
crystals

Review

Active Optical Beam Shaping Based on Liquid
Crystals and Polymer Micro-Structures

Xiaobing Shang 1,2,* , Dieter Cuypers 3 , Tigran Baghdasaryan 4 , Michael Vervaeke 4,
Hugo Thienpont 4, Jeroen Beeckman 5 , Kristiaan Neyts 5 , Quan Li 1, Chao Wu 2,6,
Hongqiang Li 2,6, Changjun Jiang 1 and Herbert De Smet 3,*

1 College of Electronic and Information Engineering, Tongji University, Shanghai 200092, China;
13917311693@163.com (Q.L.); cjjiang@tongji.edu.cn (C.J.)

2 Institute of Dongguan-Tongji University, Dongguan 523808, China; chaowu@tongji.edu.cn (C.W.);
hqlee@tongji.edu.cn (H.L.)

3 Centre for Microsystems Technology, Ghent University and imec, 9052 Gent, Belgium;
dieter.cuypers@ugent.be

4 Brussels Photonics Team, Vrije Universiteit Brussel, 1050 Brussel, Belgium; tbaghdas@b-phot.org (T.B.);
mvervaek@b-phot.org (M.V.); hthienpo@vub.ac.be (H.T.)

5 Liquid Crystal and Photonics Group, Ghent University, 9052 Gent, Belgium;
jeroen.beeckman@ugent.be (J.B.); kristiaan.neyts@ugent.be (K.N.)

6 School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
* Correspondence: xiaobing_shang@hotmail.com (X.S.); herbert.desmet@ugent.be (H.D.S.)

Received: 30 September 2020; Accepted: 23 October 2020; Published: 29 October 2020
����������
�������

Abstract: Emerging applications requiring light beam manipulation, such as high-efficiency sunlight
concentrators for solar cells, switchable micro-lens arrays for autostereoscopic displays, tunable lenses
for augmented reality goggles, auto-focusing spectacles, and smart contact lenses, mostly depend on
one or more active optical components with the desired and controllable beam modifying functionalities,
preferably manufactured at relatively low cost. Recent progress in research on components based on
the combination of liquid crystals (LCs) and various polymer micro-structures is reviewed in this
paper. It is found that such components can address the demands appropriately and have the potential
of paving the way for large-scale applications of active optical beam shaping components.

Keywords: optical beam shaping; liquid crystals; polymer optical structures; micro-fabrications;
adaptive optics

1. Introduction

Through extensive exploration of optical mechanisms and optical technologies over the past four
centuries, a series of techniques have been developed for manipulating the propagating direction
of a light beam, its intensity distribution, polarization etc. Even nowadays, some of the most basic
and simplest components, such as mirrors, lenses and prisms, are still intensively used for various
optical beam shaping applications. To realize the controllable beam shaping functionality, conventional
optical components usually utilize mechanical motion [1–3]. This approach brings along some serious
drawbacks, such as a bulky volume, slow response, high manufacturing cost, frequent maintenance, etc.
As technology develops, more and more effective and compact tunable beam shaping solutions have
come forward to the domain. Micro-electro-mechanical systems (MEMS) based beam manipulation
is among the most promising technologies. One can manipulate a light beam propagation through
MEMS controlled micro lenses, micro mirrors, or micro prisms at the micrometer scale [4–10]. However,
sophisticated device structures and small device dimensions inhibit their applications in large-area
light beam shaping.
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Liquid crystals (LCs), usable as tunable electro-optical materials which are compatible with low
voltages provided directly by analogue integrated circuits (ICs), demonstrate large and controllable
optical anisotropy. Their unique characteristics lead to a dominant position in products of the
current display industry, such as thin film transistor (TFT) liquid crystal displays (LCDs). Beside the
well-established applications in displays, LCs with their unique electro-optical properties have been the
subject of continued research in other application areas, such as LC light intensity attenuators [11–13],
LC phase shifters [14–16], LC wavelength selectors [17–19], LC beam shaping devices [20–22] etc.
The tunable optical refractive index of LC materials, along with the quite mature LCD fabrication
technologies, are reasons to believe that the LC-based beam shaping components have a huge potential
to eliminate the disadvantages that are inherent to many existing solutions in the tunable and active
optical applications. According to the operation principle, LC beam shaping technologies are mainly
based on two schemes: LC gradient refractive index (GRIN) and LC in combination with polymer
micro-structures. In the following, recent progress of LC beam shaping components with the two
principles is overviewed and discussed.

1.1. Optical Beam Shaping Using LC Gradient Refractive Index

LC-GRIN beam shaping devices rely on gradient variation of the refractive index of an LC layer
with a uniform thickness, as is shown in Figure 1. A straightforward solution for realizing the LC-GRIN
profile is to use multiple addressing electrodes that are individually driven. The GRIN profile is then
directly determined by the electric field profile [23–26]. Good optical performance of the LC beam
shaping device requires accurate and fine control of this electric field distribution. This is achieved by
using small electrodes with narrow spacing. Often, very complex or even multi-layered electrodes and
LC structures are used [27–30]. To simplify the device structure and limit the complexity of driving
electronics, resistive or dielectric layers are sometimes deposited in-between the addressing electrodes to
smoothen the potential distribution [31–34]. Another way to realize a gradient electric field distribution
is to use a constant voltage drop over a layer with a varying dielectric constant profile [35].
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Figure 1. Schematic LC beam shaping devices with a GRIN profile.

