Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (134)

Search Parameters:
Keywords = slot radiation patch

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 10755 KB  
Article
An Integrated Scattering Cancellation and Modification Approach for Broadband RCS Reduction of Array Antenna
by Yakun Liu, Biao Du, Dan Jia and Xuchen Han
Electronics 2026, 15(1), 108; https://doi.org/10.3390/electronics15010108 - 25 Dec 2025
Viewed by 63
Abstract
This paper presents a design method of integrating scattering cancellation with array-level modification techniques for broadband RCS reduction (RCSR) of an array antenna. Taking a circular patch element as an example to explain how the RCSR method is used, an L-shaped feeding structure [...] Read more.
This paper presents a design method of integrating scattering cancellation with array-level modification techniques for broadband RCS reduction (RCSR) of an array antenna. Taking a circular patch element as an example to explain how the RCSR method is used, an L-shaped feeding structure is adopted, with a dielectric substrate of Arlon Diclad 880 (tm). First, two elements with equal scattering amplitude but opposite-phase characteristics are proposed by adjusting the radiation patch dimensions and loading slots on the small patch based on characteristic mode analysis (CMA). Through arrangement of these two elements in a 2 × 2 array configuration, effective RCSR is demonstrated across 3.5–9.5 GHz. To further broaden the RCSR bandwidth, the 2 × 2 array is modified again on the ground plane using CMA. Through the integration of scattering cancellation and array-level modification techniques, a broadband RCSR design of the array antenna is realized across 2.5–11 GHz. To demonstrate the universality of the design method, 2 × 2 and 4 × 4 array antennas are designed, fabricated, and tested. The 2 × 2 array antenna can realize an average RCSR of 10.3 dB and a peak RCSR of 22 dB across 2.5–11 GHz. The 4 × 4 array antenna can realize an average RCSR of 8 dB and a peak RCSR of 23 dB across 2.5–10.5 GHz. Meanwhile, the transmission and radiation performance remains basically unchanged. The 2 × 2 array antenna works from 3.76 GHz to 5.45 GHz (36.7%) and the 4 × 4 array antenna works from 3.80 GHz to 5.30 GHz (31.1%). Their gains are 9.9 dBi for the 2 × 2 array antenna and 15.9 dBi for the 4 × 4 array antenna at 4.5 GHz. Measured results show a good agreement with calculated ones, which verifies the effectiveness and correctness of the design method. Full article
(This article belongs to the Section Microwave and Wireless Communications)
Show Figures

Figure 1

17 pages, 11868 KB  
Article
Dual-Band, Dual-Mode, Circularly Polarized Fully Woven Textile Antenna for Simultaneous Wireless Information and Power Transfer in Wearable Applications
by Miguel Fernández, Carlos Vázquez and Samuel Ver Hoeye
Sensors 2026, 26(1), 30; https://doi.org/10.3390/s26010030 - 19 Dec 2025
Viewed by 232
Abstract
In this work, a dual-band, dual-mode, circularly polarized fully woven textile antenna with capability for Simultaneous Wireless Information and Power Transfer (SWIPT) in wearable applications is presented. The power and the data transfer modes work at 2.4 and 5.4 GHz, respectively. The radiating [...] Read more.
In this work, a dual-band, dual-mode, circularly polarized fully woven textile antenna with capability for Simultaneous Wireless Information and Power Transfer (SWIPT) in wearable applications is presented. The power and the data transfer modes work at 2.4 and 5.4 GHz, respectively. The radiating element is based on a square patch with an asymmetrical U-shaped slot and a chamfered corner. A single-diode rectifier, required for the power transfer mode, is mounted on a carrier thread and then connected to the antenna through a T-match network located at one of the patch corners. This feeding technique simultaneously provides complex conjugate matching to the rectifier and circular polarization. On the other hand, a coaxial probe port is used for the data transfer mode. A prototype was implemented and experimentally characterized. Regarding the power transfer mode, the measured RF-DC conversion efficiency is about 50% when the available power at the rectifier input is −10 dBm, and the axial ratio is smaller than 3 dB. In the data transfer mode, the antenna gain and the axial ratio are 0 and 2 dB, respectively. The experimental results are in good agreement with simulations, validating the proposed structure and design methods, and they are comparable to the state of the art for textile antennas/rectennas. Furthermore, the combination of the fully woven technology and the proposed single-layer layout provides a large degree of integration and robustness, which are valuable characteristics for wearable devices. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

