Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (483)

Search Parameters:
Keywords = sluggish

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 4807 KB  
Article
Pt Nanoparticles Supported on Mesoporous Hollow TiO2@C Sphere Composite as Efficient Methanol Oxidation Reaction Electrocatalysts
by Yuan Chen, Huiyuan Liu, Qiang Ma, Zhuo Li, Mengyue Lu, Huaneng Su, Weiqi Zhang and Qian Xu
Catalysts 2025, 15(9), 834; https://doi.org/10.3390/catal15090834 - 1 Sep 2025
Abstract
The large-scale implementation of direct methanol fuel cells (DMFCs) is significantly impeded by sluggish methanol oxidation reaction (MOR) kinetics, degradation of Pt electrocatalysts, and significant carbon support corrosion in commercial Pt/C. Herein, we design a mesoporous hollow TiO2@carbon core–shell composite (MH-TiO [...] Read more.
The large-scale implementation of direct methanol fuel cells (DMFCs) is significantly impeded by sluggish methanol oxidation reaction (MOR) kinetics, degradation of Pt electrocatalysts, and significant carbon support corrosion in commercial Pt/C. Herein, we design a mesoporous hollow TiO2@carbon core–shell composite (MH-TiO2@C) as a support for Pt nanoparticles to serve as an efficient MOR electrocatalyst. Pt/MH-TiO2@C demonstrates exceptional MOR activity in alkaline electrolyte, exhibiting a mass activity 2.56-fold higher than commercial Pt/C. Furthermore, Pt/MH-TiO2@C displays remarkable durability compared to Pt/C. Following chronoamperometry tests, the mass activity of Pt/MH-TiO2@C decreased by 30.92%, substantially lower than the 52.31% loss observed for commercial Pt/C. The superior MOR activity and durability originate from the inherent structural stability of the MH-TiO2@C composite, strong metal-support interaction between Pt and TiO2, and enhanced resistance to intermediate poisoning. This work presents a feasible strategy for developing efficient and durable Pt-based electrocatalysts, accelerating the commercialization of DMFCs. Full article
Show Figures

Figure 1

25 pages, 5887 KB  
Review
Applications of Metal–Organic Frameworks and Their Derivatives in Lithium–Sulfur Battery Separators: Advances and Prospectives Focusing on Cathode-Side Polysulfide Regulation
by Minhe Kim, Taek-Seung Kim and Changhoon Choi
Inorganics 2025, 13(9), 294; https://doi.org/10.3390/inorganics13090294 - 1 Sep 2025
Abstract
Metal–organic frameworks (MOFs) and their derivatives have emerged as promising candidates for separator engineering in lithium–sulfur batteries (LSBs). This is attributed to their structural tunability, high porosity, and chemical versatility. Despite their potential, challenges such as lithium polysulfide (LiPS) shuttling, sluggish redox kinetics, [...] Read more.
Metal–organic frameworks (MOFs) and their derivatives have emerged as promising candidates for separator engineering in lithium–sulfur batteries (LSBs). This is attributed to their structural tunability, high porosity, and chemical versatility. Despite their potential, challenges such as lithium polysulfide (LiPS) shuttling, sluggish redox kinetics, and poor interfacial stability still hinder the practical deployment of LSBs. This review examines recent advances in MOF- and MOF derivative-based materials for separator modification, focusing on design strategies, functional mechanisms, and electrochemical performance. Pristine MOFs are classified into the following three key structural tuning strategies: control of the pore microenvironment, engineering of metal sites, and enhancement of electrical conductivity. Meanwhile, MOF derivatives are examined using compositional categories to highlight their distinct chemical characteristics and catalytic functionalities for LiPS regulation. Key findings demonstrate that these materials can effectively suppress polysulfide migration, accelerate LiPS redox reactions, and improve lithium-ion transport across the separator. The review also identifies remaining challenges and suggests future perspectives for bridging material-level innovations with system-level applications. Overall, MOF-based separator materials represent a versatile and impactful approach for advancing the electrochemical performance and stability of next-generation LSBs. Full article
Show Figures