Beside the usage of gradient electric fields, other techniques taking advantage of the polymerization
are also investigated for the realization of LC-GRIN devices, for example using an ultraviolet (UV)
light beam with a Gaussian profile or a grey-scale photomask to induce non-uniform polymerization of
the monomers in monomer doped LCs [36,37]. A combination of gradient electric fields with gradient
polymerization has also been considered. A narrow UV beam scans over the device containing both
LCs and monomers while the applied voltage in the illuminated zone is varied synchronously. A GRIN
LC orientation is thus generated by the patterned polymer network. The width of the UV beam line
determines the accuracy of the LC GRIN profile [38–41]. Optical scattering induced by the polymer
network is still an issue for this technique.
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Photonic components based on metamaterials or metasurfaces have attracted much interest in
recent years. The dimension, spacing, orientation and composition of the structure units (so-called
‘meta-atoms’) determine the optical properties [42–44]. According to the Pancharatnam–Berry (PB) phase
effect, a circularly polarized light beam experiences a phase change of twice the varying azimuthal angle
of the anisotropic meta-atoms [45–47]. It is known that nematic LCs are naturally good candidates to be
used as the optical meta-atoms. Moreover, since the advent of photo-alignment materials, LC alignment
technologies can be implemented in the micron or even submicron scale. Promising results have
been reported on active optical LC PB components [48–51]. Those studies usually rely on a patterned
UV light beam combined with a linear polarizer to irradiate the photo-alignment layers. Anisotropic
photo-chemical reactions in the photo-sensitive layer result in LC orientations with the desired azimuthal
angle variations on a (sub)micron scale, leading to the desired optical phase profile. Tunable photonic
metasurfaces are realized by introducing transparent electrodes that can influence the LC orientation.
The long-term instability of the photo-aligned LC orientation still limits its broad applications.

1.2. Optical Beam Shaping Based on LCs and Shaped Polymer Structures

Beam shaping devices based on the combination of LCs and specially shaped polymer structures,
employ the profile of the LC–polymer interface to achieve the desired beam control. One approach utilizes
a liquid crystalline polymer (LCP) lens array combined with a tunable polarization converter [52–54].
Photo-curable LC pre-polymer material is filled into the gap between the lens array and the counterpart
flat substrate, and aligned along the defined direction. After UV curing, a LC polymer layer forms and
it has the same optical property as the aligned LC pre-polymer. The newly generated interface between
the LCP layer and the micro lens structure changes the light wavefront, resulting in beam convergence.
A 90◦ twisted nematic LC device is used as a polarization converter to rotate the linear light polarization
by 90◦. If the light with the orthogonal polarization meets the interface of the aligned LCP layer, there is
no beam focusing because the refractive index of the LCP matches that of the micro lens structure.

Other methods adopt nematic LCs rather than LCPs to avoid the complex device architecture and
reduce the cost [55–60]. A nematic LC device with micro lens array is schematically shown in Figure 2.
Conductive and transparent layers are deposited on both the micro-lens array and the flat counterpart
substrate. The LC layer can be switched by applying strong electric fields, leading to a switchable
beam shaping compared to the ‘fixed’ one produced by the UV cured LC polymers. To avoid the need
for an LC alignment layer, a combination of polymer dispersed or stabilized LCs with micro lens arrays
has been proposed [61,62]. Without electric fields, the LC droplets are randomly aligned, exhibiting an
average refractive index for the incident light. By applying high voltages, the LC molecules in each
droplet are realigned parallel to the electric field. If the LC refractive index matches with the micro lens
material at high voltages, the whole device does not modify the incident beam. Without an electric
field, the LC device focuses the incident light effectively due to the index mismatch between the LC
droplets and the micro lenses.
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1.3. Summary

LC beam shaping components based on the two main mechanisms have their own advantages
and disadvantages. The fabrication of LC GRIN devices is more compatible with the current LCD
manufacturing process. Moreover, this kind of LC devices usually requires a low operation voltage that
can be directly driven by IC drivers. Compared to the LC-GRIN beam shaping devices, the operation
voltage of LC–polymer structure based beam shaping devices is relatively large due to the voltage
dividing effect of the polymer layer. Nevertheless, this issue can be overcome by using well-designed
electronic driving circuits.

For the LC GRIN devices, the spatial LC orientation plays an important role in the optical
performance. The gradient refractive index profile of the LC, which is generated by either the spatially
varying electric field or the spatially varying polymerization, usually deviates from the ideal one to
some extent, resulting in undesired optical effects, such as stray light and light scattering. Imperfections
in the refractive index profile can be attributed to the difficulty of device processing, the coupling
of electric fringe fields, the continuity of the LC elastomer, the instability of the LC orientation by
photo-alignment, etc.

Beam shaping components based on LCs and polymer micro-structures, can take full advantage of
the well-developed design methods and tools, as well as advanced fabrication technologies of modern
optics, to achieve the best optical property one envisages. Good LC alignment may be difficult to
establish within the periodic micro-structures. It is gratifying that the LC alignment in this kind of
devices has been proved possible using established technology, such as rubbing alignment, oblique SiOx
evaporation and photo-alignment [63,64].

