Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (312)

Search Parameters:
Keywords = small-scale unmanned aerial vehicles

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 5681 KiB  
Article
Automatic Detection System for Rainfall-Induced Shallow Landslides in Southeastern China Using Deep Learning and Unmanned Aerial Vehicle Imagery
by Yunfu Zhu, Bing Xia, Jianying Huang, Yuxuan Zhou, Yujie Su and Hong Gao
Water 2025, 17(15), 2349; https://doi.org/10.3390/w17152349 - 7 Aug 2025
Abstract
In the southeast of China, seasonal rainfall intensity is high, the distribution of mountains and hills is extensive, and many small-scale, shallow landslides frequently occur after consecutive seasons of heavy rainfall. High-precision automated identification systems can quickly pinpoint the scope of the disaster [...] Read more.
In the southeast of China, seasonal rainfall intensity is high, the distribution of mountains and hills is extensive, and many small-scale, shallow landslides frequently occur after consecutive seasons of heavy rainfall. High-precision automated identification systems can quickly pinpoint the scope of the disaster and help with important decisions like evacuating people, managing engineering, and assessing damage. Many people have designed systems for detecting such shallow landslides, but few have designed systems that combine high resolution, high automation, and real-time capability of landslide identification. Taking accuracy, automation, and real-time capability into account, we designed an automatic rainfall-induced shallow landslide detection system based on deep learning and Unmanned Aerial Vehicle (UAV) images. The system uses UAVs to capture high-resolution imagery, the U-Net (a U-shaped convolutional neural network) to combine multi-scale features, an adaptive edge enhancement loss function to improve landslide boundary identification, and the development of the “UAV Cruise Geological Hazard AI Identification System” software with an automated processing chain. The system integrates UAV-specific preprocessing and achieves a processing speed of 30 s per square kilometer. It was validated in Wanli District, Nanchang City, Jiangxi Province. The results show a Mean Intersection over Union (MIoU) of 90.7% and a Pixel Accuracy of 92.3%. Compared with traditional methods, the system significantly improves the accuracy of landslide detection. Full article
Show Figures

Figure 1

21 pages, 4331 KiB  
Article
Research on Lightweight Tracking of Small-Sized UAVs Based on the Improved YOLOv8N-Drone Architecture
by Yongjuan Zhao, Qiang Ma, Guannan Lei, Lijin Wang and Chaozhe Guo
Drones 2025, 9(8), 551; https://doi.org/10.3390/drones9080551 - 5 Aug 2025
Abstract
Traditional unmanned aerial vehicle (UAV) detection and tracking methods have long faced the twin challenges of high cost and poor efficiency. In real-world battlefield environments with complex backgrounds, occlusions, and varying speeds, existing techniques struggle to track small UAVs accurately and stably. To [...] Read more.
Traditional unmanned aerial vehicle (UAV) detection and tracking methods have long faced the twin challenges of high cost and poor efficiency. In real-world battlefield environments with complex backgrounds, occlusions, and varying speeds, existing techniques struggle to track small UAVs accurately and stably. To tackle these issues, this paper presents an enhanced YOLOv8N-Drone-based algorithm for improved target tracking of small UAVs. Firstly, a novel module named C2f-DSFEM (Depthwise-Separable and Sobel Feature Enhancement Module) is designed, integrating Sobel convolution with depthwise separable convolution across layers. Edge detail extraction and multi-scale feature representation are synchronized through a bidirectional feature enhancement mechanism, and the discriminability of target features in complex backgrounds is thus significantly enhanced. For the feature confusion problem, the improved lightweight Context Anchored Attention (CAA) mechanism is integrated into the Neck network, which effectively improves the system’s adaptability to complex scenes. By employing a position-aware weight allocation strategy, this approach enables adaptive suppression of background interference and precise focus on the target region, thereby improving localization accuracy. At the level of loss function optimization, the traditional classification loss is replaced by the focal loss (Focal Loss). This mechanism effectively suppresses the contribution of easy-to-classify samples through a dynamic weight adjustment strategy, while significantly increasing the priority of difficult samples in the training process. The class imbalance that exists between the positive and negative samples is then significantly mitigated. Experimental results show the enhanced YOLOv8 boosts mean average precision (Map@0.5) by 12.3%, hitting 99.2%. In terms of tracking performance, the proposed YOLOv8 N-Drone algorithm achieves a 19.2% improvement in Multiple Object Tracking Accuracy (MOTA) under complex multi-scenario conditions. Additionally, the IDF1 score increases by 6.8%, and the number of ID switches is reduced by 85.2%, indicating significant improvements in both accuracy and stability of UAV tracking. Compared to other mainstream algorithms, the proposed improved method demonstrates significant advantages in tracking performance, offering a more effective and reliable solution for small-target tracking tasks in UAV applications. Full article
Show Figures

