Active Optical Beam Shaping Based on Liquid Crystals and Polymer Micro-Structures
Abstract
:1. Introduction
1.1. Optical Beam Shaping Using LC Gradient Refractive Index
1.2. Optical Beam Shaping Based on LCs and Shaped Polymer Structures
1.3. Summary
2. Fabrication of Optical Micro-Structures
2.1. Diamond Tooling for Optical Micro-Structures
2.2. Hot Embossing for Optical Micro-Structures
2.3. Laser Ablation for Optical Micro-Structures
2.4. Soft Lithography for Optical Micro-Structures
2.5. Summary
3. LC-Polymer Grating Based Beam Shaping Components
3.1. Beam Deflection Using a Nematic LC-Linear Grating Device
3.2. Beam Broadening and Beam Condensing with LC-Circular Grating Devices
3.3. Polarization Independent Beam Shaping Using a Ch LC-Micro Grating Device
- Scheme 1—Bare grating rubbed along the grooves combined with flat ITO counterpart coated with a rubbed polyimide (PI) layer to form anti-parallel LC alignment.
- Scheme 2—Bare grating rubbed along the grooves combined with flat ITO counterpart coated with a rubbed PI layer to form orthogonal LC alignment.
- Scheme 3—Bare grating without rubbing combined with flat ITO counterpart coated with a non-rubbed PI layer.
- Scheme 4—Bare grating without rubbing combined with bare flat ITO counterpart without a PI layer.
3.4. Fast Switching LC Beam Deflection Using Dual Frequency Driving
3.5. Blue Phase LC-Micro Grating Based Beam Steering Device
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Santiago-Alvarado, A.; Vazquez-Montiel, S.; Gonzalez-Garcia, J.; Iturbide-Jimenez, F.; Cruz-Felix, A.S.; Cruz-Martinez, V.; Lopez-Lopez, E.A.; Castro-Gonzalez, G. Advances in the development of tunable lenses in Mexico. Photon. Lett. Pol. 2015, 7, 20–22. [Google Scholar] [CrossRef] [Green Version]
- Tapos, F.M.; Edinger, D.J.; Hilby, T.R.; Ni, M.S.; Holmes, B.C.; Stubbs, D.M. High bandwidth fast steering mirror. Opt. Photon. 2005, 5877, 587707. [Google Scholar] [CrossRef]
- Yoder, P.; Vukobratovich, D. Opto-Mechanical Systems Design, 4th ed.; CRC Press: Boca Raton, FL, USA, 2015; pp. 1–46. [Google Scholar]
- Torres, D.; Dooley, S.; Starman, L.A. Large Out-of-Plane Deflection MEMS Actuators for Optical Applications. Proceedings 2018, 2, 1072. [Google Scholar] [CrossRef] [Green Version]
- Pengwang, E.; Rabenorosoa, K.; Rakotondrabe, M.; Andreff, N. Scanning Micromirror Platform Based on MEMS Technology for Medical Application. Micromachines 2016, 7, 24. [Google Scholar] [CrossRef] [PubMed]
- Sabry, Y.; Khalil, D.; Saadany, B.; Bourouina, T. Wide steering angle microscanner based on curved surface. Proc. SPIE 2013, 8616, 86160. [Google Scholar]
- Chan, T.K.; Megens, M.; Yoo, B.W.; Wyras, J.; Chang-Hasnain, C.J.; Wu, M.C.; Horsley, D.A. Optical beam steering using an 8×8 mems phased array with closed-loop interferometric phase control. Opt. Express 2013, 21, 2807–2815. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.-C.; Ting, Y.-S.; Fang, W. Development of passive and active microprism arrays to change the radiation pattern of solid-state lighting. J. Micromech. Microeng. 2012, 22, 105038. [Google Scholar] [CrossRef]