In the following sections, our discussion will focus on the LC–polymer structure-based beam
shaping components, the fabrication technologies of optical micro-structures, various schemes and
methods of beam shaping components based on LCs and polymer micro-structures, particularly linear
and circular blazed gratings.

2. Fabrication of Optical Micro-Structures

Fabrication of optical micro-structures is the prerequisite for the target LC–polymer structure-based
beam shaping components. Four major technologies for fabrication of optical micro-structures will be
discussed: diamond tooling, hot embossing, laser ablation and soft lithography. The four processing
techniques each have their merit and depending on the circumstances and application can be the
most suitable technique to create various optical micro-structures. In the following part of this section,
an introduction to the domain, experimental results, merit, and demerits of each technology will
be presented.

2.1. Diamond Tooling for Optical Micro-Structures

Conventional optical components are created by means of lapping, milling, and polishing to
remove excess material in specific areas with different force toward the abrasive loaded tool [65].
Diamond tooling generates optical structures through moving a tiny diamond tip along the designed
path, which approximates the desired surface profile of the optical components. Single point diamond
tooling (SPDT) is a computer numerical controlled (CNC) lathe machining process. It uses a natural
or synthetic diamond tool with a tip radius ranging from millimeters down to micrometers. In the
discussion below, a five-axis SPDT equipment (Nanotech 350FG, Swanzey, NH, USA) has been used to
fabricate optical micro-structures.

To realize linear gratings, an efficient way is to install a diamond cutting tip with a cylinder shape
onto a high-speed rotational spindle, and mount the workpiece tightly onto the holding stage which is
driven accurately in linear motion. This is a typical micro milling process, and the schematic procedure
is depicted in Figure 3. Before applying the diamond milling, the whole spindle with the diamond
tool has to be inclined toward the sample surface with a certain angle, which corresponds to the blaze
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angle of the grating. Through high speed rotation of the diamond tool, as well as the programmed
linear motion of the translational stage along the X and Y axis, a micro milling process is applied to the
sample surface, creating a triangular groove with a tilted sidewall. Repeating the milling process for
each groove, the desired micro grating structures are generated on the sample surface.
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Figure 3. Diamond tooling process for linear micro gratings using a cylindrical diamond tip; the inset
represents the surface profile of the cylindrical diamond tip with a radius of 50 µm.

A cylindrical diamond tool with a radius (rp = 252 µm), high spindle speed (ω = 40,000 rpm)
and moderate feed rate (11 mm/min), are employed to fabricate linear micro grating structures in a
copper alloy MS58 (CuZn39Pb3). The resulting facet topography is shown in Figure 4a. Normally
the average roughness Ra and the root mean square roughness Rq are used to evaluate the surface
finish quality. The relationship between the total integrated scatter (TIS) and the root mean square
roughness shows that, in order to limit the TIS of an optically transmissive surface to be less than 2%,
the required surface roughness Rq needs to be less than λ/8, which satisfies the surface finish grade A-2
of the Society of the Plastics Industry (SPI) [66]. The surface roughness Ra and Rq shown in Figure 4a
are less than λ/8, demonstrating a good surface finish with high optical quality.
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Another cylindrical diamond tip with a smaller radius is adopted to fabricate the linear grating
structures. Its profile is measured by a Wyko NT3300 optical profiler and shown in the inset of Figure 3.
The effective length and diameter of this diamond cylinder are about 200 µm and 100 µm, respectively.
The cylinder part of the diamond tip plays a key role in the creation of micro grating structures during
the milling process. The profile of the grating facet created by the smaller diamond tip is shown in
Figure 4b. It is clearly seen that there is a series of grinding traces on the grating facet of the slow
slope using the diamond tip with rp = 50 µm. These curved lines are generated by the combination of
the rotation of the cylindrical tip and the translational movement along the Y axis, and contribute to
the surface roughness. Fortunately, the surface roughness (Ra = 15.99 nm, Rq = 25.72nm) shown in
Figure 4b is less than λ/8 and still satisfies the requirement of a good optical surface.

2.2. Hot Embossing for Optical Micro-Structures

A hot embossing equipment (HEX04, Jenoptik, Jena, Germany) is used to replicate micro patterns
from a rigid metal mold onto polymethyl methacrylate (PMMA) layers. The equipment used here is
based on the mode of plate to plate (P2P). The metal molds are made by the aforementioned diamond
tooling on the copper alloy MS58. The hot embossing process is illustrated in Figure 5. The metal mold
is first well installed and loaded onto the sample in a vacuum chamber. The metal mold or/and the
bottom loading stage are then heated above the glass transition point (Tg) of the candidate material.
An adequate loading force is subsequently applied to the metal mold and kept for a certain duration.
After that, the temperature starts decreasing for the demolding. The mold is finally removed from the
substrate, forming the micro-structures on the PMMA layers with a reverse shape compared to the
master metal mold.
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In theory, the polymer layer used for hot embossing must at least be as thick as the required
structure height. But in practice, this thickness needs to be several times higher. Polymer layer coated
glass or wafer substrates are frequently used for many electro-optical applications. A PMMA layer
with a thickness of 21 µm is formed on an indium tin oxide (ITO) coated glass substrate by spin coating.
Subsequently, a hot embossing process is applied to the PMMA layer for creating the linear gratings
with a pitch of 50 µm and height of 10 µm. The result is shown in Figure 6. Due to the low viscosity
and the limited low concentration of the available PMMA/anisole solution, the maximum PMMA
thickness obtained by spin coating is about 21 µm. The PMMA samples are hot embossed at different
temperatures and loading forces. Figure 6a clearly shows that there is a flat area on top of the grating,
which causes a large deviation of the structure from its initial design. Even with a higher temperature,
larger force and prolonged press time, the structure is still not adequate (Figure 6b). The reason why
hot embossing on the PMMA coated glass is unsuccessful is because the obtained PMMA layer (21 µm
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thick) is too thin. The corresponding velocity allowing the flow inside the thin PMMA layer is limited,
resulting in incomplete and defective grating structures.
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Figure 6. Hot embossed structures on PMMA coated ITO glass with (a) a press force of 20 kN at 145 ◦C
for 120 s; (b) a press force of 25 kN at 165 ◦C for 200 s.