Figure 1

16 pages, 7989 KB  
Article
Model-Free Predictive Control of Inverter Based on Ultra-Local Model and Adaptive Super-Twisting Sliding Mode Observer
by Wensheng Luo, Zejian Shu, Ruifang Zhang, Jose I. Leon, Abraham M. Alcaide and Leopoldo G. Franquelo
Energies 2025, 18(17), 4570; https://doi.org/10.3390/en18174570 - 28 Aug 2025
Viewed by 191
Abstract
Model predictive control (MPC) is significantly affected by parameter mismatch in inverter applications, whereas model-free predictive control (MFPC) avoids parameter dependence through the ultra-local model (ULM). However, the traditional MFPC based on the algebraic method needs to store historical data for multiple cycles, [...] Read more.
Model predictive control (MPC) is significantly affected by parameter mismatch in inverter applications, whereas model-free predictive control (MFPC) avoids parameter dependence through the ultra-local model (ULM). However, the traditional MFPC based on the algebraic method needs to store historical data for multiple cycles, which results in a sluggish dynamic response. To address the above problems, this paper proposes a model-free predictive control method based on the ultra-local model and an adaptive super-twisting sliding mode observer (ASTSMO). Firstly, the effect of parameter mismatch on the current prediction error of conventional MPC is analyzed through theoretical analysis, and a first-order ultra-local model of the inverter is established to enhance robustness against parameter variations. Secondly, a super-twisting sliding mode observer with adaptive gain is designed to estimate the unknown dynamic terms in the ultra-local model in real time. Finally, the superiority of the proposed method is verified through comparative validation against conventional MPC and the algebraic-based MFPC. Simulation results demonstrate that the proposed method can significantly enhance robustness against parameter variations and shorten the settling time during dynamic transients. Full article
Show Figures

Figure 1

29 pages, 16006 KB  
Review
Boosting Oxygen Evolution Reaction Catalyzed by Transition Metal Carbides
by Xun Zhang, Aiyi Dong, Haiyang Gao, Guanyingze Wang, Yan Yin, Li Che and Honglin Gao
Nanomaterials 2025, 15(17), 1319; https://doi.org/10.3390/nano15171319 - 28 Aug 2025
Viewed by 308
Abstract
In the water splitting process for sustainable hydrogen production, the oxygen evolution reaction (OER) stands as one of the pivotal half-reactions. Nevertheless, the sluggish four-electron transfer process inherent to OER has emerged as a kinetic bottleneck that impedes water electrolysis. To address this [...] Read more.
In the water splitting process for sustainable hydrogen production, the oxygen evolution reaction (OER) stands as one of the pivotal half-reactions. Nevertheless, the sluggish four-electron transfer process inherent to OER has emerged as a kinetic bottleneck that impedes water electrolysis. To address this challenge, researchers have been devoting substantial efforts to developing high-performance OER electrocatalysts. Currently, iridium (Ir)-based or ruthenium (Ru)-based oxides are widely acknowledged as benchmark catalysts for OER. However, their scarcity and exorbitant cost render large-scale applications impractical. In recent years, transition metal carbides have garnered extensive attention in the realm of OER electrocatalysts, exhibiting tremendous application prospects owing to their advantages of low cost, high catalytic activity, and excellent stability. This review briefly introduces the fundamental characteristics and synthesis methodologies of transition metal carbides, summarizes the recent research advances in their application as OER catalysts, elaborates on the modification strategies and catalytic mechanisms of transition metal carbide nanomaterials, and finally discusses the challenges confronted by these metal carbides as well as the future research directions. Full article
Show Figures