- Tuantranont, A.; Bright, V.; Zhang, J.; Zhang, W.; Neff, J.; Lee, Y. Optical beam steering using MEMS-controllable microlens array. Sens. Actuators A Phys. 2001, 91, 363–372. [Google Scholar] [CrossRef]
- Krogmann, F.; Mönch, W.; Zappe, H. A MEMS-based variable micro-lens system. J. Opt. A Pure Appl. Opt. 2006, 8, 330–336. [Google Scholar] [CrossRef]
- Nabil, G.; Ho, W.F.; Chan, H.P. Experimental study on the performance of a variable optical attenuator using polymer dispersed liquid crystal. Appl. Opt. 2013, 52, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.; Bhowmik, A.; Bos, P.J. Fast-response liquid crystal variable optical retarder and multilevel attenuator. Opt. Eng. 2013, 52, 107105. [Google Scholar] [CrossRef] [Green Version]
- Huh, J.-W.; Yu, B.-H.; Heo, J.; Ji, S.-M.; Yoon, T.-H. Technologies for display application of liquid crystal light shutters. Mol. Cryst. Liq. Cryst. 2017, 644, 120–129. [Google Scholar] [CrossRef]
- Fells, J.A.; Wang, X.; Elston, S.J.; Welch, C.; Mehl, G.H.; Booth, M.; Morris, S.M. Flexoelectro-optic liquid crystal analog phase-only modulator with a 2π range and 1 kHz switching. Opt. Lett. 2018, 43, 4362–4365. [Google Scholar] [CrossRef] [PubMed]
- Caño-García, M.; Quintana, X.; Otón, J.M.; Geday, M.A. Dynamic multilevel spiral phase plate generator. Sci. Rep. 2018, 8, 15804. [Google Scholar] [CrossRef] [PubMed]
- Choi, M. Universal phase-only spatial light modulators. Opt. Express 2017, 25, 22253. [Google Scholar] [CrossRef]
- Oton, E.; Netter, E. Wide tunable shift of the reflection band in dual frequency cholesteric liquid crystals. Opt. Express 2017, 25, 13314. [Google Scholar] [CrossRef]
- Oton, J.M.; Caño-García, M.; Gordo, F.; Otón, E.; Geday, M.A.; Quintana, X. Liquid crystal tunable claddings for polymer integrated optical waveguides. Beilstein J. Nanotechnol. 2019, 10, 2163–2170. [Google Scholar] [CrossRef]
- Abuleil, M.J.; Abdulhalim, I. Narrowband multispectral liquid crystal tunable filter. Opt. Lett. 2016, 41, 1957–1960. [Google Scholar] [CrossRef]
- Otón, J.M.; Otón, E.; Quintana, X.; Geday, M.A. Liquid-crystal phase-only devices. J. Mol. Liq. 2018, 267, 469–483. [Google Scholar] [CrossRef]
- Algorri, J.F.; Urruchi, V.; Bennis, N.; Oton, J.M.; Otón, J.M. Tunable liquid crystal cylindrical micro-optical array for aberration compensation. Opt. Express 2015, 23, 13899–13915. [Google Scholar] [CrossRef]
- Stebryte, M.; Nys, I.; Ussembayev, Y.Y.; Beeckman, J.; Neyts, K. Large Angle Forward Diffraction by Chiral Liquid Crystal Gratings with Inclined Helical Axis. Crystals 2020, 10, 807. [Google Scholar] [CrossRef]
- Chao, P.C.-P.; Kao, Y.-Y.; Hsu, C.-J. A new negative liquid crystal lens with multiple ring electrodes in unequal widths. IEEE Photon. J. 2012, 4, 250–266. [Google Scholar] [CrossRef]
- Kim, J.; Oh, C.; Serati, S.; Escuti, M.J. Wide-angle, nonmechanical beam steering with high throughput utilizing polarization gratings. Appl. Opt. 2011, 50, 2636–2639. [Google Scholar] [CrossRef]