24 pages, 7981 KB  
Article
A Flexible and Compact UWB MIMO Antenna with Dual-Band-Notched Double U-Shaped Slot on Mylar® Polyester Film
by Vanvisa Chutchavong, Wanchalerm Chanwattanapong, Norakamon Wongsin, Paitoon Rakluea, Maleeya Tangjitjetsada, Chawalit Rakluea, Chatree Mahatthanajatuphat and Prayoot Akkaraekthalin
Electronics 2025, 14(17), 3363; https://doi.org/10.3390/electronics14173363 - 24 Aug 2025
Cited by 1 | Viewed by 1916
Abstract
Ultra-wideband (UWB) technology is a crucial facilitator for high-data-rate wireless communication due to its extensive frequency spectrum and low power consumption. Simultaneously, multiple-input multiple-output (MIMO) systems have garnered considerable attention owing to their capability to enhance channel capacity and link dependability. This article [...] Read more.
Ultra-wideband (UWB) technology is a crucial facilitator for high-data-rate wireless communication due to its extensive frequency spectrum and low power consumption. Simultaneously, multiple-input multiple-output (MIMO) systems have garnered considerable attention owing to their capability to enhance channel capacity and link dependability. This article discusses the development of small, high-performance MIMO UWB antennas with mutual suppression capabilities to fully use the benefits of both technologies. Additionally, the suggested antenna features a straightforward design and dual-band-notched characteristics. The antenna structure includes two radiating elements measuring 85 × 45 mm2. These elements use a rectangular patch provided by a coplanar waveguide (CPW). Double U-shaped slots are incorporated into the rectangular patch to introduce dual-band-notched properties, which help mitigate interference from WiMAX and WLAN communication systems. The antenna is fabricated on a Mylar® polyester film substrate of 0.3 mm in thickness, with a dielectric constant of 3.2. According to the measurement results, the suggested antenna functions efficiently across the frequency spectrum of 2.29 to 20 GHz, with excellent impedance matching throughout the bandwidth. Furthermore, it provides dual-band-notched coverage at 3.08–3.8 GHz for WiMAX and 4.98–5.89 GHz for WLAN. The antenna exhibits impressive performance, including favorable radiation attributes, consistent gain, and little mutual coupling (less than −20 dB). Additionally, the envelope correlation coefficient (ECC) is extremely low (ECC < 0.01) across the working bandwidth, which indicates excellent UWB MIMO performance. This paper offers an appropriate design methodology for future flexible and compact UWB MIMO systems that can serve as interference-resilient antennas for next-generation wireless applications. Full article
(This article belongs to the Collection MIMO Antennas)
Show Figures

