Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,192)

Search Parameters:
Keywords = smart mobility systems

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
33 pages, 6314 KiB  
Review
Gel-Type Electrofluorochromic Devices for Advanced Optoelectronic Applications
by Xuecheng Wang, Lijing Wen, Jinxia Ren, Yonghen Wen, Yonghua Li, Yizhou Zhang and Kenneth Yin Zhang
Gels 2025, 11(8), 673; https://doi.org/10.3390/gels11080673 - 21 Aug 2025
Viewed by 223
Abstract
Gel-type electrofluorochromic (EFC) devices, which reversibly modulate photoluminescence under electrical stimuli, have emerged as versatile platforms for advanced optoelectronic applications. By integrating redox-active luminophores with soft, ion-conductive gel matrices, these systems combine the structural robustness of solids with the ionic mobility of liquids, [...] Read more.
Gel-type electrofluorochromic (EFC) devices, which reversibly modulate photoluminescence under electrical stimuli, have emerged as versatile platforms for advanced optoelectronic applications. By integrating redox-active luminophores with soft, ion-conductive gel matrices, these systems combine the structural robustness of solids with the ionic mobility of liquids, enabling a high-contrast, flexible, and multifunctional operation. This review provides a comprehensive overview of gel-based EFC technologies, outlining fundamental working principles, device architectures, and key performance metrics such as contrast ratio, switching time, and cycling stability. Gel matrices are categorized into ionogels, organogels, and hydrogels, and their physicochemical properties are discussed in relation to EFC device performance. Recent advances are highlighted across applications ranging from flexible displays and rewritable electronic paper to strain and biosensors, data encryption, smart windows, and hybrid energy-interactive systems. Finally, current challenges and emerging strategies are analyzed to guide the design of next-generation adaptive, intelligent, and energy-efficient optoelectronic platforms. Full article
Show Figures

Graphical abstract

27 pages, 7563 KiB  
Article
Evaluation of the Dynamic Behavior and Vibrations of the Operator-Vehicle Assembly in Electric Agricultural Tractor Operations: A Simulation Approach for Sustainable Transport Systems
by Teofil-Alin Oncescu, Ilona Madalina Costea, Ștefan Constantin Burciu and Cristian Alexandru Rentea
Systems 2025, 13(8), 710; https://doi.org/10.3390/systems13080710 - 18 Aug 2025
Viewed by 294
Abstract
This study presents an advanced simulation-based methodology for evaluating the dynamic vibrational behavior of the operator–vehicle assembly in autonomous electric agricultural tractors. Using the TE-0 electric tractor as the experimental platform, the research is structured into three integrated stages. In the first stage, [...] Read more.
This study presents an advanced simulation-based methodology for evaluating the dynamic vibrational behavior of the operator–vehicle assembly in autonomous electric agricultural tractors. Using the TE-0 electric tractor as the experimental platform, the research is structured into three integrated stages. In the first stage, a seated anthropometric virtual model of the human operator is developed based on experimental data and biomechanical validation. The second stage involves a detailed modal analysis of the TE-0 electric tractor using Altair Sim Solid, with the objective of determining the natural frequencies and vibration modes in the [0–80] Hz range, in compliance with ISO 2631-1. This analysis captures both the structural-induced frequencies—associated with the chassis, wheelbase, and metallic frame—and the operational-induced frequencies, influenced by the velocity and terrain profile. Subsequently, the modal analysis of the “Grammer Cabin Seat” is conducted to assess its dynamic response and identify critical vibration modes, highlighting how the seat behaves under vibrational stimuli from the tractor and terrain. The third stage extends the analysis to the virtual operator model seated on the tractor seat, investigating the biomechanical response of the human body and the operator–seat–vehicle interaction during simulated motion. Simulations were carried out using SolidWorks 2023 and Altair Sim Solid over a frequency range of [0–80] Hz, corresponding to operation on unprocessed soil covered with grass, at a constant forward speed of 7 km/h. The results reveal critical resonance modes and vibration transmission paths that may impact operator health, comfort, and system performance. The research contributes to the development of safer, more ergonomic, and sustainable autonomous agricultural transport systems. By simulating real-world operation scenarios and integrating a rigorously validated experimental protocol—including vibration data acquisition, biomechanical modeling, and multi-stage modal analysis—this study demonstrates the importance of advanced modeling in optimizing system-level performance, minimizing harmful vibrations, and supporting the transition toward resilient and eco-efficient electric tractor platforms in smart agricultural mobility. Full article
(This article belongs to the Section Systems Practice in Social Science)
Show Figures