- Xiang, X.; Kim, J.; Escuti, M.J. Bragg polarization gratings for wide angular bandwidth and high efficiency at steep deflection angles. Sci. Rep. 2018, 8, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Algorri, J.F.; Urruchi, V.; Bennis, N.; Morawiak, P.; Sánchez-Pena, J.M.; Otón, J.M.; Oton, J.M. Liquid crystal spherical microlens array with high fill factor and optical power. Opt. Express 2017, 25, 605. [Google Scholar] [CrossRef]
- Oton, E.; Morawiak, P.; Mazur, R.; Quintana, X.; Geday, M.A.; Oton, J.M.; Piecek, W. Diffractive and Refractive Liquid Crystal Devices Based on Multilayer Matrices. J. Light. Technol. 2019, 37, 2086–2093. [Google Scholar] [CrossRef]
- Yousefzadeh, C.; Van Rynbach, A.; Bos, P.J. Design of a large aperture, tunable, Pancharatnam phase beam steering device. Opt. Express 2020, 28, 991–1001. [Google Scholar] [CrossRef]
- Li, L.; Bryant, D.; Van Heugten, T.; Bos, P.J. Near-diffraction-limited and low-haze electro-optical tunable liquid crystal lens with floating electrodes. Opt. Express 2013, 21, 8371–8381. [Google Scholar] [CrossRef] [PubMed]
- Geday, M.A.; Caño-García, M.; Otón, J.M.; Quintana, X. Adaptive Spiral Diffractive Lenses—Lenses with a Twist. Adv. Opt. Mater. 2020, 2001199, 1–5. [Google Scholar] [CrossRef]
- Willekens, O.; George, J.P.; Neyts, K.; Beeckman, J. Ferroelectric thin films with liquid crystal for gradient index applications. Opt. Express 2016, 24, 8088. [Google Scholar] [CrossRef] [Green Version]
- Klaus, W.; Ide, M.; Morokawa, S.; Tsuchiya, M.; Kamiya, T. Angle-independent beam steering using a liquid crystal grating with multi-resistive electrodes. Opt. Commun. 1997, 138, 151–157. [Google Scholar] [CrossRef]
- Naumov, A.F.; Loktev, M.Y.; Guralnik, I.R.; Vdovin, G. Liquid-crystal adaptive lenses with modal control. Opt. Lett. 1998, 23, 992–994. [Google Scholar] [CrossRef] [Green Version]
- Shang, X.; Trinidad, A.M.; Joshi, P.; De Smet, J.; Cuypers, D.; De Smet, H. Tunable Optical Beam Deflection Via Liquid Crystal Gradient Refractive Index Generated by Highly Resistive Polymer Film. IEEE Photon. J. 2016, 8, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Asatryan, K.; Presnyakov, V.; Tork, A.; Zohrabyan, A.; Bagramyan, A.; Galstian, T. Optical lens with electrically variable focus using an optically hidden dielectric structure. Opt. Express 2010, 18, 13981–13992. [Google Scholar] [CrossRef] [PubMed]
- Ren, H.; Fan, Y.-H.; Wu, S.-T. Polymer network liquid crystals for tunable microlens arrays. J. Phys. D Appl. Phys. 2004, 37, 400–403. [Google Scholar] [CrossRef] [Green Version]
- Ren, H.; Wu, S.-T. Tunable electronic lens using a gradient polymer network liquid crystal. Appl. Phys. Lett. 2003, 82, 22–24. [Google Scholar] [CrossRef]
- Ren, H.; Xu, S.; Wu, S.-T. Polymer-stabilized liquid crystal microlens array with large dynamic range and fast response time. Opt. Lett. 2013, 38, 3144–3147. [Google Scholar] [CrossRef]
- Xu, S.; Li, Y.; Liu, Y.; Sun, J.; Ren, H.; Wu, S.-T. Fast-Response Liquid Crystal Microlens. Micromachines 2014, 5, 300–324. [Google Scholar] [CrossRef] [Green Version]