Figure 1

16 pages, 3042 KB  
Article
A Dual-Circularly Polarized Antenna Array for Space Surveillance: From Design to Experimental Validation
by Chiara Scarselli, Guido Nenna and Agostino Monorchio
Appl. Sci. 2025, 15(15), 8439; https://doi.org/10.3390/app15158439 - 30 Jul 2025
Viewed by 1334
Abstract
This paper presents the design, simulation, and experimental validation of a dual-Circularly Polarized (CP) array antenna to be used as single element for a bistatic radar system, aimed at detecting and tracking objects in Low Earth Orbit (LEO). The antenna operates at 412 [...] Read more.
This paper presents the design, simulation, and experimental validation of a dual-Circularly Polarized (CP) array antenna to be used as single element for a bistatic radar system, aimed at detecting and tracking objects in Low Earth Orbit (LEO). The antenna operates at 412 MHz in reception mode and consists of an array of 19 slotted-patch radiating elements with a cavity-based metallic superstrate, designed to support dual circular polarization. These elements are arranged in a hexagonal configuration, enabling the array structure to achieve a maximum realized gain of 17 dBi and a Side Lobe Level (SLL) below −17 dB while maintaining high polarization purity. Two identical analog feeding networks enable the precise control of phase and amplitude, allowing the independent reception of Right-Hand and Left-Hand Circularly Polarized (RHCP and LHCP) signals. Full-wave simulations and experimental measurements confirm the high performance and robustness of the system, demonstrating its suitability for integration into large-scale Space Situational Awareness (SSA) sensor networks. Full article
(This article belongs to the Special Issue Antennas for Next-Generation Electromagnetic Applications)
Show Figures

Figure 1

15 pages, 4646 KB  
Article
A Wideband Magneto-Electric (ME) Dipole Antenna Enabled by ME Resonance and Aperture-Coupled Excitation
by Hyojin Jang, Seyeon Park, Junghyeon Kim, Kyounghwan Kim and Sungjoon Lim
Micromachines 2025, 16(8), 853; https://doi.org/10.3390/mi16080853 - 24 Jul 2025
Viewed by 1856
Abstract
In this study, we propose a novel wideband aperture-coupled magneto-electric (ME) dipole antenna that achieves enhanced bandwidth by simultaneously leveraging ME resonance and aperture-coupled excitation. Building upon the conventional ME dipole architecture, the antenna integrates a pair of horizontal metal patches forming the [...] Read more.
In this study, we propose a novel wideband aperture-coupled magneto-electric (ME) dipole antenna that achieves enhanced bandwidth by simultaneously leveraging ME resonance and aperture-coupled excitation. Building upon the conventional ME dipole architecture, the antenna integrates a pair of horizontal metal patches forming the electric dipole and a pair of vertical metal patches forming the magnetic dipole. A key innovation is the aperture-coupled feeding mechanism, where electromagnetic energy is transferred from a tapered microstrip line to the dipole structure through a slot etched in the ground plane. This design not only excites the characteristic ME resonances effectively but also significantly improves impedance matching, delivering a markedly broader impedance bandwidth. To validate the proposed concept, a prototype antenna was fabricated and experimentally characterized. Measurements show an impedance bandwidth of 84.48% (3.61–8.89 GHz) for S11 ≤ −10 dB and a maximum in-band gain of 7.88 dBi. The antenna also maintains a stable, unidirectional radiation pattern across the operating band, confirming its potential for wideband applications such as 5G wireless communications. Full article
(This article belongs to the Special Issue RF Devices: Technology and Progress)
Show Figures

Figure 1

14 pages, 3251 KB  
Communication
Design and Optimization of a Miniaturized Wireless Power Transfer System Using Matching Media for Efficiency Enhancement at 1.6 GHz
by Aftab Ahmad, Ashfaq Ahmad and Dong-You Choi
Electronics 2025, 14(14), 2918; https://doi.org/10.3390/electronics14142918 - 21 Jul 2025
Viewed by 1007
Abstract
This paper presents the design and performance analysis of a compact wireless power transfer (WPT) system operating at 1.6 GHz. The transmitter (Tx) structure consists of a circular slot and a circular radiating element, excited from the backside of the substrate, while the [...] Read more.
This paper presents the design and performance analysis of a compact wireless power transfer (WPT) system operating at 1.6 GHz. The transmitter (Tx) structure consists of a circular slot and a circular radiating element, excited from the backside of the substrate, while the receiver (Rx) comprises a slotted patch antenna miniaturized using two vertical vias. The initial power transfer efficiency (PTE), represented by the transmission coefficient S21, was measured to be −31 dB with a 25 mm separation between Tx and Rx. To enhance the efficiency of the system, a dielectric matching media (MM) was introduced between the transmitter and receiver. Through the implementation of the MM, the PTE improved significantly, with S21 increasing to −24 dB. A parametric study was conducted by varying the thickness of the MM from 1 mm to 10 mm and the relative permittivity (εr) from 5 to 30. The results demonstrate that both the thickness and dielectric constant of the MM play a crucial role in improving the coupling and overall efficiency of the WPT system. The optimal configuration was achieved with a matching media thickness of 10 mm and a relative permittivity of 25, which yielded the best improvement in transmission performance. This work offers a practical approach to enhance near-field WPT efficiency using simple matching structures and is particularly relevant for compact and low-profile energy transfer applications. Full article
(This article belongs to the Special Issue Advances in Low Power Circuit and System Design and Applications)
Show Figures

