Investigating the Complexities of VOC Sources in Mexico City in the Years 2016–2022
Abstract
:1. Introduction
2. Materials and Methods
2.1. Measurements Setup
2.2. Emission Source Identification by PMF
2.3. PMF Method and Error Estimation
2.4. Bivariate Polar Plots
3. Results and Discussion
3.1. Source Apportionment
3.2. Biogenic Factor
3.3. Gasoline Exhaust
3.4. Diesel Exhaust
3.5. Liquified Petroleum Gas (LPG)
3.6. Source Factor NO2
3.7. Evaporative Emissions
3.8. Secondary Aerosol Precursors
3.9. Geogenic Emission
3.10. Solvents
3.11. Diurnal Variations of Different Source Types
4. Interannual and Diurnal Variation
5. Atmospheric Implications
6. Policy Regulations
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bari, M.A.; Kindzierski, W.B.; Spink, D. Twelve-year trends in ambient concentrations of volatile organic compounds in a community of the Alberta Oil Sands Region, Canada. Environ. Int. 2016, 91, 40–50. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.; Liu, C.; Zhang, C.; Liu, P.; Ye, C.; Xue, C.; Zhao, D.; Sun, J.; Du, Y.; Chai, F. The levels, sources, and reactivity of volatile organic compounds in a typical urban area of Northeast China. J. Environ. Sci. 2019, 79, 121–134. [Google Scholar] [CrossRef] [PubMed]
- Claeys, M.; Graham, B.; Vas, G.; Wang, W.; Vermeylen, R.; Pashynska, V.; Cafmeyer, J.; Guyon, P.; Andreae, M.O.; Artaxo, P. Formation of secondary organic aerosols through photooxidation of isoprene. Science 2004, 80, 1173–1176. [Google Scholar] [CrossRef] [PubMed]
- Louie, P.K.K.; Ho, J.W.K.; Tsang, R.C.W.; Blake, D.R.; Lau, A.K.H.; Yu, J.Z.; Yuan, Z.B.; Wang, X.M.; Shao, M.; Zhong, L.J. VOCs and OVOCs distribution and control policy implications in Pearl River Delta region, China. Atmos. Environ. 2013, 76, 125–135. [Google Scholar] [CrossRef]
- Tham, Y.J.; Wang, Z.; Li, Q.; Yun, H.; Wang, W.; Wang, X.; Xue, L.; Lu, K.; Ma, N.; Bohn, B. Significant concentrations of nitryl chloride sustained in the morning: Investigations of the causes and impacts on ozone production in a polluted region of northern China. Atmos. Chem. Phys. 2016, 16, 14959–14977. [Google Scholar] [CrossRef]
- Atkinson, R.; Arey, J. Atmospheric degradation of volatile organic compounds. Chem. Rev. 2003, 103, 4605–4638. [Google Scholar] [CrossRef] [PubMed]
- Schauer, J.J.; Fraser, M.P.; Cass, G.R.; Simoneit, B.R.T. Source reconciliation of atmospheric gas phase and particle-phase pollutants during a severe photochemical smog episode. Environ. Sci. Technol. 2002, 36, 3806–3814. [Google Scholar] [CrossRef]
- Yuan, B.; Hu, W.W.; Shao, M.; Wang, M.; Chen, W.T.; Lu, S.H.; Zeng, L.M.; Hu, M. VOC emissions, evolutions and contributions to SOA formation at a receptor site in Eastern China. Atmos. Chem. Phys. Discuss. 2013, 13, 6631–6679. [Google Scholar] [CrossRef]
- McFiggans, G.; Mentel, T.F.; Wildt, J.; Pullinen, I.; Kang, S.; Kleist, E.; Schmitt, S.; Springer, M.; Tillmann, R.; Wu, C. Secondary organic aerosol reduced by mixture of atmospheric vapours. Nature 2019, 565, 587–593. [Google Scholar] [CrossRef]
- Rumchev, K.; Brown, H.; Spickett, J. Volatile organic compounds: Do they present a risk to our health? Rev. Environ. Health 2007, 22, 39–56. [Google Scholar] [CrossRef]
- Azuma, K.; Uchiyama, I.; Uchiyama, S.; Kunugita, N. Assessment of inhalation exposure to indoor air pollutants: Screening for health risks of multiple pollutants in Japanese dwellings. Environ. Res. 2016, 145, 39–49. [Google Scholar] [CrossRef]
- McCarthy, M.C.; O’Brien, T.E.; Charrier, J.G.; Hafner, H.R. Characterization of the chronic risk and hazard of hazardous air pollutants in the United States using ambient monitoring data. Environ. Health Perspect. 2009, 117, 790–796. [Google Scholar] [CrossRef] [PubMed]
- U.S. Environmental Protection Agency, 2011. 2005 National-Scale Air Toxics Assessment. Available online: http://www.epa.gov/nata2005/ (accessed on 21 September 2023).