- Ren, H.; Xu, S.; Wu, S.-T. Gradient polymer network liquid crystal with a large refractive index change. Opt. Express 2012, 20, 26464–26472. [Google Scholar] [CrossRef]
- Sun, J.; Xu, S.; Ren, H.; Wu, S.-T. Reconfigurable fabrication of scattering-free polymer network liquid crystal prism/grating/lens. Appl. Phys. Lett. 2013, 102, 161106. [Google Scholar] [CrossRef]
- Khorasaninejad, M.; Chen, W.T.; Devlin, R.C.; Oh, J.; Zhu, A.Y.; Capasso, F. Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging. Science 2016, 352, 1190–1194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khorasaninejad, M.; Chen, W.T.; Oh, J.; Capasso, F. Super-Dispersive Off-Axis Meta-Lenses for Compact High Resolution Spectroscopy. Nano Lett. 2016, 16, 3732–3737. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Alù, A. Tailoring the Dispersion of Plasmonic Nanorods To Realize Broadband Optical Meta-Waveplates. Nano Lett. 2013, 13, 1086–1091. [Google Scholar] [CrossRef] [PubMed]
- Anandan, J. The geometric phase. Nat. Cell Biol. 1992, 360, 307–313. [Google Scholar] [CrossRef]
- Hasman, E.; Kleiner, V.; Biener, G.; Niv, A. Polarization dependent focusing lens by use of quantized Pancharatnam–Berry phase diffractive optics. Appl. Phys. Lett. 2003, 82, 328–330. [Google Scholar] [CrossRef]
- Yu, N.; Genevet, P.; Kats, M.A.; Aieta, F.; Tetienne, J.-P.; Capasso, F.; Gaburro, Z. Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction. Science 2011, 334, 333–337. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Li, Y.; Miskiewicz, M.N.; Oh, C.; Kudenov, M.W.; Escuti, M.J. Fabrication of ideal geometric-phase holograms with arbitrary wavefronts. Optica 2015, 2, 958–964. [Google Scholar] [CrossRef]
- Ma, Y.; Tam, A.M.W.; Gan, X.T.; Shi, L.Y.; Srivastava, A.K.; Chigrinov, V.G.; Kwok, H.S.; Zhao, J.L. Fast switching ferroelectric liquid crystal Pancharatnam-Berry lens. Opt. Express 2019, 27, 10079–10086. [Google Scholar] [CrossRef]
- Shi, Y.; Lai, Y.; Liu, Y.; Chigrinov, V.G.; Kwok, H.-S.; Hu, M.; Luo, D.; Sun, X.W. Two-dimensional liquid crystal polarization grating via linearly polarized light modified multi-beam polarization interferometry. Opt. Express 2019, 27, 13061–13071. [Google Scholar] [CrossRef]
- Zhou, Y.; Yin, Y.; Yuan, Y.; Lin, T.; Huang, H.; Yao, L.; Wang, X.; Tam, A.M.W.; Fan, F.; Wen, S. Liquid crystal Pancharatnam-Berry phase lens with spatially separated focuses. Liq. Cryst. 2018, 46, 995–1000. [Google Scholar] [CrossRef]
- Flack, J.; Harrold, J.; Woodgate, G.J. A prototype 3D mobile phone equipped with a next-generation autostereoscopic display. Proc. SPIE 2007, 6490, 64900M. [Google Scholar] [CrossRef]
- Kim, J.; Miskiewicz, M.N.; Serati, S.; Escuti, M.J. Nonmechanical Laser Beam Steering Based on Polymer Polarization Gratings: Design Optimization and Demonstration. J. Light. Technol. 2015, 33, 2068–2077. [Google Scholar] [CrossRef]
- Ren, H.; Xu, S.; Liu, Y.; Wu, S.-T. Switchable focus using a polymeric lenticular microlens array and a polarization rotator. Opt. Express 2013, 21, 7916–7925. [Google Scholar] [CrossRef]
