Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = smart contact lenses

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 3876 KB  
Review
Ocular Drug Delivery: Emerging Approaches and Advances
by Shilpkala Gade, Yin So, Deepakkumar Mishra, Shubhamkumar M. Baviskar, Ahmad A. Assiri, Katie Glover, Ravi Sheshala, Lalitkumar K. Vora and Raghu Raj Singh Thakur
Pharmaceutics 2025, 17(5), 599; https://doi.org/10.3390/pharmaceutics17050599 - 1 May 2025
Cited by 4 | Viewed by 6556
Abstract
Complex anatomical and physiological barriers make the eye a challenging organ to treat from a drug delivery perspective. Currently available treatment methods (topical eyedrops) for anterior segment diseases pose several limitations in terms of bioavailability and patient compliance. Conventional drug delivery methods to [...] Read more.
Complex anatomical and physiological barriers make the eye a challenging organ to treat from a drug delivery perspective. Currently available treatment methods (topical eyedrops) for anterior segment diseases pose several limitations in terms of bioavailability and patient compliance. Conventional drug delivery methods to treat posterior segment ocular diseases are primarily intravitreal injection (IVT) of solutions. IVT is highly invasive and leads to retinal toxicity, endophthalmitis, and intraocular inflammation, frequently requiring professional administration and frequent clinical visits. Advanced drug delivery treatment strategies could improve patient compliance and convenience. Long-acting drug delivery platforms (biodegradable or nonbiodegradable) provide sustained/controlled release of drugs for at least four to six months. Smart drug delivery alternatives, for instance, in situ forming implants, are injectable formulations that form semisolid-to-solid implants in response to the various stimuli of pH, light, osmolarity, and temperature. Additionally, nanoparticulate drug delivery systems, contact lenses, electrospun patches, and microneedle-based drug delivery systems provide minimally invasive treatment options for ocular disorders. This comprehensive review focuses on advanced drug delivery options for the management of ocular disorders. Full article
(This article belongs to the Special Issue Ophthalmic Drug Delivery, 3rd Edition)
Show Figures

Figure 1

17 pages, 882 KB  
Review
Smart Contact Lenses in Ophthalmology: Innovations, Applications, and Future Prospects
by Kevin Y. Wu, Archan Dave, Marjorie Carbonneau and Simon D. Tran
Micromachines 2024, 15(7), 856; https://doi.org/10.3390/mi15070856 - 30 Jun 2024
Cited by 11 | Viewed by 12809
Abstract
Smart contact lenses represent a breakthrough in the intersection of medical science and innovative technology, offering transformative potential in ophthalmology. This review article delves into the technological underpinnings of smart contact lenses, emphasizing the current landscape and advancements in biosensors, power supply, biomaterials, [...] Read more.
Smart contact lenses represent a breakthrough in the intersection of medical science and innovative technology, offering transformative potential in ophthalmology. This review article delves into the technological underpinnings of smart contact lenses, emphasizing the current landscape and advancements in biosensors, power supply, biomaterials, and the transmission of ocular information. This review further applies new innovations to their emerging role in the diagnosis, monitoring, and management of various ocular conditions. Moreover, we explore the impact of technical innovations on the application of smart contact lenses in monitoring glaucoma, managing postoperative care, and dry eye syndrome, further elucidating the non-invasive nature of these devices in continuous ocular health monitoring. The therapeutic potential of smart contact lenses such as treatment through targeted drug delivery and the monitoring of inflammatory biomarkers is also highlighted. Despite promising advancements, the implementation of smart contact lenses faces technical, regulatory, and patient compliance challenges. This review synthesizes the recent advances to provide an outlook on the state of smart contact lens technology. Furthermore, we discuss future directions, focusing on potential technological enhancements and new applications within ophthalmology. Full article
(This article belongs to the Special Issue Flexible and Wearable Sensors, 3rd Edition)
Show Figures

