Monitoring Air Pollution in Wartime Kyiv (Ukraine): PM2.5 Spikes During Russian Missile and Drone Attacks
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area and War Situation Characterization
2.2. Air Quality Monitoring Methodology and PM2.5 Mapping
2.3. Timeline of Air Strikes
3. Results
3.1. Cross-Network Mutual Verification of PM2.5 Sensor Performance
3.2. Temporal Variations of PM2.5
3.3. Relationship Between PM2.5, Meteorological Parameters, and Gaseous Pollutants
3.4. Determination of the Optimal PM2.5 Interpolation Method
3.5. Spatio-Temporal Distributions of PM2.5 Following Air Strike Episodes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pope, C.A.; Dockery, D.W. Health Effects of Fine Particulate Air Pollution: Lines that Connect. J. Air Waste Manag. Assoc. 2006, 56, 709–742. [Google Scholar] [CrossRef]
- Rogula-Kozłowska, W.; Błaszczak, B.; Szopa, S.; Klejnowski, K.; Sówka, I.; Zwoździak, A.; Jabłońska, M.; Mathews, B. PM2.5 in the central part of Upper Silesia, Poland: Concentrations, elemental composition, and mobility of components. Environ. Monit. Assess. 2013, 185, 581–601. [Google Scholar] [CrossRef]
- Majewski, G.; Przewozniczuk, W. Study of particulate matter pollution in the Warsaw area. Pol. J. Environ. Stud. 2009, 18, 293–300. [Google Scholar]
- Jordanova, D.; Jordanova, N.; Lanos, P.; Petrov, P.; Tsacheva, T. Magnetism of outdoor and indoor settled dust and its utilization as a tool for revealing the effect of elevated particulate air pollution on cardiovascular mortality. Geochem. Geophys. Geosyst. 2012, 13, Q08Z49. [Google Scholar] [CrossRef]
- Hofman, J.; Castanheiro, A.; Nuyts, G.; Joosen, S.; Spassov, S.; Blust, R.; De Wael, K.; Lenaerts, S.; Samson, R. Impact of urban street canyon architecture on local atmospheric pollutant levels and magneto-chemical PM10 composition: An experimental study in Antwerp, Belgium. Sci. Total Environ. 2020, 712, 135534. [Google Scholar] [CrossRef]
- Matei, E.; Râpă, M.; Mateș, I.M.; Popescu, A.-F.; Bădiceanu, A.; Balint, A.I.; Covaliu-Mierlă, C.I. Heavy Metals in Particulate Matter—Trends and Impacts on Environment. Molecules 2025, 30, 1455. [Google Scholar] [CrossRef] [PubMed]
- Jeleńska, M.; Górka-Kostrubiec, B.; Werner, T.; Kądziałko-Hofmokl, M.; Szczepaniak-Wnuk, I.; Gonet, T.; Szwarczewski, P. Evaluation of indoor/outdoor urban air pollution by magnetic, chemical and microscopic studies. Atmos. Pollut. Res. 2017, 8, 754–766. [Google Scholar] [CrossRef]
- Muxworthy, A.R.; David Green, C.L.; Cowan, A.; Maher, B.A.; Gonet, T. Magnetic characterisation of London’s airborne nanoparticulate matter. Atmos. Environ. 2022, 287, 119292. [Google Scholar] [CrossRef]
- Winkler, A.; Amoroso, A.; Di Giosa, A.; Marchegiani, G. The effect of COVID-19 lockdown on airborne particulate matter in Rome, Italy: A magnetic point of view. Environ. Pollut. 2021, 291, 118191. [Google Scholar] [CrossRef] [PubMed]
- Dytłow, S.; Kida, M.; Ziembowicz, S. Examining Magnetic Susceptibility as a Proxy for Microplastic Pollution in Granulometric Fractions of Road Dust: A Case Study in Warsaw, Poland. J. Hazard. Mater. 2025, 494, 138493. [Google Scholar] [CrossRef]
- Akhbarizadeh, R.; Dobaradaran, S.; Amouei Torkmahalleh, M.; Saeedi, R.; Aibaghi, R.; Faraji Ghasemi, F. Suspended fine particulate matter (PM2.5), microplastics (MPs), and polycyclic aromatic hydrocarbons (PAHs) in air: Their possible relationships and health implications. Environ. Res. 2021, 192, 110339. [Google Scholar] [CrossRef]