Figure 1

16 pages, 1350 KiB  
Article
The Synergistic Impact of 5G on Cloud-to-Edge Computing and the Evolution of Digital Applications
by Saleh M. Altowaijri and Mohamed Ayari
Mathematics 2025, 13(16), 2634; https://doi.org/10.3390/math13162634 - 16 Aug 2025
Viewed by 323
Abstract
The integration of 5G technology with cloud and edge computing is redefining the digital landscape by enabling ultra-fast connectivity, low-latency communication, and scalable solutions across diverse application domains. This paper investigates the synergistic impact of 5G on cloud-to-edge architectures, emphasizing its transformative role [...] Read more.
The integration of 5G technology with cloud and edge computing is redefining the digital landscape by enabling ultra-fast connectivity, low-latency communication, and scalable solutions across diverse application domains. This paper investigates the synergistic impact of 5G on cloud-to-edge architectures, emphasizing its transformative role in revolutionizing sectors such as healthcare, smart cities, industrial automation, and autonomous systems. Key advancements in 5G—including Enhanced Mobile Broadband (eMBB), Ultra-Reliable Low-Latency Communication (URLLC), and Massive Machine-Type Communications (mMTC)—are examined for their role in enabling real-time data processing, edge intelligence, and IoT scalability. In addition to conceptual analysis, the paper presents simulation-based evaluations comparing 5G cloud-to-edge systems with traditional 4G cloud models. Quantitative results demonstrate significant improvements in latency, energy efficiency, reliability, and AI prediction accuracy. The study also explores challenges in infrastructure deployment, cybersecurity, and latency management while highlighting the growing opportunities for innovation in AI-driven automation and immersive consumer technologies. Future research directions are outlined, focusing on energy-efficient designs, advanced security mechanisms, and equitable access to 5G infrastructure. Overall, this study offers comprehensive insights and performance benchmarks that will serve as a valuable resource for researchers and practitioners working to advance next-generation digital ecosystems. Full article
(This article belongs to the Special Issue Innovations in Cloud Computing and Machine Learning Applications)
Show Figures

Figure 1

19 pages, 12064 KiB  
Article
Three-Dimensional Printed Stimulating Hybrid Smart Bandage
by Małgorzata A. Janik, Michał Pielka, Petro Kovalchuk, Michał Mierzwa and Paweł Janik
Sensors 2025, 25(16), 5090; https://doi.org/10.3390/s25165090 - 16 Aug 2025
Viewed by 427
Abstract
The treatment of chronic wounds and pressure sores is an important challenge in the context of public health and the effectiveness of patient treatment. Therefore, new methods are being developed to reduce or, in extreme cases, to initiate and conduct the wound healing [...] Read more.
The treatment of chronic wounds and pressure sores is an important challenge in the context of public health and the effectiveness of patient treatment. Therefore, new methods are being developed to reduce or, in extreme cases, to initiate and conduct the wound healing process. This article presents an innovative smart bandage, programmable using a smartphone, which generates small amplitude impulse vibrations. The communication between the smart bandage and the smartphone is realized using BLE. The possibility of programming the smart bandage allows for personalized therapy. Owing to the built-in MEMS sensor, the smart bandage makes it possible to monitor work during rehabilitation and implement an auto-calibration procedure. The flexible, openwork mechanical structure of the dressing was made in 3D printing technology, thanks to which the solution is easy to implement and can be used together with traditional dressings to create hybrid ones. Miniature electronic circuits and actuators controlled by the PWM signal were designed as replaceable elements; thus, the openwork structure can be treated as single-use. The smart bandage containing six actuators presented in this article generates oscillations in the range from about 40 Hz to 190 Hz. The system generates low-amplitude vibrations, below 1 g. The actuators were operated at a voltage of 1.65 V to reduce energy consumption. For comparison, the actuators were also operated at the nominal voltage of 3.17 V, as specified by the manufacturer. Full article
Show Figures