Figure 1

15 pages, 6475 KB  
Article
Catalytic Interface of rGO-VO2/W5O14 Hydrogel for High-Performance Electrochemical Water Oxidation
by Mrunal Bhosale, Rutuja U. Amate, Pritam J. Morankar and Chan-Wook Jeon
Gels 2025, 11(8), 670; https://doi.org/10.3390/gels11080670 - 21 Aug 2025
Viewed by 340
Abstract
The continuous increase in global energy demand necessitates the development of sustainable, clean, and highly efficient methods of energy generation. Electrochemical water splitting, comprising hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), represents a promising strategy but remains hindered by sluggish reaction [...] Read more.
The continuous increase in global energy demand necessitates the development of sustainable, clean, and highly efficient methods of energy generation. Electrochemical water splitting, comprising hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), represents a promising strategy but remains hindered by sluggish reaction kinetics and limited availability of highly active electrocatalysts especially under alkaline conditions. Addressing this challenge, we successfully synthesized a rGO-VO2/W5O14 (rG-VO2/W5O14) hydrogel electrocatalyst through a facile hydrothermal approach. The prepared composite distinctly reveals an advantageous hierarchical microstructure characterized by VO2 nanoflakes uniformly distributed on the surface of rGO nanosheets, intricately integrated with W5O14 nanorods. Evaluated in a 1.0 M KOH electrolyte, the optimized rG-VO2/W5O14-2 catalyst demonstrates remarkable electrocatalytic performance towards OER, achieving a low overpotential of 265.8 mV and a reduced Tafel slope of 81.9 mV dec−1. Furthermore, the catalyst maintains robust stability with minimal performance degradation, exhibiting an overpotential of only 273.0 mV after 5000 cyclic stability tests. The superior catalytic activity and durability are attributed to the synergistic combination of enriched chemical composition, effective electron transfer, and abundant catalytic active sites inherent in the well-optimized rG-VO2/W5O14-2 composite. Full article
(This article belongs to the Special Issue Properties and Structure of Hydrogel-Related Materials (2nd Edition))
Show Figures

Figure 1

36 pages, 6171 KB  
Review
Atomistic Modeling of Microstructural Defect Evolution in Alloys Under Irradiation: A Comprehensive Review
by Yue Fan
Appl. Sci. 2025, 15(16), 9110; https://doi.org/10.3390/app15169110 - 19 Aug 2025
Viewed by 407
Abstract
Developing structural materials capable of maintaining integrity under extreme irradiation conditions is a cornerstone challenge for advancing sustainable nuclear energy technologies. The complexity and severity of radiation-induced microstructural changes—spanning multiple length and timescales—pose significant hurdles for purely experimental approaches. This review critically evaluates [...] Read more.
Developing structural materials capable of maintaining integrity under extreme irradiation conditions is a cornerstone challenge for advancing sustainable nuclear energy technologies. The complexity and severity of radiation-induced microstructural changes—spanning multiple length and timescales—pose significant hurdles for purely experimental approaches. This review critically evaluates recent advancements in atomistic modeling, emphasizing its transformative potential to decipher fundamental mechanisms driving microstructural evolution in irradiated alloys. Atomistic simulations, such as molecular dynamics (MD), have successfully unveiled initial defect formation processes at picosecond scales. However, the inherent temporal limitations of conventional MD necessitate advanced methodologies capable of exploring slower, thermally activated defect kinetics. We specifically traced the development of powerful potential energy landscape (PEL) exploration algorithms, which enable the simulation of high-barrier, rare events of defect evolution processes that govern long-term material degradation. The review systematically examines point defect behaviors in various crystal structures—BCC, FCC, and HCP metals—and elucidates their characteristic defect dynamics, respectively. Additionally, it highlights the pronounced effects of chemical complexity in concentrated solid-solution alloys and high-entropy alloys, notably their sluggish diffusion and enhanced defect recombination, underpinning their superior radiation tolerance. Further, the interaction of extended defects with mechanical stresses and their mechanistic implications for material properties are discussed, highlighting the critical interplay between thermal activation and strain rate in defect evolution. Special attention is dedicated to the diverse mechanisms of dislocation–obstacle interactions, as well as the behaviors of metastable grain boundaries under far-from-equilibrium environments. The integration of data-driven methods and machine learning with atomistic modeling is also explored, showcasing their roles in developing quantum-accurate potentials, automating defect analysis, and enabling efficient surrogate models for predictive design. This comprehensive review also outlines future research directions and fundamental questions, paving the way toward autonomous materials’ discovery in extreme environments. Full article
Show Figures