In order to get good replication from the master mold, bulk PMMA sheets (0.5 mm or 1 mm
thick) are hot embossed using an optimized process with 145 ◦C molding temperature, 2.5 mm/min
mold velocity and press force ranging from 15 to 20 kN. Figure 7a shows the 3D profile of the circular
micro-structures on PMMA sheets using hot embossing. The measured dimensions are now very close
to the designed values. Furthermore, the surface roughness Ra is 50–70 nm, satisfying the optical
requirement generally. Linear grating structures are embossed on PMMA sheets as well, and shown in
Figure 7b. Their dimensions also approximate the design. Hot embossing on bulk PMMA sheets is
proven to be a successful method.
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2.3. Laser Ablation for Optical Micro-Structures

Another advanced tool for the fabrication of optical micro-structures is laser ablation. Laser ablation
generates specific patterns by direct irradiation of laser pulses onto the polymer surface, resulting in
local removal of the material. For laser ablation of polymer materials using an ultra-violet (UV) beam,
it is well-established that the first step is the absorption of highly energetic laser photons, resulting
in electronic excitation. However, the following steps are still controversial, and three theoretical
models are considered: photothermal, photochemical and photophysical. In the photothermal
process, the electronic excitation is thermalized on a picosecond timescale, resulting in thermal bond
breaking [67,68]. If electronic excitation causes direct breaking of the chemical bonds, it contributes
to the photochemical reaction [69,70]. The photophysical model assumes that both the photothermal
and the photochemical reactions play a role, whereby the dominating factor in the process depends
on the etching conditions and the polymer compositions [71–73]. If laser ablation is used to fabricate
optical structures, the thermal heating effect should be minimized, to prevent the polymers from
getting charred.
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Laser ablation combined with a shadow mask is adopted to create micro grating structures on
polymer sheets. The laser beam is shaped by a mask with a triangular aperture and focused on the
target polymer substrate that is driven by a translational stage. The polymer surface is subjected
to a series of triangle-shaped laser pulses at different positions, resulting in a lateral distribution of
the cumulative ablation depth. By repeating the ablation with a certain periodicity, a micro grating
structure forms on the polymer surface. The fabricated grating structure will be combined with nematic
liquid crystal to build a switchable beam shaping component. The cell gap of a LC device is the distance
between the two substrates that confine the liquid crystal. It plays an important role in the optical
property, such as the optical uniformity and the response time. Usually, the cell gap is maintained
by inserting spherical particles with a well-defined diameter between the two substrates as spacers,
but ball spacers have some drawbacks, e.g., balls easily move away from their original positions.
The other issue is that ball spacers would sink into the grating valleys and not be able to sustain the
cell gap between the two substrates. These problems are detrimental to the optical performance of
the LC device. To simplify the fabrication of switchable beam shaping components and overcome the
disadvantage of ball spacers, two technologies are developed to build extra structures as spacers on
the gratings: overlapping ablation and double mask ablation.

In the overlapping ablation technique (Figure 8), the shaped laser beam is first used to create
a triangular groove. During the ablation, specific areas are skipped, where the material retains the
original surface. When the same laser beam starts to ablate the adjacent grooves, the laser beams slightly
overlaps the already created groove. The obtained grating in between the two grooves has a lower tip
than the original surface. The skipped areas which retain their original surface will act as spacers for the
cell gap. The resulting grating profile is also shown in Figure 8. The overlapping ablation works well
for spacer creation. It only needs a one-time alignment between the shadow mask and the movement of
polymer substrates. However, its disadvantage is that the spacer height is not flexible to adjust.
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Another laser processing technique, the double mask ablation, is developed for the fabrication
of spacers built on gratings. The double mask ablation (Figure 9) works by first ablating specific
regions with a big rectangular mask, resulting in a height difference between the ablated area and the
unablated area. The ablated area is further ablated with another triangular/trapezoidal mask to create
the gratings. The depth reached by the first rectangular mask determines the effective spacer height.
To produce the desired gratings, sufficient material needs to be left for the subsequent creation of the
triangular gratings. Figure 9 shows the 3D profile of the gratings with spacers made by double mask
ablation. The unablated areas behave as spacers for the LC beam shaping devices. The double mask
ablation needs one more extra alignment between the trace of the first mask and the second mask,
however, it can tune the spacer height more flexibly compared to the overlapping ablation.
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2.4. Soft Lithography for Optical Micro-Structures

Diamond tooling usually requires a long processing time to fabricate micro-structures, while laser
ablation has a moderate processing efficiency. Neither of them is suitable for mass production of
large-size and low-cost optical structures. Hot embossing seems promising for the issues, but it is difficult
to get complete micro-structures on thin layer coated glass substrates, due to insufficient material for
extrusion and filling into the relief pattern of the master mold. Therefore, another processing technique,
soft lithography, is developed for the rapid and low-cost replication of polymer micro-structures on glass
substrates. As the name indicates, soft lithography utilizes an elastomeric mold or stamp to transfer the
micro/nano patterns onto the target substrates, which is the main difference from the aforementioned
hot embossing using a rigid mold.