Figure 1

14 pages, 4522 KB  
Article
A Wideband Circularly Polarized Metasurface Antenna with High Gain Using Characteristic Mode Analysis
by Zijie Li, Yuechen Liu, Mengfei Zhao, Weihua Zong and Shi He
Electronics 2025, 14(14), 2818; https://doi.org/10.3390/electronics14142818 - 13 Jul 2025
Cited by 1 | Viewed by 1753
Abstract
This paper proposes a novel high-gain, wideband, circularly polarized (CP) metasurface (MTS) antenna. The antenna is composed of a centrally symmetric MTS and a slot-coupled feeding network. Through characteristic mode analysis (CMA), parasitic patches and mode-suppressing patches are added around the MTS to [...] Read more.
This paper proposes a novel high-gain, wideband, circularly polarized (CP) metasurface (MTS) antenna. The antenna is composed of a centrally symmetric MTS and a slot-coupled feeding network. Through characteristic mode analysis (CMA), parasitic patches and mode-suppressing patches are added around the MTS to enhance the desired modes and suppress the unwanted modes. Subsequently, a feeding network that merges a ring slot with an L-shaped microstrip line is utilized to excite two orthogonal modes with a 90° phase difference, thereby achieving CP and high-gain radiation. Finally, a prototype with dimensions of 0.9λ0 × 0.9λ0 × 0.05λ0 is fabricated and tested. The measured results demonstrate an impedance bandwidth (IBW) of 39.5% (4.92–7.37 GHz), a 3 dB axial ratio bandwidth (ARBW) of 33.1% (5.25–7.33 GHz), and a peak gain of 9.4 dBic at 6.9 GHz. Full article
Show Figures

Figure 1

15 pages, 3428 KB  
Article
An Enhanced Circularly Polarized Textile Antenna Using a Metasurface and Slot-Patterned Ground for Off-Body Communications
by Yong-Deok Kim, Tu Tuan Le and Tae-Yeoul Yun
Micromachines 2025, 16(7), 799; https://doi.org/10.3390/mi16070799 - 9 Jul 2025
Viewed by 912
Abstract
This paper presents an enhanced circularly polarized (CP) all-textile antenna using a metasurface (MS) and slot-patterned ground (SPG) for 5.8 GHz industry, scientific, and medical (ISM)-band applications in off-body communications. The 3 × 3 MS, capable of converting the incident wave into an [...] Read more.
This paper presents an enhanced circularly polarized (CP) all-textile antenna using a metasurface (MS) and slot-patterned ground (SPG) for 5.8 GHz industry, scientific, and medical (ISM)-band applications in off-body communications. The 3 × 3 MS, capable of converting the incident wave into an orthogonal direction with equal magnitude and a 90° phase difference, converts the linearly polarized (LP) wave, radiated from the fundamental radiator with a corner-truncated slot square-patch configuration, into being CP. The SPG, consisting of periodic slots with two different sizes of corner-truncated slots, redistributes the surface current on the ground plane, enhancing the axial ratio bandwidth (ARBW) of the proposed antenna. The novel combination of MS and SPG not only enables the generation and enhancement of CP characteristics but also significantly improves the impedance bandwidth (IBW), gain, and radiation efficiency by introducing additional surface wave resonances. The proposed antenna is composed of a conductive textile and a felt substrate, offering comfort and flexibility for applications where the antenna is placed in close proximity to the human body. The proposed antenna is simulated under bending in various directions, showing exceptionally similar characteristics to a flat condition. The proposed antenna is fabricated and is then verified by measurements in both free space and a human body environment. The measured IBW is 36.3%, while the ARBW is 18%. The measured gain and radiation efficiency are 6.39 dBic and 64.7%, respectively. The specific absorption rate (SAR) is simulated, and the results satisfy both US and EU safety standards. Full article
(This article belongs to the Special Issue Metasurface-Based Devices and Systems)
Show Figures