- Kim, H.Y.; Lee, J.D.; Kim, J.Y.; Lee, J.Y.; Bae, O.N.; Choi, Y.K.; Baek, E.; Kang, S.; Min, C.; Seo, K. Risk assessment of volatile organic compounds (VOCs) detected in sanitary pads. J. Toxicol. Environ. Health Part A 2019, 82, 678–695. [Google Scholar] [CrossRef] [PubMed]
- Lei, W.; de Foy, B.; Zavala, M.; Volkamer, R.; Molina, L.T. Characterizing ozone production in the Mexico City Metropolitan Area: A case study using a chemical transport model. Atmos. Chem. Phys. 2007, 7, 1347–1366. [Google Scholar] [CrossRef]
- Molina, L.T.; Molina, M.J. (Eds.) Air Quality in the Mexico Megacity: An Integrated Assessment; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2002; 390p. [Google Scholar]
- Osibanjo, O.O.; Rappenglück, B.; Retama, A. Anatomy of the March 2016 Severe Ozone Smog Episode in Mexico-City. Atmos. Environ. 2021, 244, 117945. [Google Scholar] [CrossRef]
- Jaimes-Palomera, M.; Retama, A.; Elias-Castro, G.; Neria-Hernández, A.; Rivera-Hernández, O.; Velasco, E. Non-methane hydrocarbons in the atmosphere of Mexico City: Results of the 2012 ozone-season campaign. Atmos. Environ. 2016, 132, 258–275. [Google Scholar] [CrossRef]
- Tie, X.; Madronich, S.; Li, G.; Ying, Z.; Zhang, R.; Garcia, A.R.; Lee-Taylor, J.; Liu, Y. Characterizations of chemical oxidants in Mexico City: A regional chemical dynamical model (WRF-Chem) study. Atmos. Environ. 2007, 41, 1989–2008. [Google Scholar] [CrossRef]
- Zavala, M.; Brune, W.H.; Velasco, E.; Retama, A.; Cruz-Alavez, L.A.; Molina, L.T. Changes in ozone production and VOC reactivity in the atmosphere of the Mexico City Metropolitan Area. Atmos. Environ. 2020, 238, 117747. [Google Scholar] [CrossRef]
- SEDEMA, 2021. Inventario de Emisiones de la Zona Metropolitana del Valle de Mexico 2018. In Secretaría del Medio Ambiente de la Ciudad de Mexico Direction General de Calidad del Aire; Direction de Proyectos de Calidad del Aire: Ciudad de Mexico, Agosto 2021; Available online: https://www.sedema.cdmx.gob.mx/storage/app/media/DGCA/InventarioDeEmisionesZMVM2018.pdf (accessed on 21 September 2023).