The advantage of using soft and elastic molds is that they can be laminated onto the resin
layer, which avoids the formation of bubbles in the replicas. Therefore, gel-like materials such as
polydimethylsiloxane (PDMS) are adopted for the mold fabrication. In order to achieve high efficiency of
the replication process, UV curing is adopted for the polymerization of optical resins instead of thermal
curing. The schematic process flow is shown in Figure 10. After depositing the PDMS pre-curable
solution onto the grating master mold, degassing is sometimes necessary to remove encapsulated
bubbles. The mold curing can be implemented by using thermal curing or UV curing, depending
on the material property. The elastic mold is subsequently peeled off from the master mold. For the
imprinting process, a suitable photopolymer layer is deposited on the ITO glass substrate. The soft
mold is laminated onto the liquid layer, an UV exposure is applied to the assembly and the resin layer is
cured in a short and non-thermal step. The micro grating structures are obtained after the PDMS mold
is peeled from the glass substrate. The profiles of the grating structures are shown in Figure 11.Crystals 2020, 10, x FOR PEER REVIEW 10 of 25 
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Figure 11. Surface profile characterized by a WYKO surface profiler: (a) master grating on PMMA sheet;
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2015, IEEE.

In some cases, it is difficult to create a positive shape for the structure one envisages using
diamond tooling or laser machining. For example, to build the ‘fixed’ spacers on gratings, it is easier
to use laser ablation or diamond tooling to cut an extra dent at the groove bottom. If the pattern is
reversed, the fixed spacer appears on top of the grating structures. Therefore, creating a master mold
with a negative shape and introducing an extra transfer step is a solution for this kind of challenge.
Realization of soft molds having a similar negative shape as the original master is a prerequisite, as it
will be used as a replication mold for the subsequent soft lithography process. Silicone molds with
the same shape as the master have been realized using the double silicone replication process [75].
Without releasing agent, the risk of cross-polymerization between the casted silicone liquid and the
formed silicone mold still exists for most of the silicone materials. The usage of an extra thin releasing
layer changes the dimension of the second silicone replica unavoidably [76]. The basic idea here is to
use an UV or thermally curable polymer or resin, which has a large elastic modulus but weak adhesion
strength to the PMMA sheet, to form a reversed grating structure from the PMMA master with a
negative shape. This positive polymer mold will act as a new master mold for the subsequent process.
Here the UV curable glue NOA 68 (Norland Products Inc., Cranbury, NJ, USA) is adopted to fabricate
this positive polymer mold. The whole process is shown in Figure 12. After dispensing the NOA
68 glue on the negative PMMA master, the glue layer is UV cured and easily peeled off without any
damage due to its good elasticity and weak adhesion to the PMMA sheet. The Sylgard®184 silicone
is then deposited on the polymer mold by spin coating and cured in the convection oven at a low
temperature. After peeling off the PDMS mold having the same shape as the original PMMA master,
it can be used for the reverse replication of circular micro gratings on glass substrates as described in
the above section.
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2.5. Summary

Four different technologies for the fabrication of optical micro-structures are implemented in
the study. To give readers a direct impression of those technologies, their key characteristics are
summarized in Table 1. From this table, it can be concluded that diamond tooling and laser ablation
are more suitable for the master mold fabrication, while hot embossing and soft lithography are better
for the massive replication of optical micro-structures. Hot embossing is more adequate to structure
replications on bulky thermoplastic polymer sheets, while soft lithography excels in micro/nano
structure replications on thin layer coated glass/wafer substrates.

Table 1. Comparison of different fabricating technologies for optical micro-structures.

Name Material Efficiency Merit Demerit

diamond tooling non-ferrous low free-form optical
structures

complex control &
alignment

laser ablation polymers medium simple setup ccharring effect &
periodic defects

hot embossing thermoplastics high Efficient & easy process high temperature & large
loading force

soft lithography liquid adhesives high high efficiency & broad
adhesives

still in development for
mass production

3. LC-Polymer Grating Based Beam Shaping Components

The micro-grating structures made by the aforementioned techniques are combined with liquid
crystals to realize beam shaping components with various functionalities: linear gratings combining
with nematic LCs have achieved one dimensional and continuous beam deflection; beam broadening
and beam condensing is respectively fulfilled by using circular micro-grating structures and nematic
LCs; polarization independent beam shaping is realized by adopting dual frequency cholesteric LC
(Ch-LC) mode; dual driving scheme based on dual frequency nematic LC is employed to obtain fast
switching beam shaping components; fast response blue phase (BP) LC beam deflecting devices have
also been attained with a combination of BP LCs and linear micro-grating structures.
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3.1. Beam Deflection Using a Nematic LC-Linear Grating Device

