable, single-component TiO2 photocatalytic coating provides a promising approach to simultaneously enhance pavement sustainability and reduce urban NOx pollution. Full article
(This article belongs to the Section Catalytic Materials)
Show Figures

Graphical abstract

19 pages, 14654 KB  
Article
Monitoring Air Pollution in Wartime Kyiv (Ukraine): PM2.5 Spikes During Russian Missile and Drone Attacks
by Kseniia Bondar, Iryna Tsiupa and Mykhailo Virshylo
Urban Sci. 2025, 9(11), 477; https://doi.org/10.3390/urbansci9110477 - 14 Nov 2025
Viewed by 2340
Abstract
This study investigates the environmental impact of combined missile and drone attacks on Kyiv, the capital of Ukraine, with a focus on the release of particulate matter (PM) into the urban atmosphere. These military strikes frequently result in the destruction of residential and [...] Read more.
This study investigates the environmental impact of combined missile and drone attacks on Kyiv, the capital of Ukraine, with a focus on the release of particulate matter (PM) into the urban atmosphere. These military strikes frequently result in the destruction of residential and industrial infrastructure, as well as fires, leading to acute increases in ambient concentrations of fine particulate matter (PM2.5). Observational data were collected between 1 and 30 June 2025 using a distributed network of low-cost air quality monitoring stations aggregated by the SaveEcoBot platform. The optical particle counters, based on light scattering technology, enable real-time monitoring of airborne particulate fractions of PM2.5 along with meteorological parameters and gas pollutants. The study period included two significant attacks (10 and 17 June), during which the temporal and spatial dynamics of PM2.5 concentrations were analyzed in comparison to baseline levels observed under non-attack conditions. Raw concentrations of PM2.5 up to 241 μg/m3 were observed in the epicenters of air-strike-induced fires, while smog plumes covered half of the city area. Elevated PM2.5 concentrations were recorded during and for several hours following the attacks and corresponding air raid alerts. The findings show days of PM2.5 exceedances above the World Health Organization (WHO) daily threshold of 15 μg/m3. These results underscore the acute environmental and public health hazards posed by military assaults on urban centers. Furthermore, this research highlights the role of citizen-driven environmental monitoring as a valuable tool for both scientific documentation and potential evidentiary support in assessing the environmental impacts of warfare. Full article
(This article belongs to the Section Urban Environment and Sustainability)
Show Figures

Figure 1

15 pages, 2951 KB  
Article
Urban–Rural PM2.5 Dynamics in Kraków, Poland: Patterns and Source Attribution
by Dorota Lipiec, Piotr Lipiec and Tomasz Danek
Atmosphere 2025, 16(10), 1201; https://doi.org/10.3390/atmos16101201 - 17 Oct 2025
Cited by 1 | Viewed by 1505
Abstract
Hourly PM2.5 concentrations were measured from February to May 2025 by a network of low-cost sensors located in urban Kraków and its surrounding municipalities. Temporal variability associated with the transition from the heating period to the spring months, together with spatial contrasts, [...] Read more.
Hourly PM2.5 concentrations were measured from February to May 2025 by a network of low-cost sensors located in urban Kraków and its surrounding municipalities. Temporal variability associated with the transition from the heating period to the spring months, together with spatial contrasts, were assessed with principal component analysis (PCA), urban–rural difference curves, and a detailed examination of the most severe smog episode (12–13 February). Particle trajectories generated with the HYSPLIT dispersion model, run in a coarse-grained, 36-task parallel configuration, were combined with kernel density mapping to trace emission pathways. The results show that peak concentrations coincide with the heating season; rural sites recorded higher amplitudes and led the urban signal by up to several hours, implicating external sources. Time-series patterns, PCA loadings, and HYSPLIT density fields provided mutually consistent evidence of pollutant advection toward the city. Parallelizing HYSPLIT on nine central processing unit (CPU) cores reduced the runtime from more than 600 s to about 100 s (speed-up ≈ 6.5), demonstrating that routine episode-scale analyses are feasible even on modest hardware. The findings underline the need to extend monitoring and mitigation beyond Kraków’s administrative boundary and confirm that coarse-grained parallel HYSPLIT modeling, combined with low-cost sensor data and relatively basic statistics, offers a practical framework for rapid source attribution. Full article
(This article belongs to the Special Issue High-Performance Computing for Atmospheric Modeling (2nd Edition))
Show Figures