- Reche, C.; Querol, X.; Alastuey, A.; Viana, M.; Pey, J.; Moreno, T.; Rodríguez, S.; González, Y.; Fernández-Camacho, R.; de la Rosa, J.; et al. New considerations for PM, black carbon and particle number concentration for air quality monitoring across different European cities. Atmos. Chem. Phys. 2011, 11, 6207–6227. [Google Scholar] [CrossRef]
- Milford, C.; Fernández-Camacho, R.; Sánchez de la Campa, A.M.; Rodríguez, S.; Castell, N.; Marrero, C.; Bustos, J.J.; de la Rosa, J.D.; Stein, A.F. Black carbon aerosol measurements and simulation in two cities in south-west Spain. Atmos. Environ. 2016, 126, 55–65. [Google Scholar] [CrossRef][Green Version]
- Baensch-Baltruschat, B.; Kocher, B.; Stock, F.; Reifferscheid, G. Tyre and road wear particles (TRWP): A review of generation, properties, emissions, human health risk, ecotoxicity, and fate in the environment. Sci. Total Environ. 2020, 733, 137823. [Google Scholar] [CrossRef]
- Kelly, F.J.; Fussell, J.C. Size, source and chemical composition as determinants of toxicity attributable to ambient particulate matter. Atmos. Environ. 2012, 60, 504–526. [Google Scholar] [CrossRef]
- Dytłow, S.; Karasiński, G. Exploring the particle size effect, land use classification, and magnetic characteristics of street dust in urbanized areas in Poland. Sci. Rep. 2025, 15, 12844. [Google Scholar] [CrossRef]
- Tang, L.; Feng, Z.; Shang, D.; Zeng, L.; Wu, Z.; Wang, H.; Chen, S.; Li, X.; Zeng, L.; Hu, J.; et al. Ongoing uncoordinated anthropogenic emission abatement promotes atmospheric new particle growth in a Chinese megacity. Nat. Commun. 2025, 16, 6720. [Google Scholar] [CrossRef]
- WHO Global Air Quality Guidelines. Available online: https://www.eea.europa.eu/en/analysis/publications/air-quality-in-europe-2022/europes-air-quality-status-2022 (accessed on 30 June 2025).
- Lequy, E.; Siemiatycki, J.; Leblond, S.; Meyer, C.; Zhivin, S.; Vienneau, D.; Hoogh, K.; Goldberg, M.; Zins, M.; Jacquemin, B. Long-term exposure to atmospheric metals assessed by mosses and mortality in France. Environ. Int. 2019, 129, 145–153. [Google Scholar] [CrossRef]
- Sangkham, S.; Phairuang, W.; Sherchan, S.P.; Pansakun, N.; Munkong, N.; Sarndhong, K.; Islam, M.A.; Sakunkoo, P. An update on adverse health effects from exposure to PM2.5. Environ. Adv. 2024, 18, 100603. [Google Scholar] [CrossRef]
- Alves, C.; Evtyugina, M.; Vicente, E.; Vicente, A.; Rienda, I.C.; de la Campa, A.S.; Tom’e, M.; Duarte, I. PM2.5 chemical composition and health risks by inhalation near a chemical complex. J. Environ. Sci. 2023, 124, 860–874. [Google Scholar] [CrossRef]
- Loomis, D.; Huang, W.; Chen, G. The international agency for research on cancer (IARC) evaluation of the carcinogenicity of outdoor air pollution: Focus on China. Chin. J. Cancer 2014, 33, 189–196. [Google Scholar] [CrossRef]
- Tian, F.; Qi, J.; Qian, Z.; Li, H.; Wang, L.; Wang, C.; Geiger, S.D.; McMillin, S.E.; Yin, P.; Lin, H.; et al. Differentiating the effects of air pollution on daily mortality counts and years of life lost in six Chinese megacities. Sci. Total Environ. 2022, 827, 154037. [Google Scholar] [CrossRef]