Linear micro grating structures are combined with nematic LCs to realize one dimensional beam
deflection. LC alignment plays an important role in the optical performance of the device. It is even
more difficult in the beam shaping device due to the influence of the micro-structures. Several different
alignment technologies are applied to the LC-polymer grating device: velvet rubbing, oblique SiO2

evaporation and photo-alignment. The LC textures of beam shaping devices using different alignment
techniques are observed under a crossed-polarizer microscope, as shown in Figure 13. It is seen that
the LC orientations are all aligned along the micro groove direction. The rubbing technique employs
a rotatable roller covered with a velvet to pass through the substrate surface. Tiny and invisible
patterns (with scratch width around 200 nm or below, scratch depth of tens of nanometers or below)
are created on the surface [78]. The LC molecules are anchored in a way that the LC long axis is
aligned along the grating groove direction in the beam steering device. This process sometimes results
in damages or defects on the non-flat surface, as shown in Figure 13a. Therefore, two non-contact
alignment methods (oblique SiO2 evaporation and photo-alignment) based on inorganic and organic
materials, respectively, are developed to avoid the issues induced by the rubbing scheme. Oblique SiO2

evaporation utilizes the induced dipole to dipole interactions based on Van der Waals force between
the obliquely evaporated SiO2 layer and the LC molecules [79–82]. Photo-alignment on the other hand
makes use of the anisotropic interaction between the photo sensitive material and the LC layer [83–85].
Both methods are able to achieve good LC alignment within the linear grating structures, as shown in
Figure 13b,c.
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After the linear gratings are treated by the alignment technologies and assembled with their aligned
counterpart ITO substrates, the nematic LC-E7 is filled into the empty cell. Beam deflecting device with
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one dimensional beam shaping is finally generated. Its device architecture is demonstrated in Figure 14.
A linearly polarized light beam with its polarization along the LC alignment direction is incident onto
the device. Due to the difference between the LC extraordinary refractive index (ne) and the refractive
index of polymer micro gratings (np), this polarized beam is deflected. The experimental results are
shown in Figure 15a. The white light beam used here is unpolarized, so that the beam component
with its polarization along the LC alignment is deflected, while the component with polarization
perpendicular to the LC alignment is unaffected. The deflection angle is about 2.3◦. When applying a
strong electric field, most of the LC directors are realigned parallel to the field. The LC effective refractive
index then approaches the ordinary one (no), which matches that of the micro gratings (no = np).
The light component with its polarization parallel to the groove is therefore no longer deflected by the
device. Thus, the whole unpolarized white light beam propagates along its original trace, as shown in
Figure 15b. The deflection angle of the one-dimensional beam shaping device can be further improved
by optimizing the grating structure, the LC, the polymer material, etc.
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Figure 15. Beam deflection of an unpolarized white light beam by an LC-micro grating beam steering
device with: (a) voltage-off, the inset gives a clearer view of white light beam deflection in a dark
background; (b) voltage-on. Reproduced with permission [63]. Copyright 2015, IEEE.

3.2. Beam Broadening and Beam Condensing with LC-Circular Grating Devices

The beam shaping functionality is extended from one dimension to two dimensions in this section.
Circular micro grating (CMG) structures are combined with nematic liquid crystals to realize the
desired functionalities. Two kinds of optical components have been achieved: a LC beam expander
and a LC beam condenser. Two CMG structures with reversed shapes are respectively fabricated
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based on the same master mold using the soft lithography technology described above. Nematic
LC E7 is used for the 2D switchable beam shaping components and the LC is initially aligned in an
anti-parallel alignment.

The two CMG structures have the same dimension, but the grating units are oriented in reversed
directions. The reversed grating profiles lead to two different beam shaping properties. The two LC
devices work only for a linearly polarized light with its polarization along the initial LC alignment.
Because the ordinary refractive index of E7 is chosen to equal that of the CMGs, the two devices
demonstrate the beam broadening and beam condensing performance when there is no voltage applied,
and the results are shown in Figure 16a,c, respectively. Upon the application of high voltages, the LC
molecules reorient parallel to the electric field. The effective refractive index for the light propagating
through the LC layer now equals that of the CMG structures, therefore the light beam passes through
the two devices without any change, as demonstrated in Figure 16b,d.
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Figure 16. Circular beam shaping of LC-CMG devices with a white LED and a polarizer: (a) V = 0 Vpp

and (b) V = 50 Vpp for the LC beam broadening device; (c) V = 0 Vpp and (d) V = 50 Vpp for the LC
beam condensing device. Reproduced with permission [77]. Copyright 2016, IOP Publishing.