- Vega, E.; Mugica, V.; Carmona, C.; Valencia, E. Hydrocarbon source apportionment in Mexico City using the chemical mass balance receptor model. Atmos. Environ. 2000, 34, 4121–4129. [Google Scholar] [CrossRef]
- Mugica, V.; Watson, J.; Vega, E.; Reyes, E.; Ruiz, M.E.; Chow, J. Receptor model source apportionment of nonmethane hydrocarbons in Mexico City. Sci. World J. 2002, 2, 844–860. [Google Scholar] [CrossRef]
- Velasco, E.; Márquez, C.; Bueno, E.; Bernabé, R.M.; Sánchez, A.; Fentanes, O.; Wöhrnschimmel, H.; Cárdenas, B.; Kamilla, A.; Wakamatsu, S. Vertical distribution of ozone and VOCs in the low boundary layer of Mexico City. Atmos. Chem. Phys. 2008, 8, 3061–3079. [Google Scholar] [CrossRef]
- Wöhrnschimmel, H.; Magaña, M.; Stahel, W.A.; Blanco, S.; Acuna, S.; Pérez, J.M.; González, S.; Gutiérrez, V.; Wakamatsu, S.; Cárdenas, B. Measurements and receptor modeling of volatile organic compounds in Southeastern Mexico City, 2000–2007. Atmos. Chem. Phys. 2010, 10, 9027–9037. [Google Scholar] [CrossRef]
- Vega, E.; Ramírez, O.; Sánchez-Reyna, G.; Chow, J.C.; Watson, J.G.; López-Veneroni, D.; Jaimes-Palomera, M. Volatile Organic Compounds and Carbonyls Pollution in Mexico City and an Urban Industrialized Area of Central Mexico. Aerosol Air Qual. Res. 2022, 22, 210386. [Google Scholar] [CrossRef]
- SEMARNAT, 2008. Capítulo 5. Atmósfera. Available online: https://www.yumpu.com/es/document/view/14860837/capitulo-5-atmosfera-semarnat (accessed on 21 September 2023).
- SEDEMA, 2013. Secretaría del Medio Ambiente. Available online: http://data.sedema.cdmx.gob.mx/sedema/images/archivos/noticias/primer-informe-sedema/portada-indice.pdf (accessed on 21 September 2023).
- Akther, T.; Rappenglueck, B.; Osibanjo, O.; Retama, A.; Rivera-Hernández, O. Ozone precursors and boundary layer meteorology before and during a severe ozone episode in Mexico-City. Chemosphere 2023, 318, 137978. [Google Scholar] [CrossRef] [PubMed]
- Mejía-Ponce, L.V.; Hernández-López, A.E.; Miranda-Martín-del-Campo, J.; Pineda-Santamaría, J.C.; Reynoso-Cruces, S.; Mendoza-Flores, J.A.; Espinosa-Guzmán, A.A. Elemental analysis of PM10 in southwest Mexico City and source apportionment using positive matrix factorization. J. Atmos. Chem. 2022, 79, 167–198. [Google Scholar] [CrossRef]
- Lee, S.; Liu, W.; Wang, Y.; Russell, A.G.; Edgerton, E.S. Source apportionment of PM2.5: Comparing PMF and CMB results for four ambient monitoring sites in the southeastern United States. Atmos. Environ. 2008, 42, 4126–4137. [Google Scholar] [CrossRef]
- Watson, J.G.; Antony Chen, L.W.; Chow, J.C.; Doraiswamy, P.; Lowenthal, D.H. Source apportionment: Findings from the US supersites program. J. Air Waste Manag. Assoc. 2008, 58, 265–288. [Google Scholar] [CrossRef] [PubMed]
- Cesari, D.; Donateo, A.; Conte, M.; Contini, D. Inter-comparison of source apportionment of PM10 using PMF and CMB in three sites nearby an industrial area in central Italy. Atmos. Res. 2016, 182, 282–293. [Google Scholar] [CrossRef]
- Hopke, P.K. The application of receptor modeling to air quality data. Pollut. Atmosphérique 2010, (SEP), 91–109. Available online: https://www.appa.asso.fr/wp-content/uploads/2020/02/Hopke_2010.pdf (accessed on 21 September 2023).
- Norris, G.; Duvall, R.; Brown, S.; Bai, S. EPA Positive Matrix Factorization (PMF) 5.0 Fundamentals and User Guide; EPA/600/R-14/108; STI-910511-5594-UG, April; U.S. Environmental Protection Agency Office of Research and Development: Washington, DC, USA, 2014.