- Krijn, M.P.C.M.; De Zwart, S.T.; De Boer, D.K.G.; Willemsen, O.H.; Sluijter, M. 2-D/3-D displays based on switchable lenticulars. J. Soc. Inf. Disp. 2008, 16, 847–885. [Google Scholar] [CrossRef]
- Choi, Y.; Park, J.-H.; Kim, J.-H.; Lee, S.-D. Fabrication of a focal length variable microlens array based on a nematic liquid crystal. Opt. Mater. 2003, 21, 643–646. [Google Scholar] [CrossRef]
- Shang, X.; Desmet, A.; Joshi, P.; De Smet, J.; Cuypers, D.; De Smet, H. 68–2: Smart Liquid Crystal Beam Deflector With Laser Ablated Polymer Micro Grating Structure. SID Symp. Dig. Tech. Pap. 2016, 47, 931–933. [Google Scholar] [CrossRef]
- Reznikov, M.; Reznikov, Y.; Slyusarenko, K.; Varshal, J.; Manevich, M. Adaptive properties of a liquid crystal cell with a micro lens profiled aligning surface. J. Appl. Phys. 2012, 111, 103118. [Google Scholar] [CrossRef]
- Commander, L.; Day, S.; Selviah, D. Variable focal length microlenses. Opt. Commun. 2000, 177, 157–170. [Google Scholar] [CrossRef]
- Wang, X.; Wilson, D.; Muller, R.; Maker, P.; Psaltis, D. Liquid-crystal blazed-grating beam deflector. Appl. Opt. 2000, 39, 6545–6555. [Google Scholar] [CrossRef] [Green Version]
- Ren, H.; Fan, Y.-H.; Lin, Y.-H.; Wu, S.-T. Tunable-focus microlens arrays using nanosized polymer-dispersed liquid crystal droplets. Opt. Commun. 2005, 247, 101–106. [Google Scholar] [CrossRef]
- Hwang, S.J.; Liu, Y.X.; Porter, G.A. Improvement of performance of liquid crystal microlens with polymer surface modification. Opt. Express 2014, 22, 4620–4627. [Google Scholar] [CrossRef] [PubMed]
- Shang, X.; Tan, J.-Y.; Willekens, O.; De Smet, J.; Joshi, P.; Cuypers, D.; Islamaj, E.; Beeckman, J.; Neyts, K.; Vervaeke, M.; et al. Electrically Controllable Liquid Crystal Component for Efficient Light Steering. IEEE Photon. J. 2015, 7, 1–13. [Google Scholar] [CrossRef]
- Willekens, O.; Jia, X.; Vervaeke, M.; Shang, X.; Baghdasaryan, T.; Thienpont, H.; De Smet, H.; Neyts, K.; Beeckman, J. Reflective liquid crystal hybrid beam-steerer. Opt. Express 2016, 24, 21541–21550. [Google Scholar] [CrossRef] [PubMed]
- Karow, H.H. Fabrication Methods for Precision Optics; John Wiley and Sons: New York, NY, USA, 1993; pp. 610–680. [Google Scholar]
- Bennett, H.E.; Porteus, J.O. Relation Between Surface Roughness and Specular Reflectance at Normal Incidence. J. Opt. Soc. Am. 1961, 51, 123–129. [Google Scholar] [CrossRef]
- Dlott, D.D. Ultrafast vibrational energy transfer in the real world: Laser ablation, energetic solids, and hemeproteins. J. Opt. Soc. Am. B 1990, 7, 1638–1652. [Google Scholar] [CrossRef]
- Sobĕhart, J.R. Polyimide ablation using intense laser beams. J. Appl. Phys. 1993, 74, 2830–2833. [Google Scholar] [CrossRef]
- Keyes, T.; Clarke, R.H.; Isner, J.M. Theory of photoablation and its implications for laser phototherapy. J. Phys. Chem. 1985, 89, 4194–4196. [Google Scholar] [CrossRef]
- Davis, G.M.; Gower, M.C. Time resolved transmission studies of poly (methyl methacrylate) films during ultraviolet laser ablative photodecomposition. J. Appl. Phys. 1987, 61, 2090–2092. [Google Scholar] [CrossRef]
