Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (828)

Search Parameters:
Keywords = smart city sensor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 2697 KiB  
Article
Empowering the Irish Energy Transition: Harnessing Sensor Technology for Engagement in an Embedded Living Lab
by Madeleine Lyes
Sustainability 2025, 17(15), 6677; https://doi.org/10.3390/su17156677 - 22 Jul 2025
Abstract
The transition to a decarbonised energy system in Ireland presents significant socio-technical challenges. This paper, focused on the work of the SMARTLAB project at the Citizen Innovation Lab in Limerick city, investigated the potential of a localised living lab approach to address these [...] Read more.
The transition to a decarbonised energy system in Ireland presents significant socio-technical challenges. This paper, focused on the work of the SMARTLAB project at the Citizen Innovation Lab in Limerick city, investigated the potential of a localised living lab approach to address these challenges. Engaging across 70 buildings and their inhabitants, the project captured the evolution of attitudes and intentions towards the clean energy transition in ways directly relevant to future policy implementation across grid redevelopment, smart service design, and national retrofit. Project methodology was framed by a living lab approach, with wireless energy and indoor environment sensors installed in participant buildings and participant journeys developed by harnessing the Citizen Innovation Lab ecosystem. The results indicate behaviour changes among participants, particularly focusing on indoor environmental conditions. The study concludes that embedded, localised living labs offer a methodological framework which can capture diverse datasets and encompass complex contemporary contexts towards transition goals. Full article
(This article belongs to the Special Issue Sustainable Impact and Systemic Change via Living Labs)
Show Figures

Figure 1

24 pages, 1332 KiB  
Article
Ensuring Energy Efficiency of Air Quality Monitoring Systems Based on Internet of Things Technology
by Krzysztof Przystupa, Nataliya Bernatska, Elvira Dzhumelia, Tomasz Drzymała and Orest Kochan
Energies 2025, 18(14), 3768; https://doi.org/10.3390/en18143768 - 16 Jul 2025
Viewed by 120
Abstract
Air quality monitoring systems based on Internet of Things (IoT) technology are critical for addressing environmental and public health challenges, but their energy efficiency poses a significant challenge to their autonomous and scalable deployment. This study investigates strategies to enhance the energy efficiency [...] Read more.
Air quality monitoring systems based on Internet of Things (IoT) technology are critical for addressing environmental and public health challenges, but their energy efficiency poses a significant challenge to their autonomous and scalable deployment. This study investigates strategies to enhance the energy efficiency of IoT-based air quality monitoring systems. A comprehensive analysis of sensor types, data transmission protocols, and system architectures was conducted, focusing on their energy consumption. An energy-efficient system was designed using the Smart Air sensor, Zigbee gateway, and Mini UPS, with its performance evaluated through daily energy consumption, backup operation time, and annual energy use. An integrated efficiency index (IEI) was introduced to compare sensor models based on functionality, energy efficiency, and cost. The proposed system achieves a daily energy consumption of 72 W·h, supports up to 10 h of autonomous operation during outages, and consumes 26.28 kW·h annually. The IEI analysis identified the Ajax LifeQuality as the most energy-efficient sensor, while Smart Air offers a cost-effective alternative with broader functionality. The proposed architecture and IEI provide a scalable and sustainable framework for IoT air quality monitoring, with potential applications in smart cities and residential settings. Future research should explore renewable energy integration and predictive energy management. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