Figure 1

14 pages, 2184 KB  
Article
A Wideband Circularly Polarized Filtering Dipole Antenna
by Xianjing Lin, Ruishan Huang, Miaowang Zeng and An Yan
Symmetry 2025, 17(7), 1047; https://doi.org/10.3390/sym17071047 - 3 Jul 2025
Viewed by 718
Abstract
This paper presents a circularly polarized (CP) antenna based on crossed dipoles with bandpass-type filtering radiation response. The antenna employs a pair of crossed dipole arms as radiators, which are printed on the upper and lower planes of the substrate. To achieve bandpass [...] Read more.
This paper presents a circularly polarized (CP) antenna based on crossed dipoles with bandpass-type filtering radiation response. The antenna employs a pair of crossed dipole arms as radiators, which are printed on the upper and lower planes of the substrate. To achieve bandpass filtering effects, radiation nulls are introduced on both sides of the passband. By vertically extending the ends of the four dipole arms, a ring-shaped current is formed between adjacent dipoles, generating the upper-band radiation null. Additionally, four parasitic patches are introduced parallel to the ends of the crossed dipole arms, creating another upper-band radiation null, further enhancing the frequency selectivity at the band edges and broadening the axial ratio (AR) bandwidth. Moreover, a square-ring slot is etched on the ground plane to introduce a lower-band radiation null, ultimately achieving a good bandpass filtering response. The proposed wideband CP filtering dipole antenna is implemented and tested. The antenna has a compact size of 0.49λ0× 0.49λ0× 0.16λ0 (where λ0 denotes the wavelength corresponding to the lowest operating frequency). The measured results show that the proposed antenna has an impedance bandwidth of 75% (1.65–3.66 GHz) and an overlapping AR bandwidth of 46.9% (2.25–3.63 GHz). Without additional filtering circuits, the antenna exhibits a stable gain of approximately 7 dB and three radiation nulls, with suppression levels of 20 dB in both the lower and upper stopbands, achieving good bandpass filtering performance. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

10 pages, 2516 KB  
Communication
A Design of a Leaf-Shaped Biomimetic Flexible Wideband Antenna
by Siwei Tan, Linsen Zhang, Qiang Sun, Bo Tang and Qiyang Wang
Electronics 2025, 14(13), 2620; https://doi.org/10.3390/electronics14132620 - 28 Jun 2025
Cited by 1 | Viewed by 741
Abstract
In low-detectability application scenarios such as covert reconnaissance, wildlife behavior observation, and battlefield detection, antennas not only need to have wideband performance but also require good biomimetic camouflage characteristics. To address this issue, this article proposes a leaf-shaped biomimetic flexible wideband antenna. The [...] Read more.
In low-detectability application scenarios such as covert reconnaissance, wildlife behavior observation, and battlefield detection, antennas not only need to have wideband performance but also require good biomimetic camouflage characteristics. To address this issue, this article proposes a leaf-shaped biomimetic flexible wideband antenna. The design concept of the antenna is inspired by the symmetrical vein structure of aquifoliaceae leaves, incorporating vein-like slots into the radiation patch to form multiple inter-slot capacitances, which improves the high-frequency resonance behavior and expands the antenna’s operating bandwidth. In addition, the traditional rectangular grounding plane is replaced with a semi-elliptical shape, optimizing the electric field distribution between the feed line and the radiation part, thereby improving impedance matching. The measured results show that the leaf-shaped antenna achieves a relative bandwidth of 100% (2.4 GHz–7.1 GHz), with its operating frequency bands covering several common communication bands such as n41, n78, n79, and ISM 5.8 GHz, with a maximum gain of 5.4 dBi. Additionally, the leaf-shaped antenna has a good resemblance to the shape of aquifoliaceae leaves. The antenna’s performance remains relatively stable with bending radii of 40 mm, 50 mm, and 60 mm, demonstrating an important role in camouflage application scenarios. Full article
(This article belongs to the Section Microwave and Wireless Communications)
Show Figures