- Bityurin, N.; Luk’yanchuk, B.S.; Hong, M.H.; Chong, T.C. Models for laser ablation of polymers. Chem. Rev. 2003, 103, 519–552. [Google Scholar] [CrossRef]
- Brannon, J.H.; Scholl, D.; Kay, E. Ultraviolet photoablation of a plasma-synthesized fluorocarbon polymer. Appl. Phys. A 1991, 52, 160–166. [Google Scholar] [CrossRef]
- Zweig, A.D.; Venugopalan, V.; Deutsch, T.F. Stress generated in polyimide by excimer-laser irradiation. J. Appl. Phys. 1993, 74, 4181–4189. [Google Scholar] [CrossRef]
- Shang, X.; Desmet, A.; De Smet, J.; Joshi, P.; Cuypers, D.; Van Put, S.; Van Steenberge, G.; Vervaeke, M.; Thienpont, H.; De Smet, H. Laser ablation of micro-photonic structures for efficient light collection and distribution. J. Phys. D Appl. Phys. 2015, 48, 245101. [Google Scholar] [CrossRef]
- Desmet, L.; Van Overmeire, S.; Van Erps, J.; Ottevaere, H.; Debaes, C.; Thienpont, H. Elastomeric inverse moulding and vacuum casting process characterization for the fabrication of arrays of concave refractive microlenses. J. Micromech. Microeng. 2006, 17, 81–88. [Google Scholar] [CrossRef]
- Shang, X.; Missinne, J.; Beneitez, N.T.; Jablonski, M.; De Smet, J.; Joshi, P.; Cuypers, D.; Baghdasaryan, T.; Vervaeke, M.; Thienpont, H.; et al. Reverse Replication of Circular Micro Grating Structures with Soft Lithography. Proc. SPIE 2015, 9661, 96610. [Google Scholar]
- Shang, X.; Joshi, P.; Tan, J.-Y.; De Smet, J.; Cuypers, D.; Baghdasaryan, T.; Vervaeke, M.; Thienpont, H.; De Smet, H. Switchable circular beam deflectors. J. Phys. D Appl. Phys. 2016, 49, 165101. [Google Scholar] [CrossRef]
- Kim, J.-H.; Yoneya, M.; Yamamoto, J.; Yokoyama, H. Nano-rubbing of a liquid crystal alignment layer by an atomic force microscope: A detailed characterization. Nanotechnology 2002, 13, 133–137. [Google Scholar] [CrossRef]
- Knorr, T.G.; Hoffman, R.W. Dependence of Geometric Magnetic Anisotropy in Thin Iron Films. Phys. Rev. 1959, 113, 1039–1046. [Google Scholar] [CrossRef]
- Smith, D.O. Anisotropy in Permalloy Films. J. Appl. Phys. 1959, 30, S264–S265. [Google Scholar] [CrossRef]
- Barbero, G.; Dozov, I.; Palierne, J.F.; Durand, G. Order Electricity and Surface Orientation in Nematic Liquid Crystals. Phys. Rev. Lett. 1986, 56, 2056–2059. [Google Scholar] [CrossRef]
- Oton, E.; López-Andrés, S.; Bennis, N.; Oton, J.; Geday, M.A. Silicon oxides as alignment surfaces for vertically-aligned nematics in photonic devices. Opto-Electron. Rev. 2014, 22, 92–100. [Google Scholar] [CrossRef] [Green Version]
- Gibbons, W.M.; Shannon, P.J.; Sun, S.-T.; Swetlin, B.J. Surface-mediated alignment of nematic liquid crystals with polarized laser light. Nat. Cell Biol. 1991, 351, 49–50. [Google Scholar] [CrossRef]
- Miyachi, K.; Kobayashi, K.; Yamada, Y.; Mizushima, S. The world’s first photo alignment LCD technology applied to generation ten factory. SID Symp. Dig. Tech. Pap. 2010, 41, 579–582. [Google Scholar] [CrossRef]
- Chigrinov, V.; Muravski, A.; Kwok, H.S.; Takada, H.; Akiyama, H.; Takatsu, H. Anchoring properties of photoaligned azo-dye materials. Phys. Rev. E 2003, 68, 061702. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dreher, R.; Meier, G.; Saupe, A. Selective Reflection by Cholesteric Liquid Crystals. Mol. Cryst. Liq. Cryst. 1971, 13, 17–26. [Google Scholar] [CrossRef]