Figure 1

20 pages, 1971 KiB  
Article
FFG-YOLO: Improved YOLOv8 for Target Detection of Lightweight Unmanned Aerial Vehicles
by Tongxu Wang, Sizhe Yang, Ming Wan and Yanqiu Liu
Appl. Syst. Innov. 2025, 8(4), 109; https://doi.org/10.3390/asi8040109 - 4 Aug 2025
Viewed by 228
Abstract
Target detection is essential in intelligent transportation and autonomous control of unmanned aerial vehicles (UAVs), with single-stage detection algorithms used widely due to their speed. However, these algorithms face limitations in detecting small targets, especially in aerial photography from unmanned aerial vehicles (UAVs), [...] Read more.
Target detection is essential in intelligent transportation and autonomous control of unmanned aerial vehicles (UAVs), with single-stage detection algorithms used widely due to their speed. However, these algorithms face limitations in detecting small targets, especially in aerial photography from unmanned aerial vehicles (UAVs), where small targets are often occluded, multi-scale semantic information is easily lost, and there is a trade-off between real-time processing and computational resources. Existing algorithms struggle to effectively extract multi-dimensional features and deep semantic information from images and to balance detection accuracy with model complexity. To address these limitations, we developed FFG-YOLO, a lightweight small-target detection method for UAVs based on YOLOv8. FFG-YOLO incorporates three modules: a feature enhancement block (FEB), a feature concat block (FCB), and a global context awareness block (GCAB). These modules strengthen feature extraction from small targets, resolve semantic bias in multi-scale feature fusion, and help differentiate small targets from complex backgrounds. We also improved the positioning accuracy of small targets using the Wasserstein distance loss function. Experiments showed that FFG-YOLO outperformed other algorithms, including YOLOv8n, in small-target detection due to its lightweight nature, meeting the stringent real-time performance and deployment requirements of UAVs. Full article
Show Figures

Figure 1

22 pages, 8105 KiB  
Article
Extraction of Sparse Vegetation Cover in Deserts Based on UAV Remote Sensing
by Jie Han, Jinlei Zhu, Xiaoming Cao, Lei Xi, Zhao Qi, Yongxin Li, Xingyu Wang and Jiaxiu Zou
Remote Sens. 2025, 17(15), 2665; https://doi.org/10.3390/rs17152665 - 1 Aug 2025
Viewed by 221
Abstract
The unique characteristics of desert vegetation, such as different leaf morphology, discrete canopy structures, sparse and uneven distribution, etc., pose significant challenges for remote sensing-based estimation of fractional vegetation cover (FVC). The Unmanned Aerial Vehicle (UAV) system can accurately distinguish vegetation patches, extract [...] Read more.
The unique characteristics of desert vegetation, such as different leaf morphology, discrete canopy structures, sparse and uneven distribution, etc., pose significant challenges for remote sensing-based estimation of fractional vegetation cover (FVC). The Unmanned Aerial Vehicle (UAV) system can accurately distinguish vegetation patches, extract weak vegetation signals, and navigate through complex terrain, making it suitable for applications in small-scale FVC extraction. In this study, we selected the floodplain fan with Caragana korshinskii Kom as the constructive species in Hatengtaohai National Nature Reserve, Bayannur, Inner Mongolia, China, as our study area. We investigated the remote sensing extraction method of desert sparse vegetation cover by placing samples across three gradients: the top, middle, and edge of the fan. We then acquired UAV multispectral images; evaluated the applicability of various vegetation indices (VIs) using methods such as supervised classification, linear regression models, and machine learning; and explored the feasibility and stability of multiple machine learning models in this region. Our results indicate the following: (1) We discovered that the multispectral vegetation index is superior to the visible vegetation index and more suitable for FVC extraction in vegetation-sparse desert regions. (2) By comparing five machine learning regression models, it was found that the XGBoost and KNN models exhibited relatively lower estimation performance in the study area. The spatial distribution of plots appeared to influence the stability of the SVM model when estimating fractional vegetation cover (FVC). In contrast, the RF and LASSO models demonstrated robust stability across both training and testing datasets. Notably, the RF model achieved the best inversion performance (R2 = 0.876, RMSE = 0.020, MAE = 0.016), indicating that RF is one of the most suitable models for retrieving FVC in naturally sparse desert vegetation. This study provides a valuable contribution to the limited existing research on remote sensing-based estimation of FVC and characterization of spatial heterogeneity in small-scale desert sparse vegetation ecosystems dominated by a single species. Full article
Show Figures