15 pages, 6454 KiB  
Article
xLSTM-Based Urban Traffic Flow Prediction for Intelligent Transportation Governance
by Chung-I Huang, Jih-Sheng Chang, Jun-Wei Hsieh, Jyh-Horng Wu and Wen-Yi Chang
Appl. Sci. 2025, 15(14), 7859; https://doi.org/10.3390/app15147859 - 14 Jul 2025
Viewed by 245
Abstract
Urban traffic congestion poses persistent challenges to mobility, public safety, and governance efficiency in metropolitan areas. This study proposes an intelligent traffic flow forecasting framework based on an extended Long Short-Term Memory (xLSTM) model, specifically designed for real-time congestion prediction and proactive police [...] Read more.
Urban traffic congestion poses persistent challenges to mobility, public safety, and governance efficiency in metropolitan areas. This study proposes an intelligent traffic flow forecasting framework based on an extended Long Short-Term Memory (xLSTM) model, specifically designed for real-time congestion prediction and proactive police dispatch support. Utilizing a real-world dataset collected from over 300 vehicle detector (VD) sensors, the proposed model integrates vehicle volume, speed, and lane occupancy data at five-minute intervals. Methodologically, the xLSTM model incorporates matrix-based memory cells and exponential gating mechanisms to enhance spatio-temporal learning capabilities. Model performance is evaluated using multiple metrics, including congestion classification accuracy, F1-score, MAE, RMSE, and inference latency. The xLSTM model achieves a congestion prediction accuracy of 87.3%, an F1-score of 0.882, and an average inference latency of 41.2 milliseconds—outperforming baseline LSTM, GRU, and Transformer-based models in both accuracy and speed. These results validate the system’s suitability for real-time deployment in police control centers, where timely prediction of traffic congestion enables anticipatory patrol allocation and dynamic signal adjustment. By bridging AI-driven forecasting with public safety operations, this research contributes a validated and scalable approach to intelligent transportation governance, enhancing the responsiveness of urban mobility systems and advancing smart city initiatives. Full article
Show Figures

Figure 1

42 pages, 5041 KiB  
Article
Autonomous Waste Classification Using Multi-Agent Systems and Blockchain: A Low-Cost Intelligent Approach
by Sergio García González, David Cruz García, Rubén Herrero Pérez, Arturo Álvarez Sanchez and Gabriel Villarrubia González
Sensors 2025, 25(14), 4364; https://doi.org/10.3390/s25144364 - 12 Jul 2025
Viewed by 252
Abstract
The increase in garbage generated in modern societies demands the implementation of a more sustainable model as well as new methods for efficient waste management. This article describes the development and implementation of a prototype of a smart bin that automatically sorts waste [...] Read more.
The increase in garbage generated in modern societies demands the implementation of a more sustainable model as well as new methods for efficient waste management. This article describes the development and implementation of a prototype of a smart bin that automatically sorts waste using a multi-agent system and blockchain integration. The proposed system has sensors that identify the type of waste (organic, plastic, paper, etc.) and uses collaborative intelligent agents to make instant sorting decisions. Blockchain has been implemented as a technology for the immutable and transparent control of waste registration, favoring traceability during the classification process, providing sustainability to the process, and making the audit of data in smart urban environments transparent. For the computer vision algorithm, three versions of YOLO (YOLOv8, YOLOv11, and YOLOv12) were used and evaluated with respect to their performance in automatic detection and classification of waste. The YOLOv12 version was selected due to its overall performance, which is superior to others with mAP@50 values of 86.2%, an overall accuracy of 84.6%, and an average F1 score of 80.1%. Latency was kept below 9 ms per image with YOLOv12, ensuring smooth and lag-free processing, even for utilitarian embedded systems. This allows for efficient deployment in near-real-time applications where speed and immediate response are crucial. These results confirm the viability of the system in both accuracy and computational efficiency. This work provides an innovative solution in the field of ambient intelligence, characterized by low equipment cost and high scalability, laying the foundations for the development of smart waste management infrastructures in sustainable cities. Full article
(This article belongs to the Special Issue Sensing and AI: Advancements in Robotics and Autonomous Systems)
Show Figures