The curves of the FWHM (full width at half maximum) versus the applied voltage are obtained
from the beam shaping patterns of the two LC devices, as shown in Figure 17. It is seen that the
beam shaping pattern of the LC beam broadening device demonstrates a gradual decreasing trend by
increasing the applied voltage, while the LC beam condensing device shows the opposite behavior:
its FWHM is increased with increasing electric field. Due to the equal grating size and LC material,
both LC devices deflect the light beam over 2◦, but exert a different beam shaping effect on the original
beam. The steering angles of these kinds of LC devices can be further improved by adopting new LC
materials with a larger birefringence and grating units with a larger blaze angle. Moreover, polarization
independent LC beam broadening or beam condensing components can be realized by stacking two
single devices with their LC alignment orthogonal to each other. This scheme has been realized and it
demonstrated good optical performance [77].
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3.3. Polarization Independent Beam Shaping Using a Ch LC-Micro Grating Device

An unpolarized light beam can always be decomposed into two linearly polarized beam
components with mutually orthogonal polarizations. Polarization independent beam shaping is
therefore possible by stacking two mutually orthogonal devices, since each single LC device will act
on one of the two beam components. However, this has drawbacks, such as the increased thickness,
higher cost, and more complex driving electronics. Therefore, single LC beam shaping devices with
polarization independence are still in demand. Cholesteric (Ch) LCs have a helical structure whereby
the layered LC molecules rotate around the helical axis with a pitch P0. If the helical axis orientation is
uniform and perpendicular to the device substrate, the planar (P) state appears. This state exhibits
a strong Bragg reflection at the wavelength λp = nave × P0 with nave the average refractive index
between the ordinary (no) and the extraordinary (ne) refractive index of the LC [86]. Due to the
helical structure and complex nano structures with different orientations, the average refractive index
experienced by the incident light in the P state is polarization independent. When a strong electric
field is applied, the helical structures are unwound, and all LC molecules are realigned parallel to the
field. This so-called homeotropic (H) state exhibits an effective refractive index that is always no for a
normally incident light beam, regardless of its polarization. By combining micro grating structures
with the two states of the Ch-LCs, switchable polarization independent beam deflection is expected
to occur.

The Ch-LC material used for polarization independent beam shaping devices is composed of a
nematic LC and a chiral dopant. The Bragg reflective wavelength is chosen in the infrared wavelength
(IR) region, so that visible light can pass through the Ch-LC layer and be modulated by the device
shown in Figure 18. The average refractive index of the Ch-LC is larger than that of the micro grating,
while its ordinary refractive index matches that of the grating. Hence, in the P state, the device
deflects an (unpolarized) light beam, while in the H state the beam passes without any deflection.
The experimental results are demonstrated in Figure 19a,b, respectively. It is found that, upon removal
of the strong electric field, the LC texture does not revert to the P state but changes into the focal conic
(FC) state, resulting in strong light scattering, as shown in Figure 19c. The issue that the FC state
does not switch back to the P state with conventional Ch-LCs, can be solved by using dual frequency
Ch-LCs. Dual frequency Ch-LC consisting of dual frequency nematic LC (HEF951800-100) and chiral
dopant (R5011) is used to replace the conventional Ch-LC. A high frequency voltage drives the FC state
into the P state, therefore switchable beam steering is achieved between the P state and the H state.
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Figure 19. White light beam deflection by Ch-LC beam steering device: (a) P state; (b) H state; (c) FC
state. Reproduced with permission [87]. Copyright 2017, Nature Publishing.

Polarization independence of the DF Ch-LC based beam steering components is verified by
measuring the device transmittance for an incident light beam with a rotatable linear polarization.
The results are shown in Figure 20 for four different LC alignment schemes:

Scheme 1—Bare grating rubbed along the grooves combined with flat ITO counterpart coated with a
rubbed polyimide (PI) layer to form anti-parallel LC alignment.
Scheme 2—Bare grating rubbed along the grooves combined with flat ITO counterpart coated with a
rubbed PI layer to form orthogonal LC alignment.
Scheme 3—Bare grating without rubbing combined with flat ITO counterpart coated with a non-rubbed
PI layer.
Scheme 4—Bare grating without rubbing combined with bare flat ITO counterpart without a PI layer.

The lowest relative transmission fluctuation ratio (4.4%) is found for the scheme without alignment
layer or rubbing (Scheme 4) as explained in [87]. The remaining polarization dependence is attributed
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to the tilted nature of the electric fields if the transparent electrode is positioned on top of the grating
structures. Moving the electrode below the grating structure reduces the tilt angle of the electric
field and further diminish the polarization dependence at the expense of higher driving voltages,
as confirmed by an experiment with a nematic LC-grating device as shown in Figure 20b.Crystals 2020, 10, x FOR PEER REVIEW 17 of 25 
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3.4. Fast Switching LC Beam Deflection Using Dual Frequency Driving

Dual-frequency (DF) Ch-LC is employed to switch the LC texture from the H or FC state to the P
state in the above-mentioned section. This scheme can also be used to accelerate the LC switching
and improve the device response behavior. Compared to the nematic LC devices, the response time
of DF Ch-LC-grating beam steering components is significantly improved. However, the switching
time is still in the range of hundreds of milliseconds and does not meet the demand of video displays
with a frame duration of 16.7 ms. Therefore, dual frequency driving nematic LC beam shaping devices
are proposed.