Figure 1

39 pages, 6883 KiB  
Article
SYNTHUA-DT: A Methodological Framework for Synthetic Dataset Generation and Automatic Annotation from Digital Twins in Urban Accessibility Applications
by Santiago Felipe Luna Romero, Mauren Abreu de Souza and Luis Serpa Andrade
Technologies 2025, 13(8), 359; https://doi.org/10.3390/technologies13080359 - 14 Aug 2025
Viewed by 289
Abstract
Urban scene understanding for inclusive smart cities remains challenged by the scarcity of training data capturing people with mobility impairments. We propose SYNTHUA-DT, a novel methodological framework that integrates unmanned aerial vehicle (UAV) photogrammetry, 3D digital twin modeling, and high-fidelity simulation in Unreal [...] Read more.
Urban scene understanding for inclusive smart cities remains challenged by the scarcity of training data capturing people with mobility impairments. We propose SYNTHUA-DT, a novel methodological framework that integrates unmanned aerial vehicle (UAV) photogrammetry, 3D digital twin modeling, and high-fidelity simulation in Unreal Engine to generate annotated synthetic datasets for urban accessibility applications. This framework produces photo-realistic images with automatic pixel-perfect segmentation labels, dramatically reducing the need for manual annotation. Focusing on the detection of individuals using mobility aids (e.g., wheelchairs) in complex urban environments, SYNTHUA-DT is designed as a generalized, replicable pipeline adaptable to different cities and scenarios. The novelty lies in combining real-city digital twins with procedurally placed virtual agents, enabling diverse viewpoints and scenarios that are impractical to capture in real life. The computational efficiency and scale of this synthetic data generation offer significant advantages over conventional datasets (such as Cityscapes or KITTI), which are limited in accessibility-related content and costly to annotate. A case study using a digital twin of Curitiba, Brazil, validates the framework’s real-world applicability: 22,412 labeled images were synthesized to train and evaluate vision models for mobility aids user detection. The results demonstrate improved recognition performance and robustness, highlighting SYNTHUA-DT’s potential to advance urban accessibility by providing abundant, bias-mitigating training data. This work paves the way for inclusive computer vision systems in smart cities through a rigorously engineered synthetic data pipeline. Full article
Show Figures

Figure 1

22 pages, 5403 KiB  
Article
SSF-Roundabout: A Smart and Self-Regulated Roundabout with Right-Turn Bypass Lanes
by Marco Guerrieri and Masoud Khanmohamadi
Appl. Sci. 2025, 15(16), 8971; https://doi.org/10.3390/app15168971 - 14 Aug 2025
Viewed by 175
Abstract
This paper presents the novel, smart, commutable, and self-regulated SSF-Roundabout as one of the potential solutions in the environment of smart mobility. The SSF-Roundabout implements traffic counting systems, smart cameras, LED road markers, and Variable Message Signs (VMS) on arms. Based on the [...] Read more.
This paper presents the novel, smart, commutable, and self-regulated SSF-Roundabout as one of the potential solutions in the environment of smart mobility. The SSF-Roundabout implements traffic counting systems, smart cameras, LED road markers, and Variable Message Signs (VMS) on arms. Based on the instantaneous detection of the traffic demand level, vehicles can be properly channelled or not into right-turn bypass lanes, which the roundabout is equipped with in every arm, to guarantee the requested capacity, Level of Service (LOS), and safety. In total, fifteen very different layout configurations of the SSF-Roundabout are available. Several traffic analyses were performed by using ad hoc traffic engineering closed-form models and case studies based on many origin-destination traffic matrices (MO/D(t)) and proportions of CAVs in the traffic stream (from 0% to 100%). Simulation results demonstrate the correlation between layout scenarios, traffic intensity, distribution among arms, and composition in terms of CAVs and their impact on entry and total capacity, control delay, and LOS of the SSF-Roundabout. For instance, the right-turn bypass lane activation may produce an entry capacity increase of 48% and a total capacity increase of 50% in the case of 100% of CAVs in traffic streams. Full article
(This article belongs to the Special Issue Communication Technology for Smart Mobility Systems)
Show Figures