Figure 1

11 pages, 2034 KB  
Article
Te Vacancy Defect Engineering on Fe3GeTe2 (001) Basal Planes for Enhanced Oxygen Evolution Reaction: A First-Principles Study
by Yunjie Gao, Wei Su, Yuan Qiu, Dan Shan and Jing Pan
Nanomaterials 2025, 15(16), 1272; https://doi.org/10.3390/nano15161272 - 18 Aug 2025
Viewed by 382
Abstract
Photocatalytic water splitting for hydrogen production is an attractive renewable energy technology, but the oxygen evolution reaction (OER) at the anode is severely constrained by a high overpotential. The two-dimensional vdW ferromagnetic material Fe3GeTe2, with its good stability and [...] Read more.
Photocatalytic water splitting for hydrogen production is an attractive renewable energy technology, but the oxygen evolution reaction (OER) at the anode is severely constrained by a high overpotential. The two-dimensional vdW ferromagnetic material Fe3GeTe2, with its good stability and excellent metallic conductivity, has potential as an electrocatalyst, but its sluggish surface catalytic reactivity limits its large-scale application. In this work, we adapted DFT calculations to introduce surface Te vacancies to boost OER performance of the Fe3GeTe2 (001) surface. Te vacancies induce the charge redistribution of active sites, optimizing the adsorption and desorption of oxygen-containing intermediates. Consequently, the overpotential of the rate-determining step in the OER process of Fe3GeTe2 is reduced to 0.34 V, bringing the performance close to that of the benchmark IrO2 catalyst (0.56 V). Notably, the vacancies’ concentration and configuration significantly modify the electronic structure and thus influence OER activity. This study provides important theoretical evidence for defect engineering in OER catalysis and offers new design strategies for developing efficient and stable electrocatalysts for sustainable energy conversion. Full article
(This article belongs to the Topic Electrocatalytic Advances for Sustainable Energy)
Show Figures

Graphical abstract

13 pages, 7489 KB  
Article
Interface Charge Transfer Engineering in NiFe Layered Double Hydroxide-Cs0.32WO3 Heterostructures for Enhanced Oxygen Evolution Reaction
by Ze Wang, Xinyu Song, Yue Liu, Zhiwang Sun, Xin Zhang, Yuanhao Wang and Shifeng Wang
Nanomaterials 2025, 15(16), 1255; https://doi.org/10.3390/nano15161255 - 14 Aug 2025
Viewed by 452
Abstract
Electrochemical water splitting for hydrogen production is considered a key pathway for achieving sustainable energy conversion. However, the sluggish reaction kinetics of the oxygen evolution reaction (OER) and high overpotentials severely hinder the large-scale application of water electrolysis technology. Nickel–iron layered double hydroxide [...] Read more.
Electrochemical water splitting for hydrogen production is considered a key pathway for achieving sustainable energy conversion. However, the sluggish reaction kinetics of the oxygen evolution reaction (OER) and high overpotentials severely hinder the large-scale application of water electrolysis technology. Nickel–iron layered double hydroxide (NiFe-LDH) has gained attention as a promising non-precious metal OER catalyst due to its abundant active sites and good intrinsic activity. However, its relatively low conductivity and charge transfer efficiency limit the improvement of catalytic performance. Therefore, this study used a simple hydrothermal method to generate a NiFe-LDH/Cs0.32WO3 heterojunction composite catalyst, relying on the excellent electronic conductivity of Cs0.32WO3 to improve overall charge transfer efficiency. According to electrochemical testing results, the modified NiFe-LDH/Cs0.32WO3-20 mg achieved a low overpotential of 349 mV at a current density of 10 mA cm−2, a Tafel slope of 67.0 mV dec−1, and a charge transfer resistance of 65.1 Ω, which represent decreases of 39 mV, 23.1%, and 40%, respectively, compared to pure NiFe-LDH. The key to performance improvement lies in the tightly bonded heterojunction interface between Cs0.32WO3 and NiFe-LDH. X-ray photoelectron spectroscopy (XPS) shows a distinct interfacial charge transfer phenomenon, with a notable negative shift of the W4f peak (0.85 eV), indicating the directional transfer of electrons from Cs0.32WO3 to NiFe-LDH. Under the influence of the built-in electric field within the heterojunction, this interfacial charge redistribution improved the electronic structure of NiFe-LDH, increased the proportion of high-valent metal ions, and significantly enhanced the OER reaction kinetics. This study provides new insights for the preparation of efficient heterojunction electrocatalysts. Full article
Show Figures