Graphical abstract

23 pages, 2042 KB  
Article
A Wireless Sensor Network-Based Combustible Gas Detection System Using PSO-DBO-Optimized BP Neural Network
by Min Zhou, Sen Wang, Jianming Li, Zhe Wei and Lingqiao Shui
Sensors 2025, 25(10), 3151; https://doi.org/10.3390/s25103151 - 16 May 2025
Cited by 2 | Viewed by 1406
Abstract
Combustible gas leakage remains a critical safety concern in industrial and indoor environments, necessitating the development of detection systems that are both accurate and practically deployable. This study presents a wireless gas detection system that integrates a gas sensor array, a low-power microcontroller [...] Read more.
Combustible gas leakage remains a critical safety concern in industrial and indoor environments, necessitating the development of detection systems that are both accurate and practically deployable. This study presents a wireless gas detection system that integrates a gas sensor array, a low-power microcontroller with Zigbee-based communication, and a Back Propagation (BP) neural network optimized via a sequential hybrid strategy. Specifically, Particle Swarm Optimization (PSO) is employed for global parameter initialization, followed by Dung Beetle Optimization (DBO) for local refinement, jointly enhancing the network’s convergence speed and predictive precision. Experimental results confirm that the proposed PSO-DBO-BP model achieves high correlation coefficients (above 0.997) and low mean relative errors (below 0.25%) for all monitored gases, including hydrogen, carbon monoxide, alkanes, and smog. The model exhibits strong robustness in handling nonlinear responses and cross-sensitivity effects across multiple sensors, demonstrating its effectiveness in complex detection scenarios under laboratory conditions within embedded wireless sensor networks. Full article
(This article belongs to the Special Issue Wireless Sensor Networks for Condition Monitoring)
Show Figures

Figure 1

17 pages, 10934 KB  
Article
Chemical, Diagnostic, and Instrumental Analysis of an Ancient Roman Cippus funebris from the First Century AD
by Mauro Castrucci, Mauro Tomassetti, Emanuele Dell’Aglio, Giovanni Visco, Maria Pia Sammartino and Marco Castracane
Analytica 2025, 6(1), 11; https://doi.org/10.3390/analytica6010011 - 13 Mar 2025
Viewed by 1666
Abstract
A diagnostic chemical analysis has been performed on a Roman Cippus funebris in precious white marble located close to an ancient Roman road. The Cippus was in good condition but almost completely covered by a black patina, requiring a conservative cleaning intervention. The [...] Read more.
A diagnostic chemical analysis has been performed on a Roman Cippus funebris in precious white marble located close to an ancient Roman road. The Cippus was in good condition but almost completely covered by a black patina, requiring a conservative cleaning intervention. The restorer in charge of the restoration asked us to make a preliminary diagnosis, on the basis of which we could suggest the most appropriate intervention. The Cippus was dedicated to the young Quintus Cornelius Proclianus, who died at the age of 15, by his mother Valeria Calpurnia Scopele. It perfectly fits into the Roman funerary liturgy and also shows an Etruscan-type iconography that seems to confirm the Etruscan Gens of the family and its dating to the 1st century AD. Ion chromatography (IC) analyses were performed to determine anions and cations on solutions obtained from the extraction of salts from the four samples of the Cippus. pH, conductivity, and red-ox potential measures, as well as UV-visible spectra were carried out on the same solutions. A small fragment, spontaneously fallen from the Cippus’ surface, was also observed by optical microscopy (OM) and scanning electron microscopy (SEM) coupled with energy dispersive spectroscopy (EDS). From the analyses, the dark patina that covered the surface before cleaning turned out to be made of black crusts, that is, smog particles adsorbed on sulfates, but above all, by a layer of microflora. The results allowed us to suggest some conservative interventions. Full article
(This article belongs to the Special Issue Feature Papers in Analytica)
Show Figures