Figure 21 illustrates the working principle of the dual frequency driven nematic LC beam shaping
component. Nematic DF LCs exhibit a positive dielectric anisotropy (∆ε) in response to voltages with
a low frequency. The LC molecules are aligned parallel to the applied electric field. When applying
electric fields with high frequencies, the dielectric anisotropy becomes negative. The LC molecules
with a negative ∆ε reorient perpendicularly to the electric field, due to the net torque induced by
the larger permittivity parallel to the short LC axis. Voltages with large magnitudes but different
frequencies are applied to both switching processes. It is expected that the response time of the device
will be reduced. The ordinary refractive index of the DF nematic LC is set to match the micro grating
structure, so that there is no beam deflection when the LC molecules are aligned perpendicularly to the
substrate by a high voltage with a low frequency, as shown in Figure 22. The main intensity is located
on the −1st order (50.4%), indicating that the LC ordinary refractive index still deviates from that of the
polymer grating. When the low frequency is replaced by a high one, the LC directors are forced to lie
down and the laser beam is deflected to the +3rd (45.4%) and +4th (10.5%) orders, due to the large
refractive index difference between the LC extraordinary index and the grating index.

The response time of the DF nematic LC—micro-grating based beam deflecting component using
dual frequency driving is measured for both the −1st order and +3rd order, respectively. It is found
that the switching-on time (100 kHz→ 100 Hz) for the −1st order is larger than for the +3rd order,
and the switching-off time (100 Hz→ 100 kHz) for the +3rd order is larger than that for the −1st order.
The longer switching time is chosen for the characterization of the two switching processes, the results
are shown in Figure 23. The switch-on time of the DF LC-grating device is 20.5 ms, while the switch-off
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time is only 3.8 ms. The large difference in the switching times is attributed to the role of the LC
elastic energy in the two processes: the initial LC alignment is homogenous, thus the LC elastic energy
accelerates the switching back of LC molecules for the high frequency driving, while it hinders the
deformation induced by the electric field with a low frequency. The total switching time is 24.3 ms and
approaches the requirements for video frame rate applications.Crystals 2020, 10, x FOR PEER REVIEW 18 of 25 
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3.5. Blue Phase LC-Micro Grating Based Beam Steering Device

Blue phase (BP) LCs usually appear between the chiral nematic LC state and the isotropic state
of specific highly chiral LCs. Generally, BPLCs have crystal-like structures, which are composed of
double twisted cylinders. Pure BPLCs normally exist only within a very narrow temperature interval
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of a few degrees Celsius, but polymer stabilized (PS) BPLCs demonstrate a much broader temperature
range including room temperature. BPLCs have some unique advantages, such as sub-millisecond
response times and the absence of the need for alignment layers [89,90], which make them applicable
to fast response systems with a simple device architecture.

The PS-BPLC is combined with micro grating structures to realize faster response beam shaping
components, compared to the aforementioned beam shaping devices using dual-frequency nematic
LC. The device structure is depicted in Figure 24.
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Figure 24. Schematic BP LC-micro grating based beam steering device.

Without an electric field, the PS-BPLC behaves as a macroscopically isotropic material. Its refractive
index is the averaged value between the ordinary and the extraordinary refractive index of the LC.
If there is a refractive index mismatch between the isotropic state and the grating structure, the incident
light will be deflected. The refractive index ellipsoid for the isotropic state can be represented by a
sphere. This refractive index sphere is polarization independent, therefore the BP LC beam steering
device shows polarization independence in the voltage-off state. When applying a strong electric
field, the BP LC shows an elongated refractive index ellipsoid induced by the field. The incident light
with various polarizations experiences the same refractive index as the ordinary ray, which equals the
polymer grating index, it thus passes through the BPLC device without any deflection.

Figure 25 shows the beam deflection of the PSBP LC-grating beam steering device. It is observed
that the diffraction intensity is mainly located on the −1st and 0th order without applied voltages.
When applying 600 volts, the diffraction intensity is redistributed, and the main intensity goes to the
0th and +1st order. The small difference in the beam deflection is attributed to the low magnitude of
the field induced birefringence of PSBP LCs, which can be solved by using an optimized PSBP LC and
micro grating structure with a larger blaze angle. The response time of the PSBP LC-grating device is
measured and shown in Figure 26. The response time of the switching-on and the switching-off is
1.61 ms and 1.70 ms, respectively. The device response is much faster than the dual frequency driving
NLC beam steering components.

To verify the polarization independence of the PS BPLC-grating device, light beams with different
polarization states are incident onto the device. The transmission curves with varied voltages are
almost overlapping for different light beam polarizations (shown in Figure 27), indicating that the
PSBP LC-grating beam steering components are polarization independent.

Polarization independent and fast response beam shaping is achieved by the PSBP LC-micro
grating components.
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4. Conclusions

The recent development of LC beam shaping devices for active optical manipulation is discussed
and reviewed in this work. The advances in modern optic design methods and optical component
fabrication technologies increase the importance of beam shaping devices based on LCs combined with
micro optical structures. Different state-of-the-art techniques for optical micro structure fabrication
are discussed with experimental results, and their characteristics are revealed: diamond tooling for
complex shapes, laser ablation for less complex structures but in a relatively rapid way, hot embossing
for rapid structure replications in thick thermoplastics, and soft lithography for rapid and thin layered
structure replications. Optical micro-structures are combined with different LC materials to realize a
variety of LC operation modes and these lead to various beam shaping functionalities, ranging from
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one-dimensional beam deflection to two-dimensional beam shaping, from polarization dependent to
polarization independent, from slow response to fast response, etc. The LC-microstructure based beam
shaping components discussed in this work have supplied the field with novel ideas, new knowledge
and advanced technologies, paving the way for novel applications of LC beam shaping devices.
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