Figure 1

21 pages, 5297 KB  
Article
Construction and Performance Optimization of a Multifunctional CHP-Ti-MAO Composite Coating: Antibacterial Activity, Controlled Drug Release, and Corrosion Resistance
by Liting Mu, Yiqi Lian, Shiyu Zheng, Shuo Chang, Ximeng Li, Changhai Sun and Hongbin Qiu
Coatings 2025, 15(8), 948; https://doi.org/10.3390/coatings15080948 - 13 Aug 2025
Viewed by 476
Abstract
Titanium and its alloys are widely used in orthopedics because of their excellent mechanical properties and biocompatibility; however, their bioinert surface results in sluggish osseointegration and renders implants susceptible to bacterial infection. This study innovatively constructed a “CHP-Ti-MAO” composite coating, which aims to [...] Read more.
Titanium and its alloys are widely used in orthopedics because of their excellent mechanical properties and biocompatibility; however, their bioinert surface results in sluggish osseointegration and renders implants susceptible to bacterial infection. This study innovatively constructed a “CHP-Ti-MAO” composite coating, which aims to simultaneously improve early osseointegration and antibacterial performance. CHP micron coatings coated with hydroxyapatite (HA) and curcumin (Cur) at different PLGA concentrations (50%, 100%, and 150%) were deposited on the basis of calcium–phosphorus ceramic coatings prepared by micro-arc oxidation (MAO) following the emulsification-solvent volatilization method. It was found that increasing the concentration of PLGA can increase the particle size of the coating, enhance the hydrophilicity, and significantly improve the sustained release performance of the drug. Among them, the 100% PLGA concentration group performed the best: the drug-release half-life reached 75 h, and the corrosion current density was the lowest (9.5 × 10−9 A/cm2), showing the best corrosion resistance. This group of coatings has a strong and long-term antibacterial effect on Escherichia coli, with an antibacterial rate of more than 95% at 24 h and more than 99% by day 17. The hemolysis rate of all coatings was lower than 5%, indicating good biocompatibility. This study confirmed that 100% CHP-Ti-MAO composite coating successfully solved the limitations of excessive pore size and insufficient antibacterial persistence of an MAO layer and also had excellent slow-release, corrosion resistance, and high-efficiency antibacterial capabilities, which provided an important basis for the development of a new generation of multifunctional titanium-based implants. Full article
Show Figures