- Paatero, P.; Tapper, U. Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values. Environmetrics 1994, 5, 111–126. [Google Scholar] [CrossRef]
- Paatero, P. Least squares formulation of robust non-negative factor analysis. Chemom. Intell. Lab. Syst. 1997, 37, 23–35. [Google Scholar] [CrossRef]
- Paatero, P.; Eberly, S.; Brown, S.G.; Norris, G.A. Methods for estimating uncertainty in factor analytic solutions. Atmos. Meas. Tech. 2014, 7, 781. [Google Scholar] [CrossRef]
- Ahmed, M.; Rappenglück, B.; Das, S.; Chellam, S. Source apportionment of volatile organic compounds, CO, SO2 and trace metals in a complex urban atmosphere. Environ. Adv. 2021, 6, 10012. [Google Scholar] [CrossRef]
- Bozlaker, A.; Buzcu-Güven, B.; Fraser, M.P.; Chellam, S. Insights into PM10 sources in Houston, Texas: Role of petroleum refineries in enriching lanthanoid metals during episodic emission events. Atmos. Environ. 2013, 69, 109–117. [Google Scholar] [CrossRef]
- Ahmed, M.; Rappenglueck, B.; Ganranoo, L.; Dasgupta, P.K. Source apportionment of gaseous Nitrophenols and their contribution to HONO formation in an urban area. Chemosphere 2023, 338, 139499. [Google Scholar] [CrossRef] [PubMed]
- Carslaw, D.C.; Beevers, S.D. Characterising and understanding emission sources using bivariate polar plots and k-means clustering. Environ. Model. Softw. 2013, 40, 325–329. [Google Scholar] [CrossRef]
- Carslaw, D.C.; Ropkins, K. Openair—An R package for air quality data analysis. Environ. Model. Softw. 2012, 27, 52–61. [Google Scholar] [CrossRef]
- Wood, S.N. Generalized Additive Models: An Introduction with R.; International Standard Book Number-13:978-1-4987-2833-1; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Henry, R.; Norris, G.A.; Vedantham, R.; Turner, J.R. Source region identification using kernel smoothing. Environ. Sci. Technol. 2009, 43, 4090–4097. [Google Scholar] [CrossRef] [PubMed]
- Fuentes, J.D.; Lerdau, M.; Atkinson, R.; Baldocchi, D.; Bottenheim, J.W.; Ciccioli, P.; Lamb, B.; Geron, C.; Gu, L.; Guenther, A. Biogenic hydrocarbons in the atmospheric boundary layer: A review. Bull. Amer. Meteor. Soc. 2000, 81, 1537–1575. [Google Scholar] [CrossRef]
- Guenther, A. Seasonal and spatial variations in natural volatile organic compound emissions. Ecol. Appl. 1997, 7, 34–45. [Google Scholar] [CrossRef]
- Guenther, A. Review of the Effects of Drought and High Temperature on Biogenic Emissions. 2001. Available online: http://www.tceq.state.tx.us/assets/public/implementation/air/am/contracts/reports/ei/EffectsOfDroughtHighTemperatureOnBiogenicEmissions.pdf (accessed on 13 September 2023).