Figure 1

20 pages, 1676 KB  
Review
Advances in Therapeutic Contact Lenses for the Management of Different Ocular Conditions
by Mariana Ioniță, George Mihail Vlăsceanu, Alin Georgian Toader and Marius Manole
J. Pers. Med. 2023, 13(11), 1571; https://doi.org/10.3390/jpm13111571 - 3 Nov 2023
Cited by 14 | Viewed by 5744
Abstract
In the advent of an increasingly aging population and due to the popularity of electronic devices, ocular conditions have become more prevalent. In the world of medicine, accomplishing eye medication administration has always been a difficult task. Despite the fact that there are [...] Read more.
In the advent of an increasingly aging population and due to the popularity of electronic devices, ocular conditions have become more prevalent. In the world of medicine, accomplishing eye medication administration has always been a difficult task. Despite the fact that there are many commercial eye drops, most of them have important limitations, due to quick clearance mechanisms and ocular barrers. One solution with tremendous potential is the contact lens used as a medication delivery vehicle to bypass this constraint. Therapeutic contact lenses for ocular medication delivery have attracted a lot of attention because they have the potential to improve ocular bioavailability and patient compliance, both with minimal side effects. However, it is essential not to compromise essential features such as water content, optical transparency, and modulus to attain positive in vitro and in vivo outcomes with respect to a sustained drug delivery profile from impregnated contact lenses. Aside from difficulties like drug stability and burst release, the changing of lens physico-chemical features caused by therapeutic or non-therapeutic components can limit the commercialization potential of pharmaceutical-loaded lenses. Research has progressed towards bioinspired techniques and smart materials, to improve the efficacy of drug-eluting contact lenses. The bioinspired method uses polymeric materials, and a specialized molecule-recognition technique called molecular imprinting or a stimuli–responsive system to improve biocompatibility and support the drug delivery efficacy of drug-eluting contact lenses. This review encompasses strategies of material design, lens manufacturing and drug impregnation under the current auspices of ophthalmic therapies and projects an outlook onto future opportunities in the field of eye condition management by means of an active principle-eluting contact lens. Full article
(This article belongs to the Special Issue Personalized Diagnosis and Therapies in Retinal Diseases)
Show Figures

Figure 1

28 pages, 4284 KB  
Review
Smart Contact Lenses—A Step towards Non-Invasive Continuous Eye Health Monitoring
by Nikolay L. Kazanskiy, Svetlana N. Khonina and Muhammad A. Butt
Biosensors 2023, 13(10), 933; https://doi.org/10.3390/bios13100933 - 18 Oct 2023
Cited by 51 | Viewed by 12623
Abstract
According to the age-old adage, while eyes are often considered the gateway to the soul, they might also provide insights into a more pragmatic aspect of our health: blood sugar levels. This potential breakthrough could be realized through the development of smart contact [...] Read more.
According to the age-old adage, while eyes are often considered the gateway to the soul, they might also provide insights into a more pragmatic aspect of our health: blood sugar levels. This potential breakthrough could be realized through the development of smart contact lenses (SCLs). Although contact lenses were first developed for eyesight correction, new uses have recently become available. In the near future, it might be possible to monitor a variety of ocular and systemic disorders using contact lens sensors. Within the realm of glaucoma, SCLs present a novel prospect, offering a potentially superior avenue compared to traditional management techniques. These lenses introduce the possibility of non-invasive and continuous monitoring of intraocular pressure (IOP) while also enabling the personalized administration of medication as and when needed. This convergence holds great promise for advancing glaucoma care. In this review, recent developments in SCLs, including their potential applications, such as IOP and glucose monitoring, are briefly discussed. Full article
(This article belongs to the Section Wearable Biosensors)
Show Figures

Figure 1

19 pages, 33789 KB  
Review
2D-Materials-Based Wearable Biosensor Systems
by Yi Wang, Tong Li, Yangfeng Li, Rong Yang and Guangyu Zhang
Biosensors 2022, 12(11), 936; https://doi.org/10.3390/bios12110936 - 27 Oct 2022
Cited by 29 | Viewed by 8482
Abstract
As an evolutionary success in life science, wearable biosensor systems, which can monitor human health information and quantify vital signs in real time, have been actively studied. Research in wearable biosensor systems is mainly focused on the design of sensors with various flexible [...] Read more.
As an evolutionary success in life science, wearable biosensor systems, which can monitor human health information and quantify vital signs in real time, have been actively studied. Research in wearable biosensor systems is mainly focused on the design of sensors with various flexible materials. Among them, 2D materials with excellent mechanical, optical, and electrical properties provide the expected characteristics to address the challenges of developing microminiaturized wearable biosensor systems. This review summarizes the recent research progresses in 2D-materials-based wearable biosensors including e-skin, contact lens sensors, and others. Then, we highlight the challenges of flexible power supply technologies for smart systems. The latest advances in biosensor systems involving wearable wristbands, diabetic patches, and smart contact lenses are also discussed. This review will enable a better understanding of the design principle of 2D biosensors, offering insights into innovative technologies for future biosensor systems toward their practical applications. Full article
(This article belongs to the Special Issue Smart Materials for Chemical and Biosensing)
Show Figures