Figure 1

24 pages, 3062 KiB  
Article
Sustainable IoT-Enabled Parking Management: A Multiagent Simulation Framework for Smart Urban Mobility
by Ibrahim Mutambik
Sustainability 2025, 17(14), 6382; https://doi.org/10.3390/su17146382 - 11 Jul 2025
Viewed by 276
Abstract
The efficient management of urban parking systems has emerged as a pivotal issue in today’s smart cities, where increasing vehicle populations strain limited parking infrastructure and challenge sustainable urban mobility. Aligned with the United Nations 2030 Agenda for Sustainable Development and the strategic [...] Read more.
The efficient management of urban parking systems has emerged as a pivotal issue in today’s smart cities, where increasing vehicle populations strain limited parking infrastructure and challenge sustainable urban mobility. Aligned with the United Nations 2030 Agenda for Sustainable Development and the strategic goals of smart city planning, this study presents a sustainability-driven, multiagent simulation-based framework to model, analyze, and optimize smart parking dynamics in congested urban settings. The system architecture integrates ground-level IoT sensors installed in parking spaces, enabling real-time occupancy detection and communication with a centralized system using low-power wide-area communication protocols (LPWAN). This study introduces an intelligent parking guidance mechanism that dynamically directs drivers to the nearest available slots based on location, historical traffic flow, and predicted availability. To manage real-time data flow, the framework incorporates message queuing telemetry transport (MQTT) protocols and edge processing units for low-latency updates. A predictive algorithm, combining spatial data, usage patterns, and time-series forecasting, supports decision-making for future slot allocation and dynamic pricing policies. Field simulations, calibrated with sensor data in a representative high-density urban district, assess system performance under peak and off-peak conditions. A comparative evaluation against traditional first-come-first-served and static parking systems highlights significant gains: average parking search time is reduced by 42%, vehicular congestion near parking zones declines by 35%, and emissions from circling vehicles drop by 27%. The system also improves user satisfaction by enabling mobile app-based reservation and payment options. These findings contribute to broader sustainability goals by supporting efficient land use, reducing environmental impacts, and enhancing urban livability—key dimensions emphasized in sustainable smart city strategies. The proposed framework offers a scalable, interdisciplinary solution for urban planners and policymakers striving to design inclusive, resilient, and environmentally responsible urban mobility systems. Full article
Show Figures

Figure 1

18 pages, 4805 KiB  
Article
Re-Usable Workflow for Collecting and Analyzing Open Data of Valenbisi
by Áron Magura, Marianna Zichar and Róbert Tóth
Electronics 2025, 14(13), 2720; https://doi.org/10.3390/electronics14132720 - 5 Jul 2025
Viewed by 347
Abstract
This paper proposes a general workflow for collecting and analyzing open data from Bicycle Sharing Systems (BSSs) that was developed using data from the Valenbisi system, operated in Valencia by the French company JCDecaux; however, the stages of the proposed workflow are service-independent [...] Read more.
This paper proposes a general workflow for collecting and analyzing open data from Bicycle Sharing Systems (BSSs) that was developed using data from the Valenbisi system, operated in Valencia by the French company JCDecaux; however, the stages of the proposed workflow are service-independent and can be applied broadly. Cycling has become an increasingly popular mode of transportation, leading to the emergence of BSSs in modern cities. Parallel to this, Smart City solutions have been implemented using Internet of Things (IoT) technologies, such as embedded sensors and GPS-based communication systems, which have become essential to everyday life. When public transportation services or bicycle sharing systems are used, real-time information about the services is provided to customers, including vehicle tracking based on GPS technology and the availability of bikes via sensors installed at bike rental stations. The bike stations were examined from two different perspectives: first, their daily usage, and second, the types of facilities located in their surroundings. Based on these two approaches, the overlap between the clustering results was analyzed—specifically, the similarity in how stations could be grouped and the correlation between their usage and locations. To enhance the raw data retrieved from the service provider’s official API, the stations were annotated based on OpenStreetMap and Overpass API data. Data visualization was created using Tableau from Salesforce. Based on the results, an agreement of 62% was found between the results of the two different clustering approaches. Full article
Show Figures

Figure 1

28 pages, 1056 KiB  
Review
SDI-Enabled Smart Governance: A Review (2015–2025) of IoT, AI and Geospatial Technologies—Applications and Challenges
by Sofianos Sofianopoulos, Antigoni Faka and Christos Chalkias
Land 2025, 14(7), 1399; https://doi.org/10.3390/land14071399 - 3 Jul 2025
Viewed by 557
Abstract
This paper presents a systematic, narrative review of 62 academic publications (2015–2025) that explore the integration of spatial data infrastructures (SDIs) with emerging smart city technologies to improve local governance. SDIs provide a structured framework for managing geospatial data and, in combination with [...] Read more.
This paper presents a systematic, narrative review of 62 academic publications (2015–2025) that explore the integration of spatial data infrastructures (SDIs) with emerging smart city technologies to improve local governance. SDIs provide a structured framework for managing geospatial data and, in combination with IoT sensors, geospatial and 3D platforms, cloud computing and AI-powered analytics, enable real-time data-driven decision-making. The review identifies four key technology areas: IoT and sensor technologies, geospatial and 3D mapping platforms, cloud-based data infrastructures, and AI analytics that uniquely contribute to smart governance through improved monitoring, prediction, visualization, and automation. Opportunities include improved urban resilience, public service delivery, environmental monitoring and citizen engagement. However, challenges remain in terms of interoperability, data protection, institutional barriers and unequal access to technologies. To fully realize the potential of integrated SDIs in smart government, the report highlights the need for open standards, ethical frameworks, cross-sector collaboration and citizen-centric design. Ultimately, this synthesis provides a comprehensive basis for promoting inclusive, adaptive and accountable local governance systems through spatially enabled smart technologies. Full article
Show Figures