- Reimann, S.; Calanca, P.; Hofer, P. The anthropogenic contribution to isoprene concentrations in a rural atmosphere. Atmos. Environ. 2000, 34, 109–115. [Google Scholar] [CrossRef]
- Borbon, A.; Fontaine, H.; Veillerot, M.; Locoge, N.; Galloo, J.C.; Guillermo, R. An investigation into the traffic-related fraction of isoprene at an urban location. Atmos. Environ. 2001, 35, 3749–3760. [Google Scholar] [CrossRef]
- Diskin, A.M.; Španěl, P.; Smith, D. Time variation of ammonia, acetone, isoprene and ethanol in breath: A quantitative SIFT-MS study over 30 days. Physiol. Meas. 2003, 24, 107. [Google Scholar] [CrossRef] [PubMed]
- Kinoyama, M.; Nitta, H.; Watanabe, A.; Ueda, H. Acetone and isoprene concentrations in exhaled breath in healthy subjects. J. Health Sci. 2008, 54, 471–477. [Google Scholar] [CrossRef]
- Veres, P.R.; Faber, P.; Drewnick, F.; Lelieveld, J.; Williams, J. Anthropogenic sources of VOC in a football stadium: Assessing human emissions in the atmosphere. Atmos. Environ. 2013, 77, 1052–1059. [Google Scholar] [CrossRef]
- Wagner, P.; Kuttler, W. Biogenic and anthropogenic isoprene in the near-surface urban atmosphere—A case study in Essen. Germany. Sci. Total Environ. 2014, 475, 104–115. [Google Scholar] [CrossRef] [PubMed]
- Molina, L.T.; Kolb, C.E.; De Foy, B.; Lamb, B.K.; Brune, W.H.; Jimenez, J.L.; Ramos-Villegas, R.; Sarmiento, J.; Paramo-Figueroa, V.H.; Cardenas, B. Air quality in North America’s most populous city–overview of the MCMA-2003 campaign. Atmos. Chem. Phys. 2007, 7, 2447–2473. [Google Scholar] [CrossRef]
- Molina, L.T.; Madronich, S.; Gaffney, J.S.; Apel, E.; de Foy, B.; Fast, J.; Ferrare, R.; Herndon, S.; Jimenez, J.L.; Lamb, B. An overview of the MILAGRO 2006 Campaign: Mexico City emissions and their transport and transformation. Atmos. Chem. Phys. 2010, 10, 8697–8760. [Google Scholar] [CrossRef]
- Velasco, E.; Lamb, B.; Westberg, H.; Allwine, E.; Sosa, G.; Arriaga-Colina, J.L.; Jobson, B.T.; Alexander, M.L.; Prazeller, P.; Knighton, W.B. Distribution, magnitudes, reactivities, ratios and diurnal patterns of volatile organic compounds in the Valley of Mexico during the MCMA 2002 & 2003 field campaigns. Atmos. Chem. Phys. 2007, 7, 329–353. [Google Scholar] [CrossRef]
- Bon, D.M.; Ulbrich, I.M.; De Gouw, J.A.; Warneke, C.; Kuster, W.C.; Alexander, M.L.; Baker, A.; Beyersdorf, A.J.; Blake, D.; Fall, R. Measurements of volatile organic compounds at a suburban ground site (T1) in Mexico City during the MILAGRO 2006 campaign: Measurement comparison, emission ratios, and source attribution. Atmos. Chem. Phys. 2011, 11, 2399–2421. [Google Scholar] [CrossRef]
- Velasco, E. Estimates for biogenic non-methane hydrocarbons and nitric oxide emissions in the Valley of Mexico. Atmos. Environ. 2003, 37, 625–637. [Google Scholar] [CrossRef]
- Sharkey, T.D.; Wiberley, A.E.; Donohue, A.R. Isoprene emission from plants: Why and how. Ann. Bot. 2008, 101, 5–18. [Google Scholar] [CrossRef]
- Staehelin, J.; Schläpfer, K.; Bürgin, T.; Steinemann, U.; Schneider, S.; Brunner, D.; Bäumle, M.; Meier, M.; Zahner, C.; Keiser, S. Emission factors from road traffic from a tunnel study (Gubrist tunnel, Switzerland). Part I: Concept and first results. Sci. Total Environ. 1995, 169, 141–147. [Google Scholar] [CrossRef]
- Leuchner, M.; Rappenglück, B. VOC source–receptor relationships in Houston during TexAQS-II. Atmos. Environ. 2010, 44, 4056–4067. [Google Scholar] [CrossRef]