Graphical abstract

15 pages, 2678 KB  
Article
Primary Particulate Matter and Aerosol Emissions from Biodiesel Engines During Idling in Plateau Environments of China
by Dingmin Xu, Hongyang Yu, Wenjie Cai, Jiacheng Xu and Jiaqiang Li
Sustainability 2025, 17(3), 976; https://doi.org/10.3390/su17030976 - 25 Jan 2025
Cited by 1 | Viewed by 2347
Abstract
Diesel vehicles are recognized as significant mobile sources of particulate matter emissions. As a renewable and environmentally friendly alternative to conventional fossil diesel, biodiesel offers the benefit of reducing greenhouse gas emissions. However, existing research on biodiesel emissions primarily focuses on primary emissions, [...] Read more.
Diesel vehicles are recognized as significant mobile sources of particulate matter emissions. As a renewable and environmentally friendly alternative to conventional fossil diesel, biodiesel offers the benefit of reducing greenhouse gas emissions. However, existing research on biodiesel emissions primarily focuses on primary emissions, with a limited understanding of their impact on secondary organic aerosol (SOA) formation. In this study, a diesel engine test bench was employed under idle conditions using three commonly used biodiesel blends. Exhaust emissions were directly introduced into the HAP-SWFU chamber, a quartz glass smog chamber designed to characterize both primary emissions and SOA formation during the photochemical oxidation process. The black carbon and primary organic aerosol (POA) emission factors for the three biodiesel blends under idle conditions ranged from 0.31 to 0.58 g kg−1 fuel and 0.99 to 1.06 g kg−1 fuel, respectively. The particle size of exhaust particulates peaked between 20 and 30 nm, and nucleation-idle conditions were found to be the dominating mode. The SOA production factor was between 0.92 and 1.15 g kg−1 fuel, and the SOA/POA ratio ranged from 1.35 to 2.37, with an average of 1.86. This study concludes that the POA emission factor for biodiesel under idle conditions is comparable to values reported in previous studies on pure diesel exhaust, with the maximum SOA production factor reduced by 38%. Full article
(This article belongs to the Section Pollution Prevention, Mitigation and Sustainability)
Show Figures

Figure 1

22 pages, 6236 KB  
Article
Varying Performance of Low-Cost Sensors During Seasonal Smog Events in Moravian-Silesian Region
by Václav Nevrlý, Michal Dostál, Petr Bitala, Vít Klečka, Jiří Sléžka, Pavel Polách, Katarína Nevrlá, Melánie Barabášová, Růžena Langová, Šárka Bernatíková, Barbora Martiníková, Michal Vašinek, Adam Nevrlý, Milan Lazecký, Jan Suchánek, Hana Chaloupecká, David Kiča and Jan Wild
Atmosphere 2024, 15(11), 1326; https://doi.org/10.3390/atmos15111326 - 3 Nov 2024
Cited by 2 | Viewed by 2649
Abstract
Air pollution monitoring in industrial regions like Moravia-Silesia faces challenges due to complex environmental conditions. Low-cost sensors offer a promising, cost-effective alternative for supplementing data from regulatory-grade air quality monitoring stations. This study evaluates the accuracy and reliability of a prototype node containing [...] Read more.
Air pollution monitoring in industrial regions like Moravia-Silesia faces challenges due to complex environmental conditions. Low-cost sensors offer a promising, cost-effective alternative for supplementing data from regulatory-grade air quality monitoring stations. This study evaluates the accuracy and reliability of a prototype node containing low-cost sensors for carbon monoxide (CO) and particulate matter (PM), specifically tailored for the local conditions of the Moravian-Silesian Region during winter and spring periods. An analysis of the reference data observed during the winter evaluation period showed a strong positive correlation between PM, CO, and NO2 concentrations, attributable to common pollution sources under low ambient temperature conditions and increased local heating activity. The Sensirion SPS30 sensor exhibited high linearity during the winter period but showed a systematic positive bias in PM10 readings during Polish smog episodes, likely due to fine particles from domestic heating. Conversely, during Saharan dust storm episodes, the sensor showed a negative bias, underestimating PM10 levels due to the prevalence of coarse particles. Calibration adjustments, based on the PM1/PM10 ratio derived from Alphasense OPC-N3 data, were initially explored to reduce these biases. For the first time, this study quantifies the influence of particle size distribution on the SPS30 sensor’s response during smog episodes of varying origin, under the given local and seasonal conditions. In addition to sensor evaluation, we analyzed the potential use of data from the Copernicus Atmospheric Monitoring Service (CAMS) as an alternative to increasing sensor complexity. Our findings suggest that, with appropriate calibration, selected low-cost sensors can provide reliable data for monitoring air pollution episodes in the Moravian-Silesian Region and may also be used for future adjustments of CAMS model predictions. Full article
Show Figures