Graphical abstract

19 pages, 9284 KiB  
Article
UAV-YOLO12: A Multi-Scale Road Segmentation Model for UAV Remote Sensing Imagery
by Bingyan Cui, Zhen Liu and Qifeng Yang
Drones 2025, 9(8), 533; https://doi.org/10.3390/drones9080533 - 29 Jul 2025
Viewed by 425
Abstract
Unmanned aerial vehicles (UAVs) are increasingly used for road infrastructure inspection and monitoring. However, challenges such as scale variation, complex background interference, and the scarcity of annotated UAV datasets limit the performance of traditional segmentation models. To address these challenges, this study proposes [...] Read more.
Unmanned aerial vehicles (UAVs) are increasingly used for road infrastructure inspection and monitoring. However, challenges such as scale variation, complex background interference, and the scarcity of annotated UAV datasets limit the performance of traditional segmentation models. To address these challenges, this study proposes UAV-YOLOv12, a multi-scale segmentation model specifically designed for UAV-based road imagery analysis. The proposed model builds on the YOLOv12 architecture by adding two key modules. It uses a Selective Kernel Network (SKNet) to adjust receptive fields dynamically and a Partial Convolution (PConv) module to improve spatial focus and robustness in occluded regions. These enhancements help the model better detect small and irregular road features in complex aerial scenes. Experimental results on a custom UAV dataset collected from national highways in Wuxi, China, show that UAV-YOLOv12 achieves F1-scores of 0.902 for highways (road-H) and 0.825 for paths (road-P), outperforming the original YOLOv12 by 5% and 3.2%, respectively. Inference speed is maintained at 11.1 ms per image, supporting near real-time performance. Moreover, comparative evaluations with U-Net show that UAV-YOLOv12 improves by 7.1% and 9.5%. The model also exhibits strong generalization ability, achieving F1-scores above 0.87 on public datasets such as VHR-10 and the Drone Vehicle dataset. These results demonstrate that the proposed UAV-YOLOv12 can achieve high accuracy and robustness in diverse road environments and object scales. Full article
Show Figures

Figure 1

20 pages, 5507 KiB  
Article
Variable-Rate Nitrogen Application in Wheat Based on UAV-Derived Fertilizer Maps and Precision Agriculture Technologies
by Alexandros Tsitouras, Christos Noulas, Vasilios Liakos, Stamatis Stamatiadis, Miltiadis Tziouvalekas, Ruijun Qin and Eleftherios Evangelou
Agronomy 2025, 15(7), 1714; https://doi.org/10.3390/agronomy15071714 - 16 Jul 2025
Viewed by 1201
Abstract
Variable-rate nitrogen (VR-N) application allows farmers to optimize nitrogen (N) input site-specifically within field boundaries, enhancing both economic efficiency and environmental sustainability. In this study, VR-N technology was applied to durum wheat in two small-scale commercial fields (3–4 ha each) located in distinct [...] Read more.
Variable-rate nitrogen (VR-N) application allows farmers to optimize nitrogen (N) input site-specifically within field boundaries, enhancing both economic efficiency and environmental sustainability. In this study, VR-N technology was applied to durum wheat in two small-scale commercial fields (3–4 ha each) located in distinct agro-climatic zones of Thessaly, central Greece. A real-time VR-N application algorithm was used to calculate N rates based on easily obtainable near-real-time data from unmanned aerial vehicle (UAV) imagery, tailored to the crop’s actual needs. VR-N implementation was carried out using conventional fertilizer spreaders equipped to read prescription maps. Results showed that VR-N reduced N input by up to 49.6% compared to the conventional uniform-rate N (UR-N) application, with no significant impact on wheat yield or grain quality. In one of the fields, the improved gain of VR-N when compared to UR-N was 7.2%, corresponding to an economic gain of EUR 163.8 ha−1, while in the second field—where growing conditions were less favorable—no considerable VR-N economic gain was observed. Environmental benefits were also notable. The carbon footprint (CF) of the wheat crop was reduced by 6.4% to 22.0%, and residual soil nitrate (NO3) levels at harvest were 13.6% to 36.1% lower in VR-N zones compared to UR-N zones. These findings suggest a decreased risk of NO3 leaching and ground water contamination. Overall, the study supports the viability of VR-N as a practical and scalable approach to improve N use efficiency (NUE) and reduce the environmental impact of wheat cultivation which could be readily adopted by farmers. Full article
Show Figures