Figure 1

32 pages, 3134 KiB  
Article
Examining Sustainable Mobility Planning and Design for Smart Urban Development in Metropolitan Areas
by Anthony Jnr. Bokolo
Urban Sci. 2025, 9(8), 314; https://doi.org/10.3390/urbansci9080314 - 12 Aug 2025
Viewed by 350
Abstract
Meeting the European Green Deal’s goal of climate neutrality by 2050 calls for a 90 percent decrease in emissions from the transportation sector. Thus, there is need to accelerate the shift to more sustainable mobility for integrated and smarter multimodal and intermodal mobility. [...] Read more.
Meeting the European Green Deal’s goal of climate neutrality by 2050 calls for a 90 percent decrease in emissions from the transportation sector. Thus, there is need to accelerate the shift to more sustainable mobility for integrated and smarter multimodal and intermodal mobility. In European countries, more than 70% of the inhabitants live in metropolitan areas. Achieving low-carbon and more sustainable mobility is important to ensuring sustainable urban infrastructure. However, current mobility planning frameworks do not consider the key factors and strategies that encourage residents to choose sustainable transport modes. Hence, there is a need to identify the most efficient actions that should be employed either in the short or long term to achieve accessible, safe, cost-effective, and green transport systems specifically through the development of sustainable public transportation. Moreover, a paradigm shift is needed to explore the synergy between transportation and its relationship to the city. Accordingly, this article presents an action plan as an approach to assess key strategies needed to foster sustainable and smart mobility planning and design by deploying effective strategies and design solutions that support different green means of transportation for smart urban development. Qualitative data on sustainable mobility planning and design strategies was collected via secondary sources from the literature, and descriptive data analysis was carried out. Findings from this study identify internal and external factors required to promote sustainable multimodal and intermodal mobility based on the city’s transport policies and actions. Implications from this study provide a use case for the technological requirements required for electric mobility planning, design, and system operation for the actualization of sustainable public transportation to improve smart urban development. Full article
Show Figures