Figure 1

23 pages, 3187 KB  
Article
Effects of Ammonia Mitigation on Secondary Organic Aerosol and Ammonium Nitrate Particle Formation in Photochemical Reacted Gasoline Vehicle Exhausts
by Hiroyuki Hagino and Risa Uchida
Atmosphere 2024, 15(9), 1061; https://doi.org/10.3390/atmos15091061 - 2 Sep 2024
Cited by 4 | Viewed by 2652
Abstract
Gaseous air pollutants emitted primarily by anthropogenic sources form secondary products through photochemical reactions, complicating the regulatory analysis of anthropogenic emissions in the atmosphere. We used an environmental chassis dynamometer and a photochemical smog chamber to conduct a parameter sensitivity experiment to investigate [...] Read more.
Gaseous air pollutants emitted primarily by anthropogenic sources form secondary products through photochemical reactions, complicating the regulatory analysis of anthropogenic emissions in the atmosphere. We used an environmental chassis dynamometer and a photochemical smog chamber to conduct a parameter sensitivity experiment to investigate the formation of secondary products from a gasoline passenger car. To simulate the mitigation of ammonia emissions from gasoline vehicle exhausts assuming future emission controls and to allow photochemical oxidation and aging of the vehicle exhaust, ammonia was selectively removed by a series of five denuders installed between the vehicle and photochemical smog chamber. Overall, there were no differences in the formation of secondary organic aerosols and ozone with or without ammonia mitigation. However, the potential for ammonium nitrate particle formation was significantly reduced with ammonia mitigation. In addition, ammonia mitigation resulted in increased aerosol acidity due to nitric acid in the gas phase not being neutralized by ammonia and condensing onto the liquid particle phase, indicating a potentially important secondary effect associated with ammonia mitigation. Thus, we provide new insights into the effects of ammonia mitigation on secondary emissions from gasoline vehicle exhaust and into a potentially useful experimental approach for determining primary and secondary emissions. Full article
(This article belongs to the Special Issue Secondary Atmospheric Pollution Formations and Its Precursors)
Show Figures