Graphical abstract

30 pages, 4491 KiB  
Article
IoT-Enabled Adaptive Traffic Management: A Multiagent Framework for Urban Mobility Optimisation
by Ibrahim Mutambik
Sensors 2025, 25(13), 4126; https://doi.org/10.3390/s25134126 - 2 Jul 2025
Cited by 1 | Viewed by 506
Abstract
This study evaluates the potential of IoT-enabled adaptive traffic management systems for mitigating urban congestion, enhancing mobility, and reducing environmental impacts in densely populated cities. Using London as a case study, the research develops a multiagent simulation framework to assess the effectiveness of [...] Read more.
This study evaluates the potential of IoT-enabled adaptive traffic management systems for mitigating urban congestion, enhancing mobility, and reducing environmental impacts in densely populated cities. Using London as a case study, the research develops a multiagent simulation framework to assess the effectiveness of advanced traffic management strategies—including adaptive signal control and dynamic rerouting—under varied traffic scenarios. Unlike conventional models that rely on static or reactive approaches, this framework integrates real-time data from IoT-enabled sensors with predictive analytics to enable proactive adjustments to traffic flows. Distinctively, the study couples this integration with a multiagent simulation environment that models the traffic actors—private vehicles, buses, cyclists, and emergency services—as autonomous, behaviourally dynamic agents responding to real-time conditions. This enables a more nuanced, realistic, and scalable evaluation of urban mobility strategies. The simulation results indicate substantial performance gains, including a 30% reduction in average travel times, a 50% decrease in congestion at major intersections, and a 28% decline in CO2 emissions. These findings underscore the transformative potential of sensor-driven adaptive systems for advancing sustainable urban mobility. The study addresses critical gaps in the existing literature by focusing on scalability, equity, and multimodal inclusivity, particularly through the prioritisation of high-occupancy and essential traffic. Furthermore, it highlights the pivotal role of IoT sensor networks in real-time traffic monitoring, control, and optimisation. By demonstrating a novel and practical application of sensor technologies to traffic systems, the proposed framework makes a significant and timely contribution to the field and offers actionable insights for smart city planning and transportation policy. Full article
(This article belongs to the Special Issue Vehicular Sensing for Improved Urban Mobility: 2nd Edition)
Show Figures

Figure 1

36 pages, 3756 KiB  
Article
The IoT/IoE Integrated Security & Safety System of Pompeii Archeological Park
by Alberto Bruni and Fabio Garzia
Appl. Sci. 2025, 15(13), 7359; https://doi.org/10.3390/app15137359 - 30 Jun 2025
Viewed by 299
Abstract
Pompeii is widely known for its tragic past. In 79 A.D., a massive eruption of Mount Vesuvius buried the city and its inhabitants under volcanic ash. Lost for centuries, it was rediscovered in 1748 when the Bourbon monarchs initiated excavations, marking the beginning [...] Read more.
Pompeii is widely known for its tragic past. In 79 A.D., a massive eruption of Mount Vesuvius buried the city and its inhabitants under volcanic ash. Lost for centuries, it was rediscovered in 1748 when the Bourbon monarchs initiated excavations, marking the beginning of systematic digs. Since then, Pompeii has gained worldwide recognition for its archeological wonders. Despite centuries of looting and damage, it remains a breathtaking site. With millions of visitors annually, the Pompeii Archeological Park is the one most visited site in Italy. Managing such a vast and complex heritage site requires significant effort to ensure both visitor safety and the preservation of its fragile structures. Accessibility is also crucial, particularly for individuals with disabilities and staff responsible for site management. To address these challenges, integrated systems and advanced technologies like the Internet of Things/Everything (IoT/IoE) can provide innovative solutions. These technologies connect people, smart devices (such as mobile terminals, sensors, and wearables), and data to optimize security, safety, and site management. This paper presents a security/safety IoT/IoE-based system for security, safety, management, and visitor services at the Pompeii Archeological Park. Full article
(This article belongs to the Special Issue Advanced Technologies Applied to Cultural Heritage)
Show Figures