Figure 1

21 pages, 3826 KiB  
Article
UAV-OVD: Open-Vocabulary Object Detection in UAV Imagery via Multi-Level Text-Guided Decoding
by Lijie Tao, Guoting Wei, Zhuo Wang, Zhaoshuai Qi, Ying Li and Haokui Zhang
Drones 2025, 9(7), 495; https://doi.org/10.3390/drones9070495 - 14 Jul 2025
Viewed by 532
Abstract
Object detection in drone-captured imagery has attracted significant attention due to its wide range of real-world applications, including surveillance, disaster response, and environmental monitoring. Although the majority of existing methods are developed under closed-set assumptions, and some recent studies have begun to explore [...] Read more.
Object detection in drone-captured imagery has attracted significant attention due to its wide range of real-world applications, including surveillance, disaster response, and environmental monitoring. Although the majority of existing methods are developed under closed-set assumptions, and some recent studies have begun to explore open-vocabulary or open-world detection, their application to UAV imagery remains limited and underexplored. In this paper, we address this limitation by exploring the relationship between images and textual semantics to extend object detection in UAV imagery to an open-vocabulary setting. We propose a novel and efficient detector named Unmanned Aerial Vehicle Open-Vocabulary Detector (UAV-OVD), specifically designed for drone-captured scenes. To facilitate open-vocabulary object detection, we propose improvements from three complementary perspectives. First, at the training level, we design a region–text contrastive loss to replace conventional classification loss, allowing the model to align visual regions with textual descriptions beyond fixed category sets. Structurally, building on this, we introduce a multi-level text-guided fusion decoder that integrates visual features across multiple spatial scales under language guidance, thereby improving overall detection performance and enhancing the representation and perception of small objects. Finally, from the data perspective, we enrich the original dataset with synonym-augmented category labels, enabling more flexible and semantically expressive supervision. Experiments conducted on two widely used benchmark datasets demonstrate that our approach achieves significant improvements in both mean mAP and Recall. For instance, for Zero-Shot Detection on xView, UAV-OVD achieves 9.9 mAP and 67.3 Recall, 1.1 and 25.6 higher than that of YOLO-World. In terms of speed, UAV-OVD achieves 53.8 FPS, nearly twice as fast as YOLO-World and five times faster than DetrReg, demonstrating its strong potential for real-time open-vocabulary detection in UAV imagery. Full article
(This article belongs to the Special Issue Applications of UVs in Digital Photogrammetry and Image Processing)
Show Figures