Figure 1

11 pages, 1405 KB  
Article
Photoinitiated Polymerization of Hydrogels by Graphene Quantum Dots
by Yuna Kim, Jaekwang Song, Seong Chae Park, Minchul Ahn, Myung Jin Park, Sung Hyuk Song, Si-Youl Yoo, Seung Gweon Hong and Byung Hee Hong
Nanomaterials 2021, 11(9), 2169; https://doi.org/10.3390/nano11092169 - 25 Aug 2021
Cited by 16 | Viewed by 4952
Abstract
As a smart stimulus-responsive material, hydrogel has been investigated extensively in many research fields. However, its mechanical brittleness and low strength have mattered, and conventional photoinitiators used during the polymerization steps exhibit high toxicity, which limits the use of hydrogels in the field [...] Read more.
As a smart stimulus-responsive material, hydrogel has been investigated extensively in many research fields. However, its mechanical brittleness and low strength have mattered, and conventional photoinitiators used during the polymerization steps exhibit high toxicity, which limits the use of hydrogels in the field of biomedical applications. Here, we address the dual functions of graphene quantum dots (GQDs), one to trigger the synthesis of hydrogel as photoinitiators and the other to improve the mechanical strength of the as-synthesized hydrogel. GQDs embedded in the network effectively generated radicals when exposed to sunlight, leading to the initiation of polymerization, and also played a significant role in improving the mechanical strength of the crosslinked chains. Thus, we expect that the resulting hydrogel incorporated with GQDs would enable a wide range of applications that require biocompatibility as well as higher mechanical strength, including novel hydrogel contact lenses and bioscaffolds for tissue engineering. Full article
(This article belongs to the Special Issue Synthesis, Modification and Application of Graphene)
Show Figures

Figure 1

13 pages, 2959 KB  
Article
Composite Material of PDMS with Interchangeable Transmittance: Study of Optical, Mechanical Properties and Wettability
by Flaminio Sales, Andrews Souza, Ronaldo Ariati, Verônica Noronha, Elder Giovanetti, Rui Lima and João Ribeiro
J. Compos. Sci. 2021, 5(4), 110; https://doi.org/10.3390/jcs5040110 - 17 Apr 2021
Cited by 24 | Viewed by 6991
Abstract
Polydimethylsiloxane (PDMS) is a polymer that has attracted the attention of researchers due to its unique properties such as transparency, biocompatibility, high flexibility, and physical and chemical stability. In addition, PDMS modification and combination with other materials can expand its range of applications. [...] Read more.
Polydimethylsiloxane (PDMS) is a polymer that has attracted the attention of researchers due to its unique properties such as transparency, biocompatibility, high flexibility, and physical and chemical stability. In addition, PDMS modification and combination with other materials can expand its range of applications. For instance, the ability to perform superhydrophobic coating allows for the manufacture of lenses. However, many of these processes are complex and expensive. One of the most promising modifications, which consists of the development of an interchangeable coating, capable of changing its optical characteristics according to some stimuli, has been underexplored. Thus, we report an experimental study of the mechanical and optical properties and wettability of pure PDMS and of two PDMS composites with the addition of 1% paraffin or beeswax using a gravity casting process. The composites’ tensile strength and hardness were lower when compared with pure PDMS. However, the contact angle was increased, reaching the highest values when using the paraffin additive. Additionally, these composites have shown interesting results for the spectrophotometry tests, i.e., the material changed its optical characteristics when heated, going from opaque at room temperature to transparent, with transmittance around 75%, at 70 °C. As a result, these materials have great potential for use in smart devices, such as sensors, due to its ability to change its transparency at high temperatures. Full article
Show Figures