- Rodríguez-Trejo, A.; Bohnel, H.N.; Ibarra-Ortega, H.E.; Salcedo, D.; González-Guzmán, R.; Castaneda-Miranda, A.G.; Sánchez-Ramos, L.E.; Chaparro, M.A.E.; Chaparro, M.A.E. Air Quality Monitoring with Low-Cost Sensors: A Record of the Increase of PM2.5 during Christmas and New Year’s Eve Celebrations in the City of Queretaro, Mexico. Atmosphere 2024, 15, 879. [Google Scholar] [CrossRef]
- Khobragade, P.P.; Vikram Ahirwar, A. Chemical and morphological characterization of PM2.5 samples collected over an urban industrial region Raipur, Chhattisgarh. Acta Geophys. 2023, 71, 3057–3076. [Google Scholar] [CrossRef]
- Tai, A.P.K.; Mickley, L.J.; Jacob, D.J. Correlations between fine particulate matter (PM2.5) and meteorological variables in the United States: Implications for the sensitivity of PM2.5 to climate change. Atmos. Environ. 2010, 44, 3976–3984. [Google Scholar] [CrossRef]
- Bondar, K.M.; Tsiupa, I.V. Long- and short-term pollution effect in megapolis assessed from magnetic and geochemical measurements on soils, tree trunk bark, and air filters. Environ. Monit. Assess. 2024, 196, 1041. [Google Scholar] [CrossRef]
- Zalakeviciute, R.; Mejia, D.; Alvarez, H.; Bermeo, X.; Bonilla-Bedoya, S.; Rybarczyk, Y.; Lamb, B. War impact on air quality in Ukraine. Sustainability 2022, 14, 13832. [Google Scholar] [CrossRef]
- Ialongo, I.; Bun, R.; Hakkarainen, J.; Virta, H.; Oda, T. Satellites capture socioeconomic disruptions during the 2022 full-scale war in Ukraine. Sci. Rep. 2023, 13, 14954. [Google Scholar] [CrossRef]
- Zhang, C.; Hu, Q.; Su, W.; Xing, C.; Liu, C. Satellite spectroscopy reveals the atmospheric consequences of the 2022 Russia–Ukraine war. Sci. Total Environ. 2023, 869, 161759. [Google Scholar] [CrossRef]
- Bondar, K.M.; Tsiupa, I.V.; Menshov, O. War-time changes in air pollution across Ukrainian cities were assessed through magnetic susceptibility and heavy metal contents in particulate matter collected on air filters. Environ. Pollut. 2025, 385, 127076. [Google Scholar] [CrossRef]
- Hryhorczuk, D.; Levy, B.S.; Prodanchuk, M.; Kravchuk, O.; Bubalo, N.; Hryhorczuk, A.; Erickson, T.B. The environmental health impacts of Russia’s war on Ukraine. J. Occup. Med. Toxicol. 2024, 19, 1. [Google Scholar] [CrossRef]
- Meng, X.; Lu, B.; Liu, C.; Zhang, Z.; Chen, J.; Herrmann, H.; Li, X. Abrupt exacerbation in air quality over Europe after the outbreak of Russia–Ukraine war. Environ. Int. 2023, 178, 108120. [Google Scholar] [CrossRef]
- Malytska, L.; Galytska, E.; Savenets, M.; Ladstätter-Weißenmayer, A.; Krajčovičová, J. The Impact of Fires on Air Quality in Ukraine During Two Years of Military Conflict (2022–2023): Analyzing Satellite, Ground-Based Observations of NO2, CO, and Aerosols. 2025. Available online: https://ssrn.com/abstract=5185870 (accessed on 10 August 2025).
- Wei, X.; Yukhymchuk, Y.; Danylevsky, V.; Milinevsky, G.; Goloub, P.; Fesianov, I.; Syniavskyi, I.; Turos, O.; Maremukha, T.; Petrosian, A.; et al. Impact of military activity on atmospheric aerosol characteristics in Ukraine and Kyiv city. Atmos. Pollut. Res. 2025, 16, 102496. [Google Scholar] [CrossRef]
- War Worsens Climate and Environmental Challenges in Ukraine. Joint Research Centre (11 April 2025). Available online: https://joint-research-centre.ec.europa.eu/jrc-news-and-updates/war-worsens-climate-and-environmental-challenges-ukraine-2025-04-11_en (accessed on 7 June 2025).