Figure 1

23 pages, 7867 KB  
Article
Compact Waveguide Antenna Design for 77 GHz High-Resolution Radar
by Chin-Hsien Wu, Tsun-Che Huang and Malcolm Ng Mou Kehn
Sensors 2025, 25(11), 3262; https://doi.org/10.3390/s25113262 - 22 May 2025
Cited by 2 | Viewed by 2422
Abstract
Millimeter-wave antennas have become more important recently due to the diversity of applications in 5G and upcoming 6G technologies, of which automotive systems constitute a significant part. Two crucial indices, detection range and angular resolution, are used to distinguish the performance of the [...] Read more.
Millimeter-wave antennas have become more important recently due to the diversity of applications in 5G and upcoming 6G technologies, of which automotive systems constitute a significant part. Two crucial indices, detection range and angular resolution, are used to distinguish the performance of the automotive antenna. Strong gains and narrow beamwidths of highly directive radiation beams afford longer detection range and finer spatial selectivity. Although conventionally used, patch antennas suffer from intrinsic path losses that are much higher when compared to the waveguide antenna. Designed at 77 GHz, presented in this article is an 8-element slot array on the narrow side wall of a rectangular waveguide, thus being readily extendable to planar arrays by adding others alongside while maintaining the element spacing requirement for grating lobe avoidance. Comprising tilted Z-shaped slots for higher gain while keeping constrained within the narrow wall, adjacent ones separated by half the guided wavelength are inclined with reversed tilt angles for cross-polar cancelation. An open-ended external waveguide is placed over each slot for polarization purification. Equivalent circuit models of slotted waveguides aid the design. An approach for sidelobe suppression using the Chebyshev distribution is adopted. Four types of arrays are proposed, all of which show potential for different demands and applications in automotive radar. Prototypes based on designs by simulations were fabricated and measured. Full article
(This article belongs to the Section Communications)
Show Figures