Figure 1

28 pages, 7404 KiB  
Article
SR-YOLO: Spatial-to-Depth Enhanced Multi-Scale Attention Network for Small Target Detection in UAV Aerial Imagery
by Shasha Zhao, He Chen, Di Zhang, Yiyao Tao, Xiangnan Feng and Dengyin Zhang
Remote Sens. 2025, 17(14), 2441; https://doi.org/10.3390/rs17142441 - 14 Jul 2025
Viewed by 396
Abstract
The detection of aerial imagery captured by Unmanned Aerial Vehicles (UAVs) is widely employed across various domains, including engineering construction, traffic regulation, and precision agriculture. However, aerial images are typically characterized by numerous small targets, significant occlusion issues, and densely clustered targets, rendering [...] Read more.
The detection of aerial imagery captured by Unmanned Aerial Vehicles (UAVs) is widely employed across various domains, including engineering construction, traffic regulation, and precision agriculture. However, aerial images are typically characterized by numerous small targets, significant occlusion issues, and densely clustered targets, rendering traditional detection algorithms largely ineffective for such imagery. This work proposes a small target detection algorithm, SR-YOLO. It is specifically tailored to address these challenges in UAV-captured aerial images. First, the Space-to-Depth layer and Receptive Field Attention Convolution are combined, and the SR-Conv module is designed to replace the Conv module within the original backbone network. This hybrid module extracts more fine-grained information about small target features by converting image spatial information into depth information and the attention of the network to targets of different scales. Second, a small target detection layer and a bidirectional feature pyramid network mechanism are introduced to enhance the neck network, thereby strengthening the feature extraction and fusion capabilities for small targets. Finally, the model’s detection performance for small targets is improved by utilizing the Normalized Wasserstein Distance loss function to optimize the Complete Intersection over Union loss function. Empirical results demonstrate that the SR-YOLO algorithm significantly enhances the precision of small target detection in UAV aerial images. Ablation experiments and comparative experiments are conducted on the VisDrone2019 and RSOD datasets. Compared to the baseline algorithm YOLOv8s, our SR-YOLO algorithm has improved mAP@0.5 by 6.3% and 3.5% and mAP@0.5:0.95 by 3.8% and 2.3% on the datasets VisDrone2019 and RSOD, respectively. It also achieves superior detection results compared to other mainstream target detection methods. Full article
Show Figures

Figure 1

27 pages, 4651 KiB  
Article
Thermal Infrared UAV Applications for Spatially Explicit Wildlife Occupancy Modeling
by Eve Bohnett, Babu Ram Lamichanne, Surendra Chaudhary, Kapil Pokhrel, Giavanna Dorman, Axel Flores, Rebecca Lewison, Fang Qiu, Doug Stow and Li An
Land 2025, 14(7), 1461; https://doi.org/10.3390/land14071461 - 14 Jul 2025
Viewed by 469
Abstract
Assessing the impact of community-based conservation programs on wildlife biodiversity remains a significant challenge. This pilot study was designed to develop and demonstrate a scalable, spatially explicit workflow using thermal infrared (TIR) imagery and unmanned aerial vehicles (UAVs) for non-invasive biodiversity monitoring. Conducted [...] Read more.
Assessing the impact of community-based conservation programs on wildlife biodiversity remains a significant challenge. This pilot study was designed to develop and demonstrate a scalable, spatially explicit workflow using thermal infrared (TIR) imagery and unmanned aerial vehicles (UAVs) for non-invasive biodiversity monitoring. Conducted in a 2-hectare grassland area in Chitwan, Nepal, the study applied TIR-based grid sampling and multi-species occupancy models with thin-plate splines to evaluate how species detection and richness might vary between (1) morning and evening UAV flights, and (2) the Chitwan National Park and Kumroj Community Forest. While the small sample area inherently limits ecological inference, the aim was to test and demonstrate data collection and modeling protocols that could be scaled to larger landscapes with sufficient replication, and not to produce generalizable ecological findings from a small dataset. The pilot study results revealed higher species detection during morning flights, which allowed us to refine our data collection. Additionally, models accounting for spatial autocorrelation using thin plate splines suggested that community-based conservation programs effectively balanced ecosystem service extraction with biodiversity conservation, maintaining richness levels comparable to the national park. Models without splines indicated significantly higher species richness within the national park. This study demonstrates the potential for spatially explicit methods for monitoring grassland mammals using TIR UAV as indicators of anthropogenic impacts and conservation effectiveness. Further data collection over larger spatial and temporal scales is essential to capture the occupancy more generally for species with larger home ranges, as well as any effects of rainfall, flooding, and seasonal variability on biodiversity in alluvial grasslands. Full article
(This article belongs to the Section Land, Biodiversity, and Human Wellbeing)
Show Figures