Figure 1

29 pages, 12645 KiB  
Article
The IoRT-in-Hand: Tele-Robotic Echography and Digital Twins on Mobile Devices
by Juan Bravo-Arrabal, Zhuoqi Cheng, J. J. Fernández-Lozano, Jose Antonio Gomez-Ruiz, Christian Schlette, Thiusius Rajeeth Savarimuthu, Anthony Mandow and Alfonso García-Cerezo
Sensors 2025, 25(16), 4972; https://doi.org/10.3390/s25164972 - 11 Aug 2025
Viewed by 526
Abstract
The integration of robotics and mobile networks (5G/6G) through the Internet of Robotic Things (IoRT) is revolutionizing telemedicine, enabling remote physician participation in scenarios where specialists are scarce, where there is a high risk to them, such as in conflicts or natural disasters, [...] Read more.
The integration of robotics and mobile networks (5G/6G) through the Internet of Robotic Things (IoRT) is revolutionizing telemedicine, enabling remote physician participation in scenarios where specialists are scarce, where there is a high risk to them, such as in conflicts or natural disasters, or where access to a medical facility is not possible. Nevertheless, touching a human safely with a robotic arm in non-engineered or even out-of-hospital environments presents substantial challenges. This article presents a novel IoRT approach for healthcare in or from remote areas, enabling interaction between a specialist’s hand and a robotic hand. We introduce the IoRT-in-hand: a smart, lightweight end-effector that extends the specialist’s hand, integrating a medical instrument, an RGB camera with servos, a force/torque sensor, and a mini-PC with Internet connectivity. Additionally, we propose an open-source Android app combining MQTT and ROS for real-time remote manipulation, alongside an Edge–Cloud architecture that links the physical robot with its Digital Twin (DT), enabling precise control and 3D visual feedback of the robot’s environment. A proof of concept is presented for the proposed tele-robotic system, using a 6-DOF manipulator with the IoRT-in-hand to perform an ultrasound scan. Teleoperation was conducted over 2300 km via a 5G NSA network on the operator side and a wired network in a laboratory on the robot side. Performance was assessed through human subject feedback, sensory data, and latency measurements, demonstrating the system’s potential for remote healthcare and emergency applications. The source code and CAD models of the IoRT-in-hand prototype are publicly available in an open-access repository to encourage reproducibility and facilitate further developments in robotic telemedicine. Full article
Show Figures

Figure 1

16 pages, 1318 KiB  
Perspective
Shared Presence via XR Communication and Interaction Within a Dynamically Updated Digital Twin of a Smart Space: Conceptual Framework and Research Challenges
by Lea Skorin-Kapov, Maja Matijasevic, Ivana Podnar Zarko, Mario Kusek, Darko Huljenic, Vedran Skarica, Darian Skarica and Andrej Grguric
Appl. Sci. 2025, 15(16), 8838; https://doi.org/10.3390/app15168838 - 11 Aug 2025
Viewed by 217
Abstract
The integration of emerging eXtended Reality (XR) technologies, digital twins (DTs), smart environments, and advanced mobile and wireless networks is set to enable novel forms of immersive interaction and communication. This paper proposes a high-level conceptual framework for shared presence via XR-based communication [...] Read more.
The integration of emerging eXtended Reality (XR) technologies, digital twins (DTs), smart environments, and advanced mobile and wireless networks is set to enable novel forms of immersive interaction and communication. This paper proposes a high-level conceptual framework for shared presence via XR-based communication and interaction within a virtual reality (VR) representation of the digital twin of a smart space. The digital twin is continuously updated and synchronized—both spatially and temporally—with a physical smart space equipped with sensors and actuators. This architecture enables interactive experiences and fosters a sense of co-presence between a local user in the smart physical environment utilizing augmented reality (AR) and a remote VR user engaging through the digital counterpart. We present our lab deployment architecture used as a basis for ongoing experimental work related to testing and integrating functionalities defined in the conceptual framework. Finally, key technology requirements and research challenges are outlined, aiming to provide a foundation for future research efforts in immersive, interconnected XR systems. Full article
(This article belongs to the Special Issue Extended Reality (XR) and User Experience (UX) Technologies)
Show Figures