Figure 1

10 pages, 3365 KB  
Article
Design of Small-Sized Spiral Slot PIFA Antenna Used Conformally in Laminated Body Tissues
by Rong Li, Jian Liu, Cuizhen Sun, Wang Yao, Ying Tian and Xiaojun Huang
Sensors 2025, 25(9), 2938; https://doi.org/10.3390/s25092938 - 7 May 2025
Viewed by 1117
Abstract
This paper presents a novel Spiral Slot Planar Inverted-F Antenna (SSPIFA) specifically designed for telemedicine and healthcare applications, featuring compact size, biocompatible safety, and high integration suitability. By replacing the conventional top metal patch of a Planar Inverted-F Antenna (PIFA) with a slot [...] Read more.
This paper presents a novel Spiral Slot Planar Inverted-F Antenna (SSPIFA) specifically designed for telemedicine and healthcare applications, featuring compact size, biocompatible safety, and high integration suitability. By replacing the conventional top metal patch of a Planar Inverted-F Antenna (PIFA) with a slot spiral radiator whose geometry is precisely matched to the ground plane, the proposed antenna achieves a significant size reduction, making it ideal for encapsulation in miniaturized medical devices—a critical requirement for implantation scenarios. Tailored for the ISM 915 MHz band, the antenna is fabricated with a four-turn slot spiral etched on a 30 mm-diameter dielectric substrate, achieving an overall height of 22 mm and an electrically small profile of approximately 0.09λ × 0.06λ (λ: free-space wavelength at the center frequency). Simulation and measurement results demonstrate a −16 dB impedance matching (S11 parameter) at the target frequency, accompanied by a narrow fractional bandwidth of 1% and stable right-hand circular polarization (RHCP). When implanted in a layered biological tissue model (skin, fat, muscle), the antenna exhibits a near-omni directional radiation pattern in the azimuthal plane, with a peak gain of 2.94 dBi and consistent performance across the target band. These characteristics highlight the SSPIFA’s potential for reliable wireless communication in implantable medical systems, balancing miniaturization, radiation efficiency, and biocompatible design. Full article
(This article belongs to the Special Issue Metasurfaces for Enhanced Communication and Radar Detection)
Show Figures

Figure 1

9 pages, 2050 KB  
Article
A Fixed-Frequency Beam-Scanning Leaky-Wave Antenna with Circular Polarization for mmWave Application
by Xingying Huo, Yuchen Ma, Jiayi Liu and Qinghuai Zhou
Photonics 2025, 12(3), 274; https://doi.org/10.3390/photonics12030274 - 17 Mar 2025
Viewed by 1261
Abstract
A period-reconfigurable leaky-wave antenna (LWA) with circular polarization (CP) and fixed-frequency beam scanning (FFBS) is developed in this article. Operating in the Ka-band, this antenna consists of a low-loss groove gap waveguide (GGW) as the slow-wave transmission structure, a circular split-ring patch [...] Read more.
A period-reconfigurable leaky-wave antenna (LWA) with circular polarization (CP) and fixed-frequency beam scanning (FFBS) is developed in this article. Operating in the Ka-band, this antenna consists of a low-loss groove gap waveguide (GGW) as the slow-wave transmission structure, a circular split-ring patch array on the top layer for radiation, and a slotted ground between them for energy coupling. Each slot is independently and electrically controlled by a pair of PIN diodes under the coupling slot. Thus, the period length of the patches can be manipulated and an LWA with CP and FFBS is achieved with −1th spatial harmonics radiated. The simulation results show that the bean-scanning range from 61° to 63° can be realized during the observation frequency band, with good circular polarization and a peak gain of 17.1 dBi, which is verified by the measurement. Full article
Show Figures

Figure 1

16 pages, 9256 KB  
Article
A Novel Design of Dual-Band Circularly Polarized Microstrip Patch Antenna for Unmanned Aerial Vehicle Applications
by Abdulaziz S. Almehmadi and Rabah W. Aldhaheri
Appl. Sci. 2025, 15(4), 1816; https://doi.org/10.3390/app15041816 - 10 Feb 2025
Cited by 1 | Viewed by 3288
Abstract
This article presents a new design for a dual-band circular polarization microstrip patch antenna that can be used in unmanned aerial vehicle (UAV) applications. The proposed antenna consists of an etched circular shape on the radiator side of the antenna with multiple slots [...] Read more.
This article presents a new design for a dual-band circular polarization microstrip patch antenna that can be used in unmanned aerial vehicle (UAV) applications. The proposed antenna consists of an etched circular shape on the radiator side of the antenna with multiple slots and stubs. The bottom side comprises a partial ground plane with multiple horizonal, vertical and square slots. These shapes on the front and bottom sides of the antenna are used to keep the resonant frequencies, impedance bandwidth and axial ratio (AR) at the desired values. The antenna operation is within the WiFi frequency bands, achieving maximum gains of 5.01 and 5.27 dBi at 2.4 and 5 GHz, respectively. Circular polarization (CP) is effectively realized through the implementation of opposite truncated corners and intentionally located stubs. The 3 dB axial ratio bandwidth (ARBW) is significantly enhanced, while a defected ground structure (DGS) is utilized to further improve the bandwidth and gain. The optimized antenna has overall dimensions of 40 × 40 × 1.6 mm3 and demonstrates a wide −10 dB reflection bandwidth of 5.38% (2.396–2.525 GHz) and 9.26% (4.91–5.38 GHz), along with a broad 3 dB axial ratio bandwidth (ARBW) of 380 MHz (2.29–2.67 GHz) and 80 MHz (5–5.08 GHz). The proposed antenna is fabricated using a low-cost FR-4 substrate with a dielectric constant of 4.4 and a loss tangent of 0.02. The fabricated antenna is experimentally characterized to verify the design concept as well as to validate the simulation results. It is found that the experimental measurements correlate very well with the simulation results. A comparison with comparable designs in the literature shows that the proposed antenna provides a higher gain with a relatively reduced size. Full article
Show Figures