- Shang, X.; Meeus, L.; Cuypers, D.; De Smet, H. Fast switching cholesteric liquid crystal optical beam deflector with polarization independence. Sci. Rep. 2017, 7, 6492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shang, X.; Cuypers, D.; Chen, F.; Xu, C.; Li, Q.; Wu, C.; Li, H.; Jiang, C.; De Smet, H. Dual-frequency liquid crystal-polymer grating for fast response optical beam steering. Smart Mater. Struct. 2019, 28, 105036. [Google Scholar] [CrossRef]
- Kikuchi, H.; Yokota, M.; Hisakado, Y.; Yang, H.; Kajiyama, T. Polymer-stabilized liquid crystal blue phases. Nat. Mater. 2002, 1, 64–68. [Google Scholar] [CrossRef]
- Castles, F.; Day, F.V.; Morris, S.M.; Ko, D.-H.; Gardiner, D.J.; Qasim, M.M.; Nosheen, S.; Hands, P.J.W.; Choi, S.S.; Friend, R.H.; et al. Blue-phase templated fabrication of three-dimensional nanostructures for photonic applications. Nat. Mater. 2012, 11, 599–603. [Google Scholar] [CrossRef]
- Joshi, P.; Willekens, O.; Shang, X.; De Smet, J.; Cuypers, D.; Van Steenberge, G.; Beeckman, J.; Neyts, K.; De Smet, H. Tunable light beam steering device using polymer stabilized blue phase liquid crystals. Photon. Lett. Pol. 2017, 9, 11. [Google Scholar] [CrossRef] [Green Version]
Name | Material | Efficiency | Merit | Demerit |
---|---|---|---|---|
diamond tooling | non-ferrous | low | free-form optical structures | complex control & alignment |
laser ablation | polymers | medium | simple setup | ccharring effect & periodic defects |
hot embossing | thermoplastics | high | Efficient & easy process | high temperature & large loading force |
soft lithography | liquid adhesives | high | high efficiency & broad adhesives | still in development for mass production |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shang, X.; Cuypers, D.; Baghdasaryan, T.; Vervaeke, M.; Thienpont, H.; Beeckman, J.; Neyts, K.; Li, Q.; Wu, C.; Li, H.; et al. Active Optical Beam Shaping Based on Liquid Crystals and Polymer Micro-Structures. Crystals 2020, 10, 977. https://doi.org/10.3390/cryst10110977
Shang X, Cuypers D, Baghdasaryan T, Vervaeke M, Thienpont H, Beeckman J, Neyts K, Li Q, Wu C, Li H, et al. Active Optical Beam Shaping Based on Liquid Crystals and Polymer Micro-Structures. Crystals. 2020; 10(11):977. https://doi.org/10.3390/cryst10110977
Chicago/Turabian StyleShang, Xiaobing, Dieter Cuypers, Tigran Baghdasaryan, Michael Vervaeke, Hugo Thienpont, Jeroen Beeckman, Kristiaan Neyts, Quan Li, Chao Wu, Hongqiang Li, and et al. 2020. "Active Optical Beam Shaping Based on Liquid Crystals and Polymer Micro-Structures" Crystals 10, no. 11: 977. https://doi.org/10.3390/cryst10110977
APA StyleShang, X., Cuypers, D., Baghdasaryan, T., Vervaeke, M., Thienpont, H., Beeckman, J., Neyts, K., Li, Q., Wu, C., Li, H., Jiang, C., & De Smet, H. (2020). Active Optical Beam Shaping Based on Liquid Crystals and Polymer Micro-Structures. Crystals, 10(11), 977. https://doi.org/10.3390/cryst10110977