Figure 1

31 pages, 3093 KiB  
Review
A Comprehensive Review of IoT Standards: The Role of IEEE 1451 in Smart Cities and Smart Buildings
by José Rita, José Salvado, Helbert da Rocha and António Espírito-Santo
Smart Cities 2025, 8(4), 108; https://doi.org/10.3390/smartcities8040108 - 30 Jun 2025
Viewed by 599
Abstract
The increasing demand for IoT solutions in smart cities, coupled with the increasing use of sensors and actuators and automation in these environments, has highlighted the need for efficient communication between Internet of Things (IoT) devices. The success of such systems relies on [...] Read more.
The increasing demand for IoT solutions in smart cities, coupled with the increasing use of sensors and actuators and automation in these environments, has highlighted the need for efficient communication between Internet of Things (IoT) devices. The success of such systems relies on interactions between devices that are governed by communication protocols which define how information is exchanged. However, the heterogeneity of sensor networks (wired and wireless) often leads to incompatibility issues, hindering the seamless integration of diverse devices. To address these challenges, standardisation is essential to promote scalability and interoperability across IoT systems. The IEEE 1451 standard provides a solution by defining a common interface that enables plug-and-play integration and enhances flexibility across diverse IoT devices. This standard enables seamless communication between devices from different manufacturers, irrespective of their characteristics, and ensures compatibility via the Transducer Electronic Data Sheet (TEDS) and the Network Capable Application Processor (NCAP). By reducing system costs and promoting adaptability, the standard mitigates the complexities posed by heterogeneity in IoT systems, fostering scalable, interoperable, and cost-effective solutions for IoT systems. The IEEE 1451 standard addresses key barriers to system integration, enabling the full potential of IoT technologies. This paper aims to provide a comprehensive review of the challenges transducer networks face around IoT applications, focused on the context of smart cities. This review underscores the significance and potential of the IEEE 1451 standard in establishing a framework that enables the harmonisation of IoT applications. The primary contribution of this work lies in emphasising the importance of adopting the standards for the development of harmonised and flexible systems. Full article
(This article belongs to the Section Internet of Things)
Show Figures

Figure 1

23 pages, 2630 KiB  
Article
Machine Learning Traffic Flow Prediction Models for Smart and Sustainable Traffic Management
by Rusul Abduljabbar, Hussein Dia and Sohani Liyanage
Infrastructures 2025, 10(7), 155; https://doi.org/10.3390/infrastructures10070155 - 24 Jun 2025
Cited by 1 | Viewed by 783
Abstract
Sustainable traffic management relies on accurate traffic flow prediction to reduce congestion, fuel consumption, and emissions and minimise the external environmental impacts of traffic operations. This study contributes to this objective by developing and evaluating advanced machine learning models that leverage multisource data [...] Read more.
Sustainable traffic management relies on accurate traffic flow prediction to reduce congestion, fuel consumption, and emissions and minimise the external environmental impacts of traffic operations. This study contributes to this objective by developing and evaluating advanced machine learning models that leverage multisource data to predict traffic patterns more effectively, allowing for the deployment of proactive measures to prevent or reduce traffic congestion and idling times, leading to enhanced eco-friendly mobility. Specifically, this paper evaluates the impact of multisource sensor inputs and spatial detector interactions on machine learning-based traffic flow prediction. Using a dataset of 839,377 observations from 14 detector stations along Melbourne’s Eastern Freeway, Bidirectional Long Short-Term Memory (BiLSTM) models were developed to assess predictive accuracy under different input configurations. The results demonstrated that incorporating speed and occupancy inputs alongside traffic flow improves prediction accuracy by up to 16% across all detector stations. This study also investigated the role of spatial flow input interactions from upstream and downstream detectors in enhancing prediction performance. The findings confirm that including neighbouring detectors improves prediction accuracy, increasing performance from 96% to 98% for eastbound and westbound directions. These findings highlight the benefits of optimised sensor deployment, data integration, and advanced machine-learning techniques for smart and eco-friendly traffic systems. Additionally, this study provides a foundation for data-driven, adaptive traffic management strategies that contribute to sustainable road network planning, reducing vehicle idling, fuel consumption, and emissions while enhancing urban mobility and supporting sustainability goals. Furthermore, the proposed framework aligns with key United Nations Sustainable Development Goals (SDGs), particularly those promoting sustainable cities, resilient infrastructure, and climate-responsive planning. Full article
(This article belongs to the Special Issue Sustainable Road Design and Traffic Management)
Show Figures