Figure 1

27 pages, 28534 KB  
Article
GIS-Based Analysis of Volatile Organic Compounds in Bucheon, Korea, Using Mobile Laboratory and Proton-Transfer-Reaction Time-of-Flight Mass Spectrometry Methods
by Minkyeong Kim, Daeho Kim, Jung-Young Seo and Duckshin Park
Toxics 2024, 12(7), 511; https://doi.org/10.3390/toxics12070511 - 15 Jul 2024
Cited by 2 | Viewed by 2540
Abstract
Recently, volatile organic compounds (VOCs) have been shown to act as precursors of secondary organic particles that react with ultraviolet rays in the atmosphere and contribute to photochemical smog, global warming, odor, and human health risks, highlighting the importance of VOC management. In [...] Read more.
Recently, volatile organic compounds (VOCs) have been shown to act as precursors of secondary organic particles that react with ultraviolet rays in the atmosphere and contribute to photochemical smog, global warming, odor, and human health risks, highlighting the importance of VOC management. In this study, we measured VOC concentrations in various contexts including industrial and residential areas of Bucheon, Korea, through mobile laboratory and proton-transfer-reaction time-of-flight mass spectrometry methods to determine winter VOC concentrations and visualized the data based on spatial information. Regional characteristics, temperature/humidity, atmospheric conditions, wind speed, traffic volume, etc., during the measurement period of the study site were comprehensively reviewed. For this purpose, global information system (GIS)-based air quality data and various environmental variables were comprehensively reviewed to assess spatial and temporal concentrations in three dimensions rather than in tables and graphs. Among VOCs, the levels of toluene, methanol, and n + i-butene were relatively high, with average concentrations of 48.3 ± 67.2, 34.4 ± 102.7, and 32.6 ± 57.7 ppb, respectively, at the end of the working day. The highest concentrations occurred near the Ojeong Industrial Complex. Mobile pollution sources are also a major driver of VOCs, highlighting the necessity of comprehensively reviewing traffic variables such as road level, estimated traffic volume, and average speed when identifying hotspots of air pollution. GIS-based visualization analysis techniques will improve the efficiency of air quality management. Full article
(This article belongs to the Section Air Pollution and Health)
Show Figures

Figure 1

14 pages, 3865 KB  
Article
Differences in Secondary Organic Aerosol Formation from α-Pinene Photooxidation in a Chamber with Purified Air and Ambient Air as Matrices: Preliminary Results
by Xinyi Li, Zhuoyue Ren, Xiangyu Zhang, Xiaodie Pang, Wei Song, Yanli Zhang and Xinming Wang
Atmosphere 2024, 15(2), 204; https://doi.org/10.3390/atmos15020204 - 6 Feb 2024
Cited by 2 | Viewed by 2349
Abstract
α-Pinene is a biogenic volatile organic compound (BVOC) that significantly contributes to secondary organic aerosols (SOA) in the atmosphere due to its high emission rate, reactivity, and SOA yield. However, the SOA yield measured in chamber studies from α-pinene photooxidation is limited in [...] Read more.
α-Pinene is a biogenic volatile organic compound (BVOC) that significantly contributes to secondary organic aerosols (SOA) in the atmosphere due to its high emission rate, reactivity, and SOA yield. However, the SOA yield measured in chamber studies from α-pinene photooxidation is limited in a purified air matrix. Assessing SOA formation from α-pinene photooxidation in real urban ambient air based on studies conducted in purified air matrices may be subject to uncertainties. In this study, α-pinene photooxidation and SOA yield were investigated in a smog chamber in the presence of NO and SO2 under purified air and ambient air matrices. With the accumulation of ozone (O3) during the photooxidation, an increasing part of α-pinene was consumed by O3 and finally nearly half of the α-pinene was oxidized by O3, facilitating the production of highly oxidized organic molecules and thereby SOA formation. Although the ambient air we introduced as matrix air was largely clean, with initial organic aerosol mass concentrations of ~1.5 μg m−3, the α-pinene SOA yield in the ambient air matrix was 42.3 ± 5.3%, still higher than that of 32.4 ± 0.4% in the purified air matrix. The chemical characterization of SOA by the high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) revealed that CxHy accounted for 53.7 ± 1.1% of the total signal in the ambient air matrix experiments, higher than 48.1 ± 0.3% in the purified air, while CxHyO and CxHyO>1 together constituted 45.0 ± 0.9% in the ambient air matrix, lower than 50.1 ± 1.0% in the purified air. The O:C ratio in the ambient air matrix experiments was 0.41 ± 0.01, lower than 0.46 ± 0.01 in the purified air. The higher SOA yield of α-pinene in the ambient air matrix compared to that in the purified air matrix was partly due to the presence of initial aerosols in the ambient air, which facilitated the low volatile organic compounds produced from photochemical oxidation to enter the aerosol phase through gas-particle partitioning. The in-situ aerosol acidity calculated by the ISORROPIA-II model in the ambient air matrix experiments was approximately six times higher than that in purified air, and the higher SOA yield in the ambient air matrix experiments might also be attributed to acid-catalyzed SOA formation. Full article
(This article belongs to the Special Issue Haze and Related Aerosol Air Pollution in Remote and Urban Areas)
Show Figures