Figure 1

22 pages, 706 KiB  
Article
Technological Innovation and the Role of Smart Surveys in the Industrial Context
by Massimiliano Giacalone, Chiara Marciano, Claudia Pipino, Gianfranco Piscopo and Stefano Marra
Appl. Sci. 2025, 15(16), 8832; https://doi.org/10.3390/app15168832 - 11 Aug 2025
Viewed by 286
Abstract
Technological innovation has significantly transformed the field of statistics, not only in data analysis but also in data collection. Traditional methods based on direct observation have evolved into hybrid approaches that combine passively collected data (e.g., from GPS or accelerometers) with active user [...] Read more.
Technological innovation has significantly transformed the field of statistics, not only in data analysis but also in data collection. Traditional methods based on direct observation have evolved into hybrid approaches that combine passively collected data (e.g., from GPS or accelerometers) with active user input through digital interfaces. This evolution has led to Smart Surveys—next-generation tools that leverage smart devices, such as smartphones and wearables, to collect data actively (via questionnaires or images) and passively (via embedded sensors). Smart Surveys offer strategic value in industrial contexts by enabling real-time data collection on worker behavior, environments, and operational conditions. However, the heterogeneity of such data poses challenges in management, integration, and quality assurance. This study proposes a modular system architecture incorporating gamification elements to enhance user participation, particularly among hard-to-reach worker segments, such as mobile or shift workers. By leveraging motivational strategies and interactive feedback mechanisms, the system seeks to foster greater engagement while addressing critical data security and privacy concerns within industrial Internet of Things (IoT) environments. Full article
(This article belongs to the Special Issue Applications of Industrial Internet of Things (IIoT) Platforms)
Show Figures

Figure 1

33 pages, 3472 KiB  
Article
Real-Time Detection and Response to Wormhole and Sinkhole Attacks in Wireless Sensor Networks
by Tamara Zhukabayeva, Lazzat Zholshiyeva, Yerik Mardenov, Atdhe Buja, Shafiullah Khan and Noha Alnazzawi
Technologies 2025, 13(8), 348; https://doi.org/10.3390/technologies13080348 - 7 Aug 2025
Viewed by 271
Abstract
Wireless sensor networks have become a vital technology that is extensively applied across multiple industries, including agriculture, industrial operations, and smart cities, as well as residential smart homes and environmental monitoring systems. Security threats emerge in these systems through hidden routing-level attacks such [...] Read more.
Wireless sensor networks have become a vital technology that is extensively applied across multiple industries, including agriculture, industrial operations, and smart cities, as well as residential smart homes and environmental monitoring systems. Security threats emerge in these systems through hidden routing-level attacks such as Wormhole and Sinkhole attacks. The aim of this research was to develop a methodology for detecting security incidents in WSNs by conducting real-time analysis of Wormhole and Sinkhole attacks. Furthermore, the paper proposes a novel detection methodology combined with architectural enhancements to improve network robustness, measured by hop counts, delays, false data ratios, and route integrity. A real-time WSN infrastructure was developed using ZigBee and Global System for Mobile Communications/General Packet Radio Service (GSM/GPRS) technologies. To realistically simulate Wormhole and Sinkhole attack scenarios and conduct evaluations, we developed a modular cyber–physical architecture that supports real-time monitoring, repeatability, and integration of ZigBee- and GSM/GPRS-based attacker nodes. During the experimentation, Wormhole attacks caused the hop count to decrease from 4 to 3, while the average delay increased by 40%, and false sensor readings were introduced in over 30% of cases. Additionally, Sinkhole attacks led to a 27% increase in traffic concentration at the malicious node, disrupting load balancing and route integrity. The proposed multi-stage methodology includes data collection, preprocessing, anomaly detection using the 3-sigma rule, and risk-based decision making. Simulation results demonstrated that the methodology successfully detected route shortening, packet loss, and data manipulation in real time. Thus, the integration of anomaly-based detection with ZigBee and GSM/GPRS enables a timely response to security threats in critical WSN deployments. Full article
(This article belongs to the Special Issue New Technologies for Sensors)
Show Figures