Figure 1

25 pages, 85368 KiB  
Article
SMA-YOLO: An Improved YOLOv8 Algorithm Based on Parameter-Free Attention Mechanism and Multi-Scale Feature Fusion for Small Object Detection in UAV Images
by Shenming Qu, Chaoxu Dang, Wangyou Chen and Yanhong Liu
Remote Sens. 2025, 17(14), 2421; https://doi.org/10.3390/rs17142421 - 12 Jul 2025
Viewed by 783
Abstract
With special consideration for complex scenes and densely distributed small objects, this frequently leads to serious false and missed detections for unmanned aerial vehicle (UAV) images in small object detection scenarios. Consequently, we propose a UAV image small object detection algorithm, termed SMA-YOLO. [...] Read more.
With special consideration for complex scenes and densely distributed small objects, this frequently leads to serious false and missed detections for unmanned aerial vehicle (UAV) images in small object detection scenarios. Consequently, we propose a UAV image small object detection algorithm, termed SMA-YOLO. Firstly, a parameter-free simple slicing convolution (SSC) module is integrated in the backbone network to slice the feature maps and enhance the features so as to effectively retain the features of small objects. Subsequently, to enhance the information exchange between upper and lower layers, we design a special multi-cross-scale feature pyramid network (M-FPN). The C2f-Hierarchical-Phantom Convolution (C2f-HPC) module in the network effectively reduces information loss by fine-grained multi-scale feature fusion. Ultimately, adaptive spatial feature fusion detection Head (ASFFDHead) introduces an additional P2 detection head to enhance the resolution of feature maps to better locate small objects. Moreover, the ASFF mechanism is employed to optimize the detection process by filtering out information conflicts during multi-scale feature fusion, thereby significantly optimizing small object detection capability. Using YOLOv8n as the baseline, SMA-YOLO is evaluated on the VisDrone2019 dataset, achieving a 7.4% improvement in mAP@0.5 and a 13.3% reduction in model parameters, and we also verified its generalization ability on VAUDT and RSOD datasets, which demonstrates the effectiveness of our approach. Full article
Show Figures

Graphical abstract

31 pages, 20469 KiB  
Article
YOLO-SRMX: A Lightweight Model for Real-Time Object Detection on Unmanned Aerial Vehicles
by Shimin Weng, Han Wang, Jiashu Wang, Changming Xu and Ende Zhang
Remote Sens. 2025, 17(13), 2313; https://doi.org/10.3390/rs17132313 - 5 Jul 2025
Cited by 1 | Viewed by 736
Abstract
Unmanned Aerial Vehicles (UAVs) face a significant challenge in balancing high accuracy and high efficiency when performing real-time object detection tasks, especially amidst intricate backgrounds, diverse target scales, and stringent onboard computational resource constraints. To tackle these difficulties, this study introduces YOLO-SRMX, a [...] Read more.
Unmanned Aerial Vehicles (UAVs) face a significant challenge in balancing high accuracy and high efficiency when performing real-time object detection tasks, especially amidst intricate backgrounds, diverse target scales, and stringent onboard computational resource constraints. To tackle these difficulties, this study introduces YOLO-SRMX, a lightweight real-time object detection framework specifically designed for infrared imagery captured by UAVs. Firstly, the model utilizes ShuffleNetV2 as an efficient lightweight backbone and integrates the novel Multi-Scale Dilated Attention (MSDA) module. This strategy not only facilitates a substantial 46.4% reduction in parameter volume but also, through the flexible adaptation of receptive fields, boosts the model’s robustness and precision in multi-scale object recognition tasks. Secondly, within the neck network, multi-scale feature extraction is facilitated through the design of novel composite convolutions, ConvX and MConv, based on a “split–differentiate–concatenate” paradigm. Furthermore, the lightweight GhostConv is incorporated to reduce model complexity. By synthesizing these principles, a novel composite receptive field lightweight convolution, DRFAConvP, is proposed to further optimize multi-scale feature fusion efficiency and promote model lightweighting. Finally, the Wise-IoU loss function is adopted to replace the traditional bounding box loss. This is coupled with a dynamic non-monotonic focusing mechanism formulated using the concept of outlier degrees. This mechanism intelligently assigns elevated gradient weights to anchor boxes of moderate quality by assessing their relative outlier degree, while concurrently diminishing the gradient contributions from both high-quality and low-quality anchor boxes. Consequently, this approach enhances the model’s localization accuracy for small targets in complex scenes. Experimental evaluations on the HIT-UAV dataset corroborate that YOLO-SRMX achieves an mAP50 of 82.8%, representing a 7.81% improvement over the baseline YOLOv8s model; an F1 score of 80%, marking a 3.9% increase; and a substantial 65.3% reduction in computational cost (GFLOPs). YOLO-SRMX demonstrates an exceptional trade-off between detection accuracy and operational efficiency, thereby underscoring its considerable potential for efficient and precise object detection on resource-constrained UAV platforms. Full article
Show Figures