Figure 1

31 pages, 11639 KB  
Article
Investigating the Complexities of VOC Sources in Mexico City in the Years 2016–2022
by Mohammad Jahirul Alam, Bernhard Rappenglueck, Armando Retama and Olivia Rivera-Hernández
Atmosphere 2024, 15(2), 179; https://doi.org/10.3390/atmos15020179 - 31 Jan 2024
Cited by 11 | Viewed by 3497
Abstract
Volatile organic compounds (VOCs) are major ingredients of photochemical smog. It is essential to know the spatial and temporal variation of VOC emissions. In this study, we used the Positive Matrix Factorization (PMF) model for VOC source apportionment in Mexico City. We first [...] Read more.
Volatile organic compounds (VOCs) are major ingredients of photochemical smog. It is essential to know the spatial and temporal variation of VOC emissions. In this study, we used the Positive Matrix Factorization (PMF) model for VOC source apportionment in Mexico City. We first analyzed a data set collected during the ozone season from March–May 2016. It includes 33 VOCs, nitrogen oxide (NO), nitrogen dioxide (NO2), the sum of nitrogen oxides (NOx), carbon monoxide (CO), sulfur dioxide (SO2) and particle matter with a diameter < 1 μm (PM1). Another PMF analysis focused only on VOC data obtained in the month of May between the years 2016, 2017, 2018, 2021, and 2022 to gain insights into interannual variations. While the use of fossil fuel through combustion and evaporation continues to be major fraction in Mexico City, additional sources could be identified. Apart from biogenic sources which become more important closer to the end of the ozone season, a second natural emission factor termed “geogenic”, was identified. Overall, anthropogenic sources range between 80–90%. Diurnal plots and bivariate plots show the relative importance of these emission source factors on different temporal and spatial scales, which can be applied in emission control policies for Mexico City. Full article
Show Figures

Figure 1

19 pages, 4435 KB  
Article
Characterization of Chemical Components and Optical Properties of Toluene Secondary Organic Aerosol in Presence of Ferric Chloride Fine Particles
by Weichao Wang, Mingqiang Huang, Huimin Hu, Weixiong Zhao, Changjin Hu, Xuejun Gu and Weijun Zhang
Atmosphere 2023, 14(7), 1075; https://doi.org/10.3390/atmos14071075 - 26 Jun 2023
Cited by 3 | Viewed by 3182
Abstract
Iron ion is the common transition metal ion in atmospheric aerosol, which can affect the components and optics of secondary organic aerosol (SOA). In the current study, the atmospheric photooxidation of toluene to produce SOA in the presence of ferric chloride fine particles [...] Read more.
Iron ion is the common transition metal ion in atmospheric aerosol, which can affect the components and optics of secondary organic aerosol (SOA). In the current study, the atmospheric photooxidation of toluene to produce SOA in the presence of ferric chloride fine particles is simulated in a smog chamber; on-line and off-line mass spectrometry and spectroscopic instruments are used to characterize constituents and optics of SOA. Compare with SOA formed in the absence of fine particles, the laser desorption/ionization mass spectra of toluene SOA generated in the presence of ferric chloride fine particles show ion peaks of m/z = 163 and 178, the UV-Vis spectra of the extracting solution for toluene SOA have peaks near 400 and 700 nm, and the electrospray ionization mass spectra contain peaks at m/z = 248 and 300. Based on this spectral information, it is shown that gaseous methylcatechol formed from photooxidation of toluene may react with iron ion on the surface of fine particles by complexing and oxidation–reduction, resulting in methylbenzoquinone products and metallo-organic complex ions such as [Fe(III)(CH3C6H3OO)]+, [Fe(III)(CH3C6H3 OO)2] and [Fe(III)(CH3C6H3OO)Cl2]. These products have strong light absorption ability, resulting in an increase in the averaged mass absorption coefficient (<MAC>) in the 200~1000 nm range and the MAC at 365 nm (MAC365) for toluene SOA, while <MAC> and MAC365 progressively increase with an increasing concentration of ferric chloride fine particles. These results serve as experimental references for the study of the formation mechanism and optical properties of metallo-organic complexes in atmospheric aerosol particles in regions experiencing high levels of fine particles of metal and automobile exhaust pollution. Full article
Show Figures