Figure 1

17 pages, 491 KB  
Article
Exploring the Relationship of Cognitive Disengagement Syndrome and Attention Deficit/Hyperactivity Disorder with Emotional Dysregulation: A Twin Study in Childhood and Adolescence
by Simona Scaini, Stefano De Francesco, Ludovica Giani, Marco Battaglia, Emanuela Medda and Corrado Fagnani
Methods Protoc. 2025, 8(4), 94; https://doi.org/10.3390/mps8040094 - 11 Aug 2025
Viewed by 389
Abstract
Data on the genetic and environmental factors underlying the co-occurrence of Cognitive Disengagement Syndrome (CDS), Attention Deficit Hyperactivity Disorder (ADHD), and Emotional Dysregulation (ED) are limited. This study aimed to explore the nature of the associations between CDS, ADHD with ED, and to [...] Read more.
Data on the genetic and environmental factors underlying the co-occurrence of Cognitive Disengagement Syndrome (CDS), Attention Deficit Hyperactivity Disorder (ADHD), and Emotional Dysregulation (ED) are limited. This study aimed to explore the nature of the associations between CDS, ADHD with ED, and to assess the role of shared etiological factors in explaining their comorbidity. We analyzed a sample of 400 Italian twin pairs aged 8–18, from Northern Italy and enrolled in the Italian Twin Registry. Bivariate genetic analyses were conducted using parent-rated CBCL scores for CDS, ADHD, and ED. For both CDS–ED and ADHD–ED associations, the best-fitting models were Cholesky AE models (−2LL = −849.167 and −339.030, respectively; p > 0.05), suggesting that the covariation was mainly due to additive genetic factors (CDS–ED—A = 0.81, 95% CI [0.66–0.95]; ADHD–ED—A = 0.86, 95% CI [0.75–0.95]). More than half of the genes were shown to be shared among the phenotypes. Non-shared environmental contributions were smaller (CDS–ED—E = 0.19, 95% CI [0.05–0.34]; ADHD–ED—E = 0.14, 95% CI [0.05–0.25]), indicating interrelated but distinct constructs. Despite some limitations, particularly the exclusive use of the CBCL, findings highlight the importance of monitoring ED symptoms in individuals with CDS or ADHD, and vice versa. Full article
(This article belongs to the Section Public Health Research)
Show Figures

Figure 1

25 pages, 4087 KB  
Review
Progress in High-Entropy Alloy-Based Microwave Absorbing Materials
by Chengkun Ma and Yuying Zhang
Symmetry 2025, 17(8), 1286; https://doi.org/10.3390/sym17081286 - 10 Aug 2025
Viewed by 572
Abstract
The rational design of high-performance microwave absorbers with broadband coverage, superior attenuation, and environmental durability is critical for addressing challenges in both defense and civilian technologies. High-entropy alloys (HEAs) exhibit atomic-scale asymmetric arrangements, demonstrating exceptional potential for microwave absorption through their unique lattice [...] Read more.
The rational design of high-performance microwave absorbers with broadband coverage, superior attenuation, and environmental durability is critical for addressing challenges in both defense and civilian technologies. High-entropy alloys (HEAs) exhibit atomic-scale asymmetric arrangements, demonstrating exceptional potential for microwave absorption through their unique lattice distortion, high entropy, sluggish diffusion, and “cocktail effect”. This critical review article provides an overview of the progress made in the development and understanding of HEA-based microwave absorbing materials. Initially, the microwave dissipation mechanisms for HEAs were analyzed, where atomic-scale distortions enhance polarization loss and broaden resonance bandwidth. Subsequently, key synthesis techniques like mechanical alloying and carbothermal shock are discussed, highlighting non-equilibrium processing for phase engineering. Building on these foundations, the discussion then progresses to evaluate four principal material design approaches: (1) compositionally-tuned powders, (2) multifunctional core–shell structures, (3) phase-controlled architectures, and (4) two-dimensional/porous configurations, each demonstrating distinct performance advantages. Finally, the discussion concludes by addressing current challenges in quantitative property modeling and industrial scalability while outlining future directions, including machine learning-assisted design and flexible integration, providing comprehensive guidance for developing next-generation high-performance microwave absorbing materials. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