- Ecological Passport City of Kyiv in 2022 Year (2023) Assessment Report. Available online: https://ecodep.kyivcity.gov.ua/ekolohichnyi-pasport-ta-rehionalna-dopovid/ekolohichnyi-pasport (accessed on 9 August 2025). (In Ukrainian)
- Vyshnievskyi, V.I.; Donich, O.A.; Kutsyi, A.V. The Climate of Kyiv and Its Outskirts; Naukova Dumka: Kyiv, Ukraine, 2023; p. 124. (In Ukrainian) [Google Scholar]
- Shevchenko, O.G.; Snizhko, S.I.; Matviienko, M.O. Simulation of the thermal comfort conditions of urban areas: A case study in Kyiv. Visnyk V. N. Karazin Kharkiv Natl. Univ. Ser. Geol. Geogr. Ecol. 2019, 51, 186–198. [Google Scholar] [CrossRef]
- Regional Report on the Condition of Environment in the Cty of Kyiv in 2023. IEA, 2024. Available online: https://mepr.gov.ua/wp-content/uploads/2024/10/Regionalna-dopovid-2023.zip (accessed on 15 August 2025). (In Ukrainian)
- IEA (2024), Ukraine’s Energy Security and the Coming Winter, IEA, Paris. Licence: CC BY 4.0. Available online: https://www.iea.org/reports/ukraines-energy-security-and-the-coming-winter (accessed on 12 September 2025).
- Office of the United Nations High Commissioner for Human Rights (19 September 2024). Attacks on Ukraine’s Electricity inFrastructure Threaten Key Aspects of Life as Winter Approaches. Available online: https://ukraine.ohchr.org/en/Attacks-On-Ukraines-Electricity-Infrastructure (accessed on 23 September 2025).
- World Bank. 2025. Ukraine—Fourth Rapid Damage and Needs Assessment (RDNA4). PRESS RELEASE NO: 2025/ECA/079. Available online: https://www.worldbank.org/en/news/press-release/2025/02/25/updated-ukraine-recovery-and-reconstruction-needs-assessment-released (accessed on 23 September 2025).
- United Nations Office for the Coordination of Humanitarian Affairs. (2025). Ukraine: Humanitarian Situation Snapshot (June–July 2025). Available online: https://www.unocha.org/publications/report/ukraine/ukraine-humanitarian-situation-snapshot-june-july-2025 (accessed on 25 September 2025).
- Air Quality in the City Kyiv. Available online: https://www.saveecobot.com/ (accessed on 28 June 2025).
- Shelestov, A.; Yailymova, H.; Yailymov, B.; Kussul, N. Air Quality Estimation in Ukraine Using SDG 11.6.2 Indicator Assessment. Remote Sens. 2021, 13, 4769. [Google Scholar] [CrossRef]
- Badura, M.; Batog, P.; Drzeniecka-Osiadacz, A.; Modzel, P. Evaluation of low-cost sensors for ambient PM2.5 monitoring. J. Sens. 2018, 2018, 5096540. [Google Scholar] [CrossRef]
- Kuula, J.; Makela, T.; Aurela, M.; Teinila, K.; Varjonen, S.; González, Ó.; Timonen, H. Laboratory evaluation of particle-size selectivity of optical low-cost particulate matter sensors. Atmos. Meas. Tech. 2020, 13, 2413–2423. [Google Scholar] [CrossRef]
- Sayahi, T.; Butterfield, A.; Kelly, K.E. Long-term field evaluation of the Plantower PMS low-cost particulate matter sensors. Environ. Pollut. 2019, 245, 932–940. [Google Scholar] [CrossRef]
- Zusman, M.; Schumacher, C.S.; Gassett, A.J.; Spalt, E.W.; Austin, E.; Larson, T.V.; Carvlin, G.; Seto, E.; Kaufman, J.D.; Sheppard, L. Calibration of low-cost particulate matter sensors: Model development for a multi-city epidemiological study. Environ. Int. 2020, 134, 105329. [Google Scholar] [CrossRef]
- IQAir AirVisual Series. Available online: https://www.iqair.com/air-quality-monitors/airvisual-pro (accessed on 2 August 2025).
- Air Quality Map of Ukraine. Available online: https://lun.ua/misto/air (accessed on 2 August 2025).
- Zhang, C.; Shulga, V.; Milinevsky, G.; Danylevsky, V.; Yukhymchuk, Y.; Kyslyi, V.; Syniavsky, I.; Sosonkin, M.; Goloub, P.; Turos, O.; et al. Spring 2020 Atmospheric Aerosol Contamination over Kyiv City. Atmosphere 2022, 13, 687. [Google Scholar] [CrossRef]
- Choi, K.; Chong, K. Modified Inverse Distance Weighting Interpolation for Particulate Matter Estimation and Mapping. Atmosphere 2022, 13, 846. [Google Scholar] [CrossRef]
- Ukraine War Situation Update: 7–13 June 2025. ACLED. Available online: https://acleddata.com/update/ukraine-war-situation-update-7-13-june-2025 (accessed on 25 June 2025).