Figure 1

36 pages, 55356 KB  
Article
High-Gain Miniaturized Multi-Band MIMO SSPP LWA for Vehicular Communications
by Tale Saeidi, Sahar Saleh, Nick Timmons, Christopher McDaid, Ahmed Jamal Abdullah Al-Gburi, Faroq Razzaz and Saeid Karamzadeh
Technologies 2025, 13(2), 66; https://doi.org/10.3390/technologies13020066 - 4 Feb 2025
Cited by 2 | Viewed by 2480
Abstract
This paper introduces a novel miniaturized, four-mode, semi-flexible leaky wave Multiple-Input Multiple-Output (MIMO) antenna specifically designed to advance vehicular communication systems. The proposed antenna addresses key challenges in 5G low- and high-frequency bands, including millimeter-wave communication, by integrating innovative features such as a [...] Read more.
This paper introduces a novel miniaturized, four-mode, semi-flexible leaky wave Multiple-Input Multiple-Output (MIMO) antenna specifically designed to advance vehicular communication systems. The proposed antenna addresses key challenges in 5G low- and high-frequency bands, including millimeter-wave communication, by integrating innovative features such as a periodic Spoof Surface Plasmon Polariton Transmission Line (SSPP-TL) and logarithmic-spiral-like semi-circular strip patches parasitically fed via orthogonal ports. These design elements facilitate stable impedance matching and wide impedance bandwidths across operating bands, which is essential for vehicular networks. The hybrid combination of leaky wave and SSPP structures, along with a defected wide-slot ground structure and backside meander lines, enhances radiation characteristics by reducing back and bidirectional radiation. Additionally, a naturalization network incorporating chamfered-edge meander lines minimizes mutual coupling and introduces a fourth radiation mode at 80 GHz. Compact in size (14 × 12 × 0.25 mm3), the antenna achieves high-performance metrics, including S11 < −18.34 dB, dual-polarization, peak directive gains of 11.6 dBi (free space) and 14.6 dBi (on vehicles), isolation > 27 dB, Channel Capacity Loss (CCL) < 3, Envelope Correlation Coefficient (ECC) < 0.001, axial ratio < 2.25, and diversity gain (DG) > 9.85 dB. Extensive testing across various vehicular scenarios confirms the antenna’s robustness for Vehicle-to-Vehicle (V2V), Vehicle-to-Pedestrian (V2P), and Vehicle-to-Infrastructure (V2I) communication. Its exceptional performance ensures seamless connectivity with mobile networks and enhances safety through Specific Absorption Rate (SAR) compliance. This compact, high-performance antenna is a transformative solution for connected and autonomous vehicles, addressing critical challenges in modern automotive communication networks and paving the way for reliable and efficient vehicular communication systems. Full article
(This article belongs to the Collection Electrical Technologies)
Show Figures

Figure 1

Back to TopTop