Figure 1

17 pages, 6145 KB  
Article
Quantifying the Potential Co-Benefit of Air Quality Improvement on Cultural Heritage in China
by Ximo Wang, Huimin Li, Yufei Wang and Xiaofan Zhao
Sustainability 2023, 15(11), 8709; https://doi.org/10.3390/su15118709 - 28 May 2023
Cited by 6 | Viewed by 2509
Abstract
Atmospheric pollutants can corrode heritage materials, especially stone, which can cause a great loss that goes far beyond the economic losses of the degraded materials. Over the past decades, conventional air pollutants have been slashed owing to clean air actions in China, which [...] Read more.
Atmospheric pollutants can corrode heritage materials, especially stone, which can cause a great loss that goes far beyond the economic losses of the degraded materials. Over the past decades, conventional air pollutants have been slashed owing to clean air actions in China, which produces a significant co-benefit for heritage conservation. However, the benefits may be offset by increases in the photochemical oxidants in smog, such as ozone, which damage heritage materials. This study employed dose–response functions to quantify the impacts of air pollutants on the surface recession of the limestone of heritage structures in China, and assessed the potential benefits of air quality improvement for heritage conservation. The results show that the annual recession rate decreased from 9.69 μmy−1 in 2006 to 6.71 μmy−1 in 2020, resulting in a 41.4% increase in the number of heritage sites meeting the ICP Materials (International Co-operative Program on Effects on Materials including Historic and Cultural Monuments) control target of 8 µmy−1 for 2020. The air quality improvement avoided CNY 136.2 million in heritage site maintenance costs. The recession risk shows distinct regional differences; the southern and northwest regions are still at a higher material corrosion level than the northern and Qinghai–Tibet regions. Nationwide, PM10 (particles with aerodynamic diameter less than 10 μm) is the main risk factor responsible for the surface recession of limestone material of heritage structures in China. The study provides evidence for the benefits of air quality improvement for heritage conservation. Further, the study also puts forward policy recommendations for heritage conservation, including assessing pollution risk, promoting heritage conservation through social sustainability, and implementing differentiated conservation strategies. Full article
(This article belongs to the Section Tourism, Culture, and Heritage)
Show Figures