Figure 1

28 pages, 6003 KB  
Review
Recent Advances in Wearable Devices for Non-Invasive Sensing
by Su Min Yun, Moohyun Kim, Yong Won Kwon, Hyobeom Kim, Mi Jung Kim, Young-Geun Park and Jang-Ung Park
Appl. Sci. 2021, 11(3), 1235; https://doi.org/10.3390/app11031235 - 29 Jan 2021
Cited by 45 | Viewed by 11034
Abstract
The development of wearable sensors is aimed at enabling continuous real-time health monitoring, which leads to timely and precise diagnosis anytime and anywhere. Unlike conventional wearable sensors that are somewhat bulky, rigid, and planar, research for next-generation wearable sensors has been focused on [...] Read more.
The development of wearable sensors is aimed at enabling continuous real-time health monitoring, which leads to timely and precise diagnosis anytime and anywhere. Unlike conventional wearable sensors that are somewhat bulky, rigid, and planar, research for next-generation wearable sensors has been focused on establishing fully-wearable systems. To attain such excellent wearability while providing accurate and reliable measurements, fabrication strategies should include (1) proper choices of materials and structural designs, (2) constructing efficient wireless power and data transmission systems, and (3) developing highly-integrated sensing systems. Herein, we discuss recent advances in wearable devices for non-invasive sensing, with focuses on materials design, nano/microfabrication, sensors, wireless technologies, and the integration of those. Full article
(This article belongs to the Special Issue Advanced Flexible Electronics: Materials, Sensors, and Applications)
Show Figures

Figure 1

25 pages, 9084 KB  
Review
Active Optical Beam Shaping Based on Liquid Crystals and Polymer Micro-Structures
by Xiaobing Shang, Dieter Cuypers, Tigran Baghdasaryan, Michael Vervaeke, Hugo Thienpont, Jeroen Beeckman, Kristiaan Neyts, Quan Li, Chao Wu, Hongqiang Li, Changjun Jiang and Herbert De Smet
Crystals 2020, 10(11), 977; https://doi.org/10.3390/cryst10110977 - 29 Oct 2020
Cited by 9 | Viewed by 4523
Abstract
Emerging applications requiring light beam manipulation, such as high-efficiency sunlight concentrators for solar cells, switchable micro-lens arrays for autostereoscopic displays, tunable lenses for augmented reality goggles, auto-focusing spectacles, and smart contact lenses, mostly depend on one or more active optical components with the [...] Read more.
Emerging applications requiring light beam manipulation, such as high-efficiency sunlight concentrators for solar cells, switchable micro-lens arrays for autostereoscopic displays, tunable lenses for augmented reality goggles, auto-focusing spectacles, and smart contact lenses, mostly depend on one or more active optical components with the desired and controllable beam modifying functionalities, preferably manufactured at relatively low cost. Recent progress in research on components based on the combination of liquid crystals (LCs) and various polymer micro-structures is reviewed in this paper. It is found that such components can address the demands appropriately and have the potential of paving the way for large-scale applications of active optical beam shaping components. Full article
(This article belongs to the Section Liquid Crystals)
Show Figures

Graphical abstract

34 pages, 7650 KB  
Review
Recent Progress in Wireless Sensors for Wearable Electronics
by Young-Geun Park, Sangil Lee and Jang-Ung Park
Sensors 2019, 19(20), 4353; https://doi.org/10.3390/s19204353 - 9 Oct 2019
Cited by 129 | Viewed by 19542
Abstract
The development of wearable electronics has emphasized user-comfort, convenience, security, and improved medical functionality. Several previous research studies transformed various types of sensors into a wearable form to more closely monitor body signals and enable real-time, continuous sensing. In order to realize these [...] Read more.
The development of wearable electronics has emphasized user-comfort, convenience, security, and improved medical functionality. Several previous research studies transformed various types of sensors into a wearable form to more closely monitor body signals and enable real-time, continuous sensing. In order to realize these wearable sensing platforms, it is essential to integrate wireless power supplies and data communication systems with the wearable sensors. This review article discusses recent progress in wireless technologies and various types of wearable sensors. Also, state-of-the-art research related to the application of wearable sensor systems with wireless functionality is discussed, including electronic skin, smart contact lenses, neural interfaces, and retinal prostheses. Current challenges and prospects of wireless sensor systems are discussed. Full article
(This article belongs to the Special Issue Wearable Soft Sensors)
Show Figures

Figure 1

Back to TopTop