12 pages, 2983 KB  
Article
Rare-Earth-Element-Doped NiCo Layered Double Hydroxides for High-Efficiency Oxygen Evolution
by Zhihan Li, Wenjing Yi, Qingqing Pang, Meng Zhang and Zhongyi Liu
Catalysts 2025, 15(8), 763; https://doi.org/10.3390/catal15080763 - 9 Aug 2025
Viewed by 579
Abstract
The development of low-cost and high-efficiency oxygen evolution reaction (OER) catalysts is essential to enhance the practicality of electrochemical water splitting for green hydrogen production. Layered double hydroxides (LDHs), especially those based on nickel and cobalt, have attracted attention due to their tunable [...] Read more.
The development of low-cost and high-efficiency oxygen evolution reaction (OER) catalysts is essential to enhance the practicality of electrochemical water splitting for green hydrogen production. Layered double hydroxides (LDHs), especially those based on nickel and cobalt, have attracted attention due to their tunable composition, abundant redox-active sites, and earth-abundant constituents. However, their application is hindered by their limited conductivity and sluggish reaction kinetics. In this study, rare-earth-element-doped NiCo LDHs were synthesized directly on nickel foam through a one-step hydrothermal approach to improve the OER activity by modulating the electronic structure and optimizing the surface morphology. Among the representative catalysts, the incorporation of Sm significantly influenced the microstructure and electronic configuration of the catalyst, as confirmed by X-ray diffraction (XRD), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). Electrochemical tests showed that the optimized Sm-NiCo LDH achieved a low overpotential of 172 mV at 10 mA cm−2 and a small Tafel slope of 84 mV dec−1 in 1 M KOH, indicating an expanded electrochemically active surface and improved charge transport. Long-term stability tests further showed its durability. These findings suggest that Sm doping enhances the OER performance by increasing active site exposure and promoting efficient charge transfer, offering a promising strategy for designing rare-earth-modified, non-precious-metal-based OER catalysts. Full article
Show Figures

Figure 1

13 pages, 3182 KB  
Article
Improved Electrochemical Performance Using Transition Metal Doped ZnNi/Carbon Nanotubes as Conductive Additive in Li/CFx Battery
by Fangmin Wang, Jiayin Li, Yuxin Zheng, Xue Dong, Yuzhen Zhao, Zemin He, Manni Li, Lei Lin, Danyang He, Zongcheng Miao, Haibo Zhang, Hua Tan and Jianfeng Huang
Catalysts 2025, 15(8), 758; https://doi.org/10.3390/catal15080758 - 8 Aug 2025
Viewed by 504
Abstract
Lithium/carbon fluoride (Li/CFx) batteries are promising for specialized applications due to their high theoretical capacity (>865 mAh·g−1) and energy density. However, their practical deployment is hindered by the intrinsically low conductivity of CFx and sluggish reaction kinetics. While [...] Read more.
Lithium/carbon fluoride (Li/CFx) batteries are promising for specialized applications due to their high theoretical capacity (>865 mAh·g−1) and energy density. However, their practical deployment is hindered by the intrinsically low conductivity of CFx and sluggish reaction kinetics. While conventional conductive additives improve electron transport, their physical mixing with active materials yields weak interfacial contacts and fails to catalytically facilitate C–F bond cleavage. To address these dual limitations, this study proposes a dual-functional conductive-catalytic additive strategy. We engineered zinc-nickel/carbon nanotube (ZnNi/CNT) composites modified with transition metal dopants (Fe, W, Cu) to integrate conductive networks with nanoscale-dispersed catalytic sites. Fe-doped ZnNi/CNT (ZnFeNiC) emerged as the optimal system, delivering a discharge plateau of 2.45 V and a specific capacity of 810.3 mAh·g−1 at 0.1 C. This performance is attributed to Fe-doping accelerates Li+ diffusion, and promotes reversible Ni redox transitions (Ni2+↔Ni0) that catalyze C–F bond dissociation. This work establishes a design paradigm for high-performance Li/CFx batteries, bridging the gap between conductive enhancement and catalytic activation. Full article
Show Figures