Figure 1

19 pages, 7857 KB  
Article
Enhancement of Asymmetrically Color-Cast Sandstorm Image Using Saturation-Based Color Correction and Hybrid Transmission Network
by Hosang Lee
Symmetry 2023, 15(5), 1095; https://doi.org/10.3390/sym15051095 - 16 May 2023
Viewed by 1735
Abstract
The images discussed in this manuscript show atmospheric conditions of smog, sandstorm, and dust. Moreover, the images were taken in various environments and have features such as dimness or color cast. The smoggy image has a greenish or bluish color veil, and the [...] Read more.
The images discussed in this manuscript show atmospheric conditions of smog, sandstorm, and dust. Moreover, the images were taken in various environments and have features such as dimness or color cast. The smoggy image has a greenish or bluish color veil, and the sandstorm image has a yellowish or reddish color veil because of the various sand particles. Various methods have been used to enhance images containing dust. However, if the color-cast ingredients are not considered during image enhancement, then the enhanced image will have a new, artificial color veil that did not appear in the input image, as the color-veiled image does not have a uniform color channel. Certain channels are attenuated by sand particles. Therefore, this paper proposes a color-balancing method based on saturation to enhance asymmetrically cast colors due to the attenuation of the color channel by sand particles. Moreover, because the balanced image contains dust and the distribution of hazy ingredients is asymmetrical, a dehazing procedure is needed to enhance the image. This work used the original image and a reversed image to train the hybrid transmission network and generate the image’s transmission map. Moreover, an objective and subjective assessment procedure was used to compare the performance of the proposed method with that of other methods. Through the assessment, the performance of the proposed method was shown to be superior to other methods’ performance. Full article
Show Figures

Figure 1

17 pages, 1802 KB  
Article
Multi-City Analysis of the Acute Effect of Polish Smog on Cause-Specific Mortality (EP-PARTICLES Study)
by Michał Święczkowski, Sławomir Dobrzycki and Łukasz Kuźma
Int. J. Environ. Res. Public Health 2023, 20(8), 5566; https://doi.org/10.3390/ijerph20085566 - 18 Apr 2023
Cited by 13 | Viewed by 2939
Abstract
Polish smog is a specific type of air pollution present in Eastern Poland, which may cause particularly adverse cardiovascular effects. It is characterized primarily by high concentrations of particulate matter (PM) and different favorable conditions of formation. Our study aimed to assess whether [...] Read more.
Polish smog is a specific type of air pollution present in Eastern Poland, which may cause particularly adverse cardiovascular effects. It is characterized primarily by high concentrations of particulate matter (PM) and different favorable conditions of formation. Our study aimed to assess whether PM and nitrogen dioxide (NO2) have a short-term impact on mortality due to acute coronary syndrome (ACS) and ischemic stroke (IS). The study covered the years 2016–2020, a total of 6 million person-years from five main cities in Eastern Poland. To evaluate the association between air pollution and cause-specific mortality, a case-crossover study design with conditional logistic regression was used at days with LAG from 0 to 2. We recorded 87,990 all-cause deaths, including 9688 and 3776 deaths due to ACS and IS, respectively. A 10 μg/m3 increase in air pollutants was associated with an increase in mortality due to ACS (PM2.5 OR = 1.029, 95%CI 1.011–1.047, p = 0.002; PM10 OR = 1.015, 95%CI 1–1.029, p = 0.049) on LAG 0. On LAG 1 we recorded an increase in both IS (PM2.5 OR = 1.03, 95%CI 1.001–1.058, p = 0.04) and ACS (PM2.5 OR = 1.028, 95%CI 1.01–1.047, p = 0.003; PM10 OR = 1.026, 95%CI 1.011–1.041, p = 0.001; NO2 OR = 1.036, 95%CI 1.003–1.07, p = 0.04). There was a strong association between air pollution and cause-specific mortality in women (ACS: PM2.5 OR = 1.032, 95%CI 1.006–1.058, p = 0.01; PM10 OR = 1.028, 95%CI 1.008–1.05, p = 0.01) and elderly (ACS: PM2.5 OR = 1.03, 95%CI 1.01–1.05, p = 0.003; PM10 OR = 1.027, 95% CI 1.011–1.043, p < 0.001 and IS: PM2.5 OR = 1.037, 95%CI 1.007–1.069, p = 0.01; PM10 OR = 1.025, 95%CI 1.001–1.05, p = 0.04). The negative influence of PMs was observed on mortality due to ACS and IS. NO2 was associated with only ACS-related mortality. The most vulnerable subgroups were women and the elderly. Full article
Show Figures

Graphical abstract

Back to TopTop