Figure 1

17 pages, 8706 KiB  
Article
Rice Canopy Disease and Pest Identification Based on Improved YOLOv5 and UAV Images
by Gaoyuan Zhao, Yubin Lan, Yali Zhang and Jizhong Deng
Sensors 2025, 25(13), 4072; https://doi.org/10.3390/s25134072 - 30 Jun 2025
Viewed by 370
Abstract
Traditional monitoring methods rely on manual field surveys, which are subjective, inefficient, and unable to meet the demand for large-scale, rapid monitoring. By using unmanned aerial vehicles (UAVs) to capture high-resolution images of rice canopy diseases and pests, combined with deep learning (DL) [...] Read more.
Traditional monitoring methods rely on manual field surveys, which are subjective, inefficient, and unable to meet the demand for large-scale, rapid monitoring. By using unmanned aerial vehicles (UAVs) to capture high-resolution images of rice canopy diseases and pests, combined with deep learning (DL) techniques, accurate and timely identification of diseases and pests can be achieved. We propose a method for identifying rice canopy diseases and pests using an improved YOLOv5 model (YOLOv5_DWMix). By incorporating deep separable convolutions, the MixConv module, attention mechanisms, and optimized loss functions into the YOLOv5 backbone, the model’s speed, feature extraction capability, and robustness are significantly enhanced. Additionally, to tackle the challenges posed by complex field environments and small datasets, image augmentation is employed to train the YOLOv5_DWMix model for the recognition of four common rice canopy diseases and pests. Results show that the improved YOLOv5 model achieves 95.6% average precision in detecting these diseases and pests, a 4.8% improvement over the original YOLOv5 model. The YOLOv5_DWMix model is effective and advanced in identifying rice diseases and pests, offering a solid foundation for large-scale, regional monitoring. Full article
(This article belongs to the Section Smart Agriculture)
Show Figures

Figure 1

25 pages, 6723 KiB  
Article
Parametric Modeling and Evaluation of Departure and Arrival Air Routes for Urban Logistics UAVs
by Zhongming Li, Yifei Zhao and Xinhui Ren
Drones 2025, 9(7), 454; https://doi.org/10.3390/drones9070454 - 23 Jun 2025
Viewed by 380
Abstract
With the rapid development of the low-altitude economy, the intensive take-offs and landings of Unmanned Aerial Vehicles (UAVs) performing logistics transport tasks in urban areas have introduced significant safety risks. To reduce the likelihood of collisions, logistics operators—such as Meituan, Antwork, and Fengyi—have [...] Read more.
With the rapid development of the low-altitude economy, the intensive take-offs and landings of Unmanned Aerial Vehicles (UAVs) performing logistics transport tasks in urban areas have introduced significant safety risks. To reduce the likelihood of collisions, logistics operators—such as Meituan, Antwork, and Fengyi—have established fixed departure and arrival air routes above vertiports and designed fixed flight air routes between vertiports to guide UAVs to fly along predefined paths. In the complex and constrained low-altitude urban environment, the design of safe and efficient air routes has undoubtedly become a key enabler for successful operations. This research, grounded in both current theoretical research and real-world logistics UAV operations, defines the concept of UAV logistics air routes and presents a comprehensive description of their structure. A parametric model for one-way round-trip logistics air routes is proposed, along with an air route evaluation model and optimization method. Based on this framework, the research identifies four basic configurations that are commonly adopted for one-way round-trip operations. These configurations can be further improved into two optimized configurations with more balanced performance across multiple metrics. Simulation results reveal that Configuration 1 is only suitable for small-scale transport; as the number of delivery tasks increases, delays grow linearly. When the task volume exceeds 100 operations per 30 min, Configurations 2, 3, and 4 reduce average delay by 88.9%, 89.2%, and 93.3%, respectively, compared with Configuration 1. The research also finds that flight speed along segments and the cruise segment capacity have the most significant influence on delays. Properly increasing these two parameters can lead to a 28.4% reduction in the average delay. The two optimized configurations, derived through further refinement, show better trade-offs between average delay and flight time than any of the fundamental configurations. This research not only provides practical guidance for the planning and design of UAV logistics air routes but also lays a methodological foundation for future developments in UAV scheduling and air route network design. Full article
(This article belongs to the Section Innovative Urban Mobility)
Show Figures