- Ukraine War Situation Update: 14–20 June 2025. ACLED. Available online: https://acleddata.com/update/ukraine-war-situation-update-14-20-june-2025 (accessed on 7 July 2025).
- Ukraine War Situation Update: 21–27 June 2025. ACLED. Available online: https://acleddata.com/update/ukraine-war-situation-update-21-27-june-2025 (accessed on 7 July 2025).
- Ukraine War Situation Update: 31 May–6 June 2025. ACLED. Available online: https://acleddata.com/update/ukraine-war-situation-update-31-may-6-june-2025 (accessed on 18 June 2025).
- Kyiv Suffers Deadliest Attack in Almost a Year, UN Human Rights Monitors Say. UN Human Rights Monitoring Mission in Ukraine. The United Nations in Ukraine. Available online: https://ukraine.un.org/en/296381-kyiv-suffers-deadliest-attack-almost-year-un-human-rights-monitors-say (accessed on 17 June 2025).
- Li, J.; Heap, A.D. A review of comparative studies of spatial interpolation methods in environmental sciences: Performance and impact factors. Ecol. Inform. 2011, 6, 228–241. [Google Scholar] [CrossRef]
- Shukla, K.; Kumar, P.; Mann, G.S.; Khare, M. Mapping spatial distribution of particulate matter using kriging and inverse distance weighting at supersites of megacity Delhi. Sustain. Cities Soc. 2020, 54, 101997. [Google Scholar] [CrossRef]
- Tang, Y.; Xie, S.; Huang, L.; Liu, L.; Wei, P.; Zhang, Y.; Meng, C. Spatial Estimation of Regional PM2.5 Concentrations with GWR Models Using PCA and RBF Interpolation Optimization. Remote Sens. 2022, 14, 5626. [Google Scholar] [CrossRef]
- Etherington, T.R. Discrete natural neighbour interpolation with uncertainty using cross-validation error distance fields. PeerJ Comput. Sci. 2020, 6, e282. [Google Scholar] [CrossRef]
- van Donkelaar, A.; Martin, R.V.; Li, C.; Burnett, R.T. Regional estimates of chemical composition of fine particulate matter using a combined geoscience-statistical method with information from satellites, models, and monitors. Environ. Sci. Technol. 2021, 55, 2874–2883. [Google Scholar] [CrossRef]
- NAAQS Table. United States Environmental Pollution Agency. NAAQS. Available online: https://www.epa.gov/criteria-air-pollutants/naaqs-table (accessed on 21 July 2025).
- Directive (EU) 2024/2881 of the European Parliament and of the Council of 23 October 2024 on Ambient Air Quality and Cleaner Air for Europe (Recast). Official Journal of the European Union, L 2024/2881, 20.11.2024. Available online: http://data.europa.eu/eli/dir/2024/2881/oj (accessed on 5 August 2025).









| Inverse Distance Weighting | Ordinary Kriging | Radial Basis Function | Natural Neighbor | |
|---|---|---|---|---|
| RMSE (μg/m3) | 4.16 | 12.36 | 9.43 | 14.18 |
| MAPE (%) | 26.18 | Extremely high | Extremely high | 33.42 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bondar, K.; Tsiupa, I.; Virshylo, M. Monitoring Air Pollution in Wartime Kyiv (Ukraine): PM2.5 Spikes During Russian Missile and Drone Attacks. Urban Sci. 2025, 9, 477. https://doi.org/10.3390/urbansci9110477
Bondar K, Tsiupa I, Virshylo M. Monitoring Air Pollution in Wartime Kyiv (Ukraine): PM2.5 Spikes During Russian Missile and Drone Attacks. Urban Science. 2025; 9(11):477. https://doi.org/10.3390/urbansci9110477
Chicago/Turabian StyleBondar, Kseniia, Iryna Tsiupa, and Mykhailo Virshylo. 2025. "Monitoring Air Pollution in Wartime Kyiv (Ukraine): PM2.5 Spikes During Russian Missile and Drone Attacks" Urban Science 9, no. 11: 477. https://doi.org/10.3390/urbansci9110477
APA StyleBondar, K., Tsiupa, I., & Virshylo, M. (2025). Monitoring Air Pollution in Wartime Kyiv (Ukraine): PM2.5 Spikes During Russian Missile and Drone Attacks. Urban Science, 9(11), 477. https://doi.org/10.3390/urbansci9110477