Figure 1

48 pages, 3102 KiB  
Review
Integration of AI in Self-Powered IoT Sensor Systems
by Cosmina-Mihaela Rosca and Adrian Stancu
Appl. Sci. 2025, 15(13), 7008; https://doi.org/10.3390/app15137008 - 21 Jun 2025
Cited by 1 | Viewed by 828
Abstract
The acceleration of digitalization has caused an increase in demand for autonomous devices. In this paper, the technologies of artificial intelligence (AI), and especially machine learning (ML), integrated into applications that use self-powered Internet of Things (IoT) sensors are analyzed. The study addresses [...] Read more.
The acceleration of digitalization has caused an increase in demand for autonomous devices. In this paper, the technologies of artificial intelligence (AI), and especially machine learning (ML), integrated into applications that use self-powered Internet of Things (IoT) sensors are analyzed. The study addresses the issue of the lack of a standardized classification of IoT domains and the uneven distribution of AI integration in these domains. The systematic bibliometric analysis of the scientific literature between 1 January 2020 and 30 April 2025, using the Web of Science database, outlines the seven main areas of IoT sensor usage: smart cities, wearable devices, industrial IoT, smart homes, environmental monitoring, healthcare IoT, and smart mobility. The thematic searches highlight the consistent number of articles in the health sector and the underrepresentation of other areas, such as agriculture. The study identifies that the most commonly used sensors are the accelerometer, electrocardiogram, humidity sensor, motion sensor, and temperature sensor, and analyzes the performance of AI models in self-powered systems, identifying accuracies that can reach up to 99.92% in medical and industrial applications. The conclusions drawn from these results underscore the need for an interdisciplinary approach and detailed exploration of ML algorithms to be adapted to the hardware infrastructures of autonomous sensors. The paper proposes future research directions to expand AI’s applicability in developing systems that integrate self-powered IoT sensors. The paper lays the groundwork for future projects in this field, serving as a reference for researchers who wish to explore these areas. Full article
Show Figures

Figure 1

29 pages, 8644 KiB  
Review
Recent Advances in Resistive Gas Sensors: Fundamentals, Material and Device Design, and Intelligent Applications
by Peiqingfeng Wang, Shusheng Xu, Xuerong Shi, Jiaqing Zhu, Haichao Xiong and Huimin Wen
Chemosensors 2025, 13(7), 224; https://doi.org/10.3390/chemosensors13070224 - 21 Jun 2025
Viewed by 656
Abstract
Resistive gas sensors have attracted significant attention due to their simple architecture, low cost, and ease of integration, with widespread applications in environmental monitoring, industrial safety, and healthcare diagnostics. This review provides a comprehensive overview of recent advances in resistive gas sensors, focusing [...] Read more.
Resistive gas sensors have attracted significant attention due to their simple architecture, low cost, and ease of integration, with widespread applications in environmental monitoring, industrial safety, and healthcare diagnostics. This review provides a comprehensive overview of recent advances in resistive gas sensors, focusing on their fundamental working mechanisms, sensing material design, device architecture optimization, and intelligent system integration. These sensors primarily operate based on changes in electrical resistance induced by interactions between gas molecules and sensing materials, including physical adsorption, charge transfer, and surface redox reactions. In terms of materials, metal oxide semiconductors, conductive polymers, carbon-based nanomaterials, and their composites have demonstrated enhanced sensitivity and selectivity through strategies such as doping, surface functionalization, and heterojunction engineering, while also enabling reduced operating temperatures. Device-level innovations—such as microheater integration, self-heated nanowires, and multi-sensor arrays—have further improved response speed and energy efficiency. Moreover, the incorporation of artificial intelligence (AI) and Internet of Things (IoT) technologies has significantly advanced signal processing, pattern recognition, and long-term operational stability. Machine learning (ML) algorithms have enabled intelligent design of novel sensing materials, optimized multi-gas identification, and enhanced data reliability in complex environments. These synergistic developments are driving resistive gas sensors toward low-power, highly integrated, and multifunctional platforms, particularly in emerging applications such as wearable electronics, breath diagnostics, and smart city infrastructure. This review concludes with a perspective on future research directions, emphasizing the importance of improving material stability, interference resistance, standardized fabrication, and intelligent system integration for large-scale practical deployment. Full article
Show Figures