Figure 1

15 pages, 425 KB  
Article
Game-Optimization Modeling of Shadow Carbon Pricing and Low-Carbon Transition in the Power Sector
by Guangzeng Sun, Bo Yuan, Han Zhang, Peng Xia, Cong Wu and Yichun Gong
Energies 2025, 18(15), 4173; https://doi.org/10.3390/en18154173 - 6 Aug 2025
Viewed by 414
Abstract
Under China’s ‘Dual Carbon’ strategy, the power sector plays a central role in achieving carbon neutrality. This study develops a bi-level game-optimization model involving the government, power producers, and technology suppliers to explore the dynamic coordination between shadow carbon pricing and emission trajectories. [...] Read more.
Under China’s ‘Dual Carbon’ strategy, the power sector plays a central role in achieving carbon neutrality. This study develops a bi-level game-optimization model involving the government, power producers, and technology suppliers to explore the dynamic coordination between shadow carbon pricing and emission trajectories. The upper-level model, guided by the government, focuses on minimizing total costs, including emission reduction costs, technological investments, and operational costs, by dynamically adjusting emission targets and shadow carbon prices. The lower-level model employs evolutionary game theory to simulate the adaptive behaviors and strategic interactions among power producers, regulatory authorities, and technology suppliers. Three representative uncertainty scenarios, disruptive technological breakthroughs, major policy interventions, and international geopolitical shifts, are incorporated to evaluate system robustness. Simulation results indicate that an optimistic scenario is characterized by rapid technological advancement and strong policy incentives. Conversely, under a pessimistic scenario with sluggish technology development and weak regulatory frameworks, there are substantially higher transition costs. This research uniquely contributes by explicitly modeling dynamic feedback between policy and stakeholder behavior under multiple uncertainties, highlighting the critical roles of innovation-driven strategies and proactive policy interventions in shaping effective, resilient, and cost-efficient carbon pricing and low-carbon transition pathways in the power sector. Full article
Show Figures

Figure 1

16 pages, 2036 KB  
Article
Investigating a Characteristic Time Lag in the Ionospheric F-Region’s Response to Solar Flares
by Aisling N. O’Hare, Susanna Bekker, Harry J. Greatorex and Ryan O. Milligan
Atmosphere 2025, 16(8), 937; https://doi.org/10.3390/atmos16080937 - 5 Aug 2025
Viewed by 555
Abstract
X-ray and EUV solar flare emission cause increases in the Earth’s dayside ionospheric electron density. While the response of the lower ionosphere to X-rays is well studied, the delay between EUV flare emission and the response of the ionospheric F-region has not been [...] Read more.
X-ray and EUV solar flare emission cause increases in the Earth’s dayside ionospheric electron density. While the response of the lower ionosphere to X-rays is well studied, the delay between EUV flare emission and the response of the ionospheric F-region has not been investigated. Here, we calculate the delays between incident He II 304 Å emission, and the TEC response for 10 powerful solar flares, all of which exhibit delays under 1 min. We assess these delays in relation to multiple solar and geophysical factors, and find a strong negative correlation (∼−0.85) between delay and He II flux change and a moderate negative correlation (∼−0.55) with rate of increase in He II flux. Additionally, flare magnitude and the X-ray-to-He II flux ratio at peak He II emission show strong negative correlations with delay (∼−0.80 and ∼−0.75, respectively). We also identify longer delays for flares occurring closer to the summer solstice. These results may have applications in upper-ionospheric recombination rate calculations, atmospheric modelling, and other solar–terrestrial studies. We highlight the importance of incident EUV and X-ray flux parameters on the response time of the ionospheric electron content, and these findings may also have implications for mitigating disruptions in communication and navigation systems. Full article
(This article belongs to the Special Issue Feature Papers in Upper Atmosphere (2nd Edition))
Show Figures

Figure 1

Back to TopTop