Figure 1

21 pages, 5194 KiB  
Article
LMEC-YOLOv8: An Enhanced Object Detection Algorithm for UAV Imagery
by Xuchuan Tai and Xinjun Zhang
Electronics 2025, 14(13), 2535; https://doi.org/10.3390/electronics14132535 - 23 Jun 2025
Cited by 1 | Viewed by 512
Abstract
Despite the rapid development of UAV (Unmanned Aerial Vehicle) technology, its application for object detection in complex scenarios faces challenges regarding the small target sizes and environmental interference. This paper proposes an improved algorithm, LMEC-YOLOv8, based on YOLOv8n, which aims to enhance the [...] Read more.
Despite the rapid development of UAV (Unmanned Aerial Vehicle) technology, its application for object detection in complex scenarios faces challenges regarding the small target sizes and environmental interference. This paper proposes an improved algorithm, LMEC-YOLOv8, based on YOLOv8n, which aims to enhance the detection accuracy and real-time performance of UAV imagery for small targets. We propose three key enhancements: (1) a lightweight multi-scale module (LMS-PC2F) to replace C2f; (2) a multi-scale attention mechanism (MSCBAM) for optimized feature extraction; and (3) an adaptive pyramid module (ESPPM) and a bidirectional feature network (CBiFPN) to boost fusion capability. Experimental results on the VisDrone2019 dataset demonstrate that LMEC-YOLOv8 achieves a 10.1% improvement in mAP50, a 20% reduction in parameter count, and a frame rate of 42 FPS compared to the baseline YOLOv8n. When compared to other state-of-the-art algorithms, the proposed model achieves an optimal balance between accuracy and speed, validating its robustness and practicality in complex environments. Full article
(This article belongs to the Special Issue Deep Learning for Computer Vision, 2nd Edition)
Show Figures

Figure 1

26 pages, 2362 KiB  
Article
ELNet: An Efficient and Lightweight Network for Small Object Detection in UAV Imagery
by Hui Li, Jianbo Ma and Jianlin Zhang
Remote Sens. 2025, 17(12), 2096; https://doi.org/10.3390/rs17122096 - 18 Jun 2025
Viewed by 626
Abstract
Real-time object detection is critical for unmanned aerial vehicles (UAVs) performing various tasks. However, efficiently deploying detection models on UAV platforms with limited storage and computational resources remains a significant challenge. To address this issue, we propose ELNet, an efficient and lightweight object [...] Read more.
Real-time object detection is critical for unmanned aerial vehicles (UAVs) performing various tasks. However, efficiently deploying detection models on UAV platforms with limited storage and computational resources remains a significant challenge. To address this issue, we propose ELNet, an efficient and lightweight object detection model based on YOLOv12n. First, based on an analysis of UAV image characteristics, we strategically remove two A2C2f modules from YOLOv12n and adjust the size and number of detection heads. Second, we propose a novel lightweight detection head, EPGHead, to alleviate the computational burden introduced by adding the large-scale detection head. In addition, since YOLOv12n employs standard convolution for downsampling, which is inefficient for extracting UAV image features, we design a novel downsampling module, EDown, to further reduce model size and enable more efficient feature extraction. Finally, to improve detection in UAV imagery with dense, small, and scale-varying objects, we propose DIMB-C3k2, an enhanced module built upon C3k2, which boosts feature extraction under complex conditions. Compared with YOLOv12n, ELNet achieves an 88.5% reduction in parameter count and a 52.3% decrease in FLOPs, while increasing mAP50 by 1.2% on the VisDrone dataset and 0.8% on the HIT-UAV dataset, reaching 94.7% mAP50 on HIT-UAV. Furthermore, the model achieves a frame rate of 682 FPS, highlighting its superior computational efficiency without sacrificing detection accuracy. Full article
Show Figures

Figure 1

Back to TopTop