Figure 1

28 pages, 4256 KiB  
Article
Accessible IoT Dashboard Design with AI-Enhanced Descriptions for Visually Impaired Users
by George Alex Stelea, Livia Sangeorzan and Nicoleta Enache-David
Future Internet 2025, 17(7), 274; https://doi.org/10.3390/fi17070274 - 21 Jun 2025
Viewed by 963
Abstract
The proliferation of the Internet of Things (IoT) has led to an abundance of data streams and real-time dashboards in domains such as smart cities, healthcare, manufacturing, and agriculture. However, many current IoT dashboards emphasize complex visualizations with minimal textual cues, posing significant [...] Read more.
The proliferation of the Internet of Things (IoT) has led to an abundance of data streams and real-time dashboards in domains such as smart cities, healthcare, manufacturing, and agriculture. However, many current IoT dashboards emphasize complex visualizations with minimal textual cues, posing significant barriers to users with visual impairments who rely on screen readers or other assistive technologies. This paper presents AccessiDashboard, a web-based IoT dashboard platform that prioritizes accessible design from the ground up. The system uses semantic HTML5 and WAI-ARIA compliance to ensure that screen readers can accurately interpret and navigate the interface. In addition to standard chart presentations, AccessiDashboard automatically generates long descriptions of graphs and visual elements, offering a text-first alternative interface for non-visual data exploration. The platform supports multi-modal data consumption (visual charts, bullet lists, tables, and narrative descriptions) and leverages Large Language Models (LLMs) to produce context-aware textual representations of sensor data. A privacy-by-design approach is adopted for the AI integration to address ethical and regulatory concerns. Early evaluation suggests that AccessiDashboard reduces cognitive and navigational load for users with vision disabilities, demonstrating its potential as a blueprint for future inclusive IoT monitoring solutions. Full article
(This article belongs to the Special Issue Human-Centered Artificial Intelligence)
Show Figures

Graphical abstract

11 pages, 637 KiB  
Proceeding Paper
Blockchain for Sustainable Smart Cities: Motivations and Challenges
by Fatima Zahrae Chentouf, Mohamed El Alami Hasoun and Said Bouchkaren
Comput. Sci. Math. Forum 2025, 10(1), 2; https://doi.org/10.3390/cmsf2025010002 - 17 Jun 2025
Viewed by 329
Abstract
Rapid urbanization and the rising demand for sustainable living have encouraged the growth of smart cities, which incorporate innovative technologies to ameliorate environmental sustainability, optimize resource management, and improve living standards. The convergence of blockchain (BC) technology and the Internet of Things (IoT) [...] Read more.
Rapid urbanization and the rising demand for sustainable living have encouraged the growth of smart cities, which incorporate innovative technologies to ameliorate environmental sustainability, optimize resource management, and improve living standards. The convergence of blockchain (BC) technology and the Internet of Things (IoT) presents transformative convenience for managing smart cities and achieving sustainability goals. In fact, blockchain technology combined with IoT devices provides a decentralized, transparent, and safe framework for managing massive volumes of data produced by networked sensors and systems. By guaranteeing accountability, minimizing fraud, and maximizing resource use, blockchain not only facilitates the smooth operation of smart city infrastructures but also encourages sustainable habits. The various uses of blockchain technology in smart city management and its contribution to sustainability objectives are examined in this study. Through an examination of important domains like energy distribution, waste management, transportation systems, healthcare, and governance, the research shows how blockchain promotes effective data exchange and data security, builds stakeholder trust, and makes it possible to establish decentralized organizations to improve decision-making. Full article
Show Figures

Figure 1

Back to TopTop