Figure 1

24 pages, 2199 KiB  
Review
Smart Walking Aids with Sensor Technology for Gait Support and Health Monitoring: A Scoping Review
by Stefan Resch, Aya Zirari, Thi Diem Quynh Tran, Luca Marco Bauer and Daniel Sanchez-Morillo
Technologies 2025, 13(8), 346; https://doi.org/10.3390/technologies13080346 - 7 Aug 2025
Viewed by 511
Abstract
Smart walking aids represent a growing trend in assistive technologies designed to support individuals with mobility impairments in their daily lives and rehabilitation. Previous research has introduced sensor-integrated systems that provide user feedback to enhance safety and functional mobility. However, a comprehensive overview [...] Read more.
Smart walking aids represent a growing trend in assistive technologies designed to support individuals with mobility impairments in their daily lives and rehabilitation. Previous research has introduced sensor-integrated systems that provide user feedback to enhance safety and functional mobility. However, a comprehensive overview of their technological and functional characteristics is lacking. To address this gap, this scoping review systematically mapped the current state of research in sensor-based walking aids, focusing on device types, sensor technologies, application contexts, target populations, and reported outcomes. In addition, integrated artificial intelligence (AI)-based approaches for functional support and health monitoring were examined. Following PRISMA-ScR guidelines, 35 peer-reviewed articles were identified from three databases: ACM Digital Library, IEEE Xplore, and Web of Science. Extracted data were thematically analyzed and synthesized across device types (e.g., walking canes, crutches, walkers, rollators) and use cases, including gait training, fall prevention, and daily support. Findings show that, while many prototypes show promising features, few have been evaluated in clinical settings or over extended periods. A lack of standardized methods for sensor location assessment, often the superficial implementation of feedback modalities, and limited integration with other assistive technologies were identified. In addition, system validation and user testing lack consensus, with few long-term studies and often incomplete demographic data. Diversity in data communication approaches and the heterogeneous use of AI algorithms were also notable. The review highlights key challenges and research opportunities to guide the future development of intelligent, user-centered mobility systems. Full article
Show Figures

Figure 1

20 pages, 1279 KiB  
Article
A Framework for Quantifying Hyperloop’s Socio-Economic Impact in Smart Cities Using GDP Modeling
by Aleksejs Vesjolijs, Yulia Stukalina and Olga Zervina
Economies 2025, 13(8), 228; https://doi.org/10.3390/economies13080228 - 6 Aug 2025
Viewed by 459
Abstract
Hyperloop ultra-high-speed transport presents a transformative opportunity for future mobility systems in smart cities. However, assessing its socio-economic impact remains challenging due to Hyperloop’s unique technological, modal, and operational characteristics. As a novel, fifth mode of transportation—distinct from both aviation and rail—Hyperloop requires [...] Read more.
Hyperloop ultra-high-speed transport presents a transformative opportunity for future mobility systems in smart cities. However, assessing its socio-economic impact remains challenging due to Hyperloop’s unique technological, modal, and operational characteristics. As a novel, fifth mode of transportation—distinct from both aviation and rail—Hyperloop requires tailored evaluation tools for policymakers. This study proposes a custom-designed framework to quantify its macroeconomic effects through changes in gross domestic product (GDP) at the city level. Unlike traditional economic models, the proposed approach is specifically adapted to Hyperloop’s multimodality, infrastructure, speed profile, and digital-green footprint. A Poisson pseudo-maximum likelihood (PPML) model is developed and applied at two technology readiness levels (TRL-6 and TRL-9). Case studies of Glasgow, Berlin, and Busan are used to simulate impacts based on geo-spatial features and city-specific trade and accessibility indicators. Results indicate substantial GDP increases driven by factors such as expanded 60 min commute catchment zones, improved trade flows, and connectivity node density. For instance, under TRL-9 conditions, GDP uplift reaches over 260% in certain scenarios. The framework offers a scalable, reproducible tool for policymakers and urban planners to evaluate the economic potential of Hyperloop within the context of sustainable smart city development. Full article
(This article belongs to the Section International, Regional, and Transportation Economics)
Show Figures