- Gurjar, B.R.; Ravindra, K.; Nagpure, A.S. Air pollution trends over Indian megacities and their local-to-global implications. Atmos. Environ. 2016, 142, 475–495. [Google Scholar] [CrossRef]
- Jain, S.; Aggarwal, P.; Sharma, P.; Kumar, P. Vehicular exhaust emissions under current and alternative future policy measures for megacity Delhi, India. J. Transp. Health 2016, 3, 404–412. [Google Scholar] [CrossRef]
- Orun, A.; Elizondo, D.; Goodyer, E.; Paluszczyszyn, D. Use of Bayesian inference method to model vehicular air pollution in local urban areas. Transp. Res. Part D Transp. Environ. 2018, 63, 236–243. [Google Scholar] [CrossRef]
- Nakashima, Y.; Sadanaga, Y.; Saito, S.; Hoshi, J.; Ueno, H. Contributions of vehicular emissions and secondary formation to nitrous acid concentrations in ambient urban air in Tokyo in the winter. Sci. Total Environ. 2017, 592, 178–186. [Google Scholar] [CrossRef]
- Fujita, E.M.; Croes, B.E.; Bennett, C.L.; Lawson, D.R.; Lurmann, F.W.; Main, H.H. Comparison of emission inventory and ambient concentration ratios of CO, NMOG, and NOx in California’s South Coast Air Basin. J. Air Waste Manag. Assoc. 1992, 42, 264–276. [Google Scholar] [CrossRef]
- Parrish, D.D.; Trainer, M.; Hereid, D.; Williams, E.J.; Olszyna, K.J.; Harley, R.A.; Meagher, J.F.; Fehsenfeld, F.C. Decadal change in carbon monoxide to nitrogen oxide ratio in US vehicular emissions. J. Geophys. Res. Atmos. 2002, 107, ACH-5. [Google Scholar] [CrossRef]
- Parrish, D.D. Critical evaluation of US on-road vehicle emission inventories. Atmos. Environ. 2006, 40, 2288–2300. [Google Scholar] [CrossRef]
- Blake, D.R.; Rowland, F.S. Urban leakage of liquefied petroleum gas and its impact on Mexico City air quality. Science 1995, 269, 953–956. [Google Scholar] [CrossRef]
- Garzón, J.P.; Huertas, J.I.; Magaña, M.; Huertas, M.E.; Cárdenas, B.; Watanabe, T.; Maeda, T.; Wakamatsu, S.; Blanco, S. Volatile organic compounds in the atmosphere of Mexico City. Atmos. Environ. 2015, 119, 415–429. [Google Scholar] [CrossRef]
- Gamas, E.D.; Magdaleno, M.; Diaz, L.; Schifter, I.; Ontiveros, L.; Alvarez-Cansino, G. Contribution of liquefied petroleum gas to air pollution in the metropolitan area of Mexico City. J. Air Waste Manag. Assoc. 2000, 50, 188–198. [Google Scholar] [CrossRef] [PubMed]
- Tsai, D.H.; Wang, J.L.; Wang, C.H.; Chan, C.C. A study of ground-level ozone pollution, ozone precursors and subtropical meteorological conditions in central Taiwan. J. Environ. Monit. 2008, 10, 109–118. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Naeher, P.L. A review of traffic-related air pollution exposure assessment studies in the developing world. Environ. Int. 2006, 32, 106–120. [Google Scholar] [CrossRef] [PubMed]
- Koppmann, R. (Ed.) Volatile Organic Compounds in the Atmosphere; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Sadeghi, B.; Pouyaei, A.; Choi, Y.; Rappenglueck, B. Influence of seasonal variability on source characteristics of VOCs at Houston industrial area. Atmos. Environ. 2022, 277, 119077. [Google Scholar] [CrossRef]
- Chen, T.; Zhang, P.; Chu, B.; Ma, Q.; Ge, Y.; Liu, J.; He, H. Secondary organic aerosol formation from mixed volatile organic compounds: Effect of RO2 chemistry and precursor concentration. npj Clim. Atmos. Sci. 2022, 5, 95. [Google Scholar] [CrossRef]