Figure 1

23 pages, 2029 KiB  
Systematic Review
Exploring the Role of Industry 4.0 Technologies in Smart City Evolution: A Literature-Based Study
by Nataliia Boichuk, Iwona Pisz, Anna Bruska, Sabina Kauf and Sabina Wyrwich-Płotka
Sustainability 2025, 17(15), 7024; https://doi.org/10.3390/su17157024 - 2 Aug 2025
Viewed by 459
Abstract
Smart cities are technologically advanced urban environments where interconnected systems and data-driven technologies enhance public service delivery and quality of life. These cities rely on information and communication technologies, the Internet of Things, big data, cloud computing, and other Industry 4.0 tools to [...] Read more.
Smart cities are technologically advanced urban environments where interconnected systems and data-driven technologies enhance public service delivery and quality of life. These cities rely on information and communication technologies, the Internet of Things, big data, cloud computing, and other Industry 4.0 tools to support efficient city management and foster citizen engagement. Often referred to as digital cities, they integrate intelligent infrastructures and real-time data analytics to improve mobility, security, and sustainability. Ubiquitous sensors, paired with Artificial Intelligence, enable cities to monitor infrastructure, respond to residents’ needs, and optimize urban conditions dynamically. Given the increasing significance of Industry 4.0 in urban development, this study adopts a bibliometric approach to systematically review the application of these technologies within smart cities. Utilizing major academic databases such as Scopus and Web of Science the research aims to identify the primary Industry 4.0 technologies implemented in smart cities, assess their impact on infrastructure, economic systems, and urban communities, and explore the challenges and benefits associated with their integration. The bibliometric analysis included publications from 2016 to 2023, since the emergence of urban researchers’ interest in the technologies of the new industrial revolution. The task is to contribute to a deeper understanding of how smart cities evolve through the adoption of advanced technological frameworks. Research indicates that IoT and AI are the most commonly used tools in urban spaces, particularly in smart mobility and smart environments. Full article
Show Figures

Figure 1

29 pages, 3508 KiB  
Article
Assessment of the Energy Efficiency of Individual Means of Transport in the Process of Optimizing Transport Environments in Urban Areas in Line with the Smart City Idea
by Grzegorz Augustyn, Jerzy Mikulik, Wojciech Lewicki and Mariusz Niekurzak
Energies 2025, 18(15), 4079; https://doi.org/10.3390/en18154079 - 1 Aug 2025
Viewed by 316
Abstract
One of the fundamental goals of contemporary mobility is to optimize transport processes in urban areas. The solution in this area seems to be the implementation of the idea of sustainable transport systems based on the Smart City concept. The article presents a [...] Read more.
One of the fundamental goals of contemporary mobility is to optimize transport processes in urban areas. The solution in this area seems to be the implementation of the idea of sustainable transport systems based on the Smart City concept. The article presents a case study—an assessment of the possibilities of changing mobility habits based on the idea of sustainable urban transport, taking into account the criterion of energy consumption of individual means of transport. The analyses are based on a comparison of selected means of transport occurring in the urban environment according to several key parameters for the optimization and efficiency of transport processes, i.e., cost, time, travel comfort, and impact on the natural environment, while simultaneously linking them to the criterion of energy consumption of individual means of transport. The analyzed parameters currently constitute the most important group of challenges in the area of shaping and planning optimal and sustainable urban transport. The presented research was used to indicate the connections between various areas of optimization of the transport process and the energy efficiency of individual modes of transport. Analyses have shown that the least time-consuming process of urban mobility is associated with the highest level of CO2 emissions and, at the same time, the highest level of energy efficiency. However, combining public transport with other means of transport can meet most of the transport expectations of city residents, also in terms of energy optimization. The research results presented in the article can contribute to the creation of a strategy for the development of the transport network based on the postulates of increasing the optimization and efficiency of individual means of transport in urban areas. At the same time, recognizing the criterion of energy intensity of means of transport as leading in the development of sustainable urban mobility. Thus, confirming the important role of existing transport systems in the process of shaping and planning sustainable urban mobility in accordance with the idea of Smart City. Full article
Show Figures

Figure 1

Back to TopTop