- Guzy, P.; Pietrzycki, D.; Świerczewska, A.; Sechman, H.; Twaróg, A.; Góra, A. Emission Measurements of Geogenic Greenhouse Gases in the Area of “Pusty Las” Abandoned Oilfield (Polish Outer Carpathians). J. Ecol. Eng. 2017, 18, 100–109. [Google Scholar] [CrossRef] [PubMed]
- Wheatley, R.; Hackett, C.; Bruce, A.; Kundzewicz, A. Effect of substrate composition on production of volatile organic compounds from Trichoderma spp. inhibitory to wood decay fungi. Int. Biodeterior. Biodegrad. 1997, 39, 199–205. [Google Scholar] [CrossRef]
- Insam, H.; Seewald, M.S. Volatile organic compounds (VOCs) in soils. Biol. Fertil 2010, 46, 199–213. [Google Scholar] [CrossRef]
- Rossabi, S.; Choudoir, M.; Helmig, D.; Hueber, J.; Fierer, N. Volatile organic compound emissions from soil following wetting events. J. Geophys. Res. Biogeosci. 2018, 123, 1988–2001. [Google Scholar] [CrossRef]
- Lu, X.; Ma, Z.; Yi, L.; Zhang, G.; Chen, F.; Han, F. The composition and distribution of volatile organic compounds in sediments of the East Taijinar salt lake in Northern Qinghai-Tibet Plateau. Front. Environ. Chem. 2021, 2, 653867. [Google Scholar] [CrossRef]
- Mo, Z.; Lu, S.; Li, Y.; Shao, M.; Qu, H. Emission characteristics of volatile organic compounds (VOCs) from typical solvent use factories in Beijing. China Environ. Sci. 2015, 35, 374–380. [Google Scholar] [CrossRef]
- Xiong, Y.; Bari, M.A.; Xing, Z.; Du, K. Ambient volatile organic compounds (VOCs) in two coastal cities in western Canada: Spatiotemporal variation, source apportionment, and health risk assessment. Sci. Total Environ. 2020, 706, 135970. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Ho, S.S.H.; Gong, S.; Ni, J.; Li, H.; Han, L.; Yang, Y.; Qi, Y.; Zhao, D. Characterization of VOCs and their related atmospheric processes in a central Chinese city during severe ozone pollution periods. Atmos. Chem. Phys. 2019, 19, 617–638. [Google Scholar] [CrossRef]
- Mugica, V.; Ruiz, M.E.; Watson, J.; Chow, J. Volatile aromatic compounds in Mexico City atmosphere: Levels and source apportionment. Atmosfera 2003, 16, 15–27. [Google Scholar]
- Guenther, A.B.; Zimmerman, P.R.; Harley, P.C.; Monson, R.K.; Fall, R. Isoprene and monoterpene emission rate variability: Model evaluations and sensitivity analyses. J. Geophys. Res. Atmos. 1993, 98, 12609–12617. [Google Scholar] [CrossRef]
- Stutz, J.; Wong, K.W.; Lawrence, L.; Ziemba, L.; Flynn, J.; Rappenglück, B.; Lefer, B. Nocturnal NO3 radical chemistry in Houston, TX. Atmos. Environ. 2010, 44, 4099–4106. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alam, M.J.; Rappenglueck, B.; Retama, A.; Rivera-Hernández, O. Investigating the Complexities of VOC Sources in Mexico City in the Years 2016–2022. Atmosphere 2024, 15, 179. https://doi.org/10.3390/atmos15020179
Alam MJ, Rappenglueck B, Retama A, Rivera-Hernández O. Investigating the Complexities of VOC Sources in Mexico City in the Years 2016–2022. Atmosphere. 2024; 15(2):179. https://doi.org/10.3390/atmos15020179
Chicago/Turabian StyleAlam, Mohammad Jahirul, Bernhard Rappenglueck, Armando Retama, and Olivia Rivera-Hernández. 2024. "Investigating the Complexities of VOC Sources in Mexico City in the Years 2016–2022" Atmosphere 15, no. 2: 179. https://doi.org/10.3390/atmos15020179
APA StyleAlam, M. J., Rappenglueck, B., Retama, A., & Rivera-Hernández, O. (2024). Investigating the Complexities of VOC Sources in Mexico City in the Years 2016–2022. Atmosphere, 15(2), 179. https://doi.org/10.3390/atmos15020179