Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (114)

Search Parameters:
Keywords = sloping aquifer

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 27453 KiB  
Article
Natural and Anthropogenic Influence on the Physicochemical Characteristics of Spring Water: The Case Study of Medvednica Mountain (Central Croatia)
by Ivan Martinić and Ivan Čanjevac
Limnol. Rev. 2025, 25(3), 36; https://doi.org/10.3390/limnolrev25030036 - 1 Aug 2025
Viewed by 66
Abstract
During the period from 2020 to 2024, 900 springs were mapped on the southern slopes of Medvednica Mountain Nature Park. Physicochemical parameters (temperature, pH, and electrical conductivity) were measured at 701 of these springs using a portable multimeter, and results were analyzed in [...] Read more.
During the period from 2020 to 2024, 900 springs were mapped on the southern slopes of Medvednica Mountain Nature Park. Physicochemical parameters (temperature, pH, and electrical conductivity) were measured at 701 of these springs using a portable multimeter, and results were analyzed in relation to local lithology and human activities. This research provides the first results of this kind in this study area, aiming to expand the knowledge on local springs and to support the future protection and management of spring ecosystems. Springs on the Medvednica mountain showed substantial variation in measured parameters. The temperature ranged from 3.4 to 18.9 °C, reflecting local hydrological conditions, aquifer characteristics, and seasonal variability. Electrical conductivity (EC) ranged between 41 μS/cm and 2062 μS/cm, determined by both hydrogeological settings and anthropogenic impacts such as winter road salting. The pH values showed moderate variability, remaining mostly within neutral levels. These results emphasize the importance of continued monitoring and further research of Medvednica springs, in order to highlight their importance and to preserve their ecological and hydrological roles. Full article
Show Figures

Graphical abstract

17 pages, 5533 KiB  
Article
Spatial Distribution and Genesis of Fluoride in Groundwater, Qingshui River Plain, China
by Mengnan Zhang, Jiang Wei, Xiaoyan Wang, Tao Ma, Fucheng Li, Jiutan Liu and Zongjun Gao
Water 2025, 17(14), 2134; https://doi.org/10.3390/w17142134 - 17 Jul 2025
Viewed by 228
Abstract
Groundwater in the Qingshui River Plain of southern Ningxia is one of the main water sources for local domestic and agricultural use. However, due to the geological background of the area, 33.94% of the groundwater samples had fluoride concentrations that exceeded the WHO [...] Read more.
Groundwater in the Qingshui River Plain of southern Ningxia is one of the main water sources for local domestic and agricultural use. However, due to the geological background of the area, 33.94% of the groundwater samples had fluoride concentrations that exceeded the WHO drinking water standards. To examine the spatial patterns and formation processes of fluoride in groundwater, researchers gathered 79 rock samples, 2618 soil samples, 21 sediment samples, 138 groundwater samples, and 82 surface water samples across the southern Qingshui River Plain. The collected data were analyzed using statistical approaches and hydrogeochemical diagrams. The findings reveal that fluoride levels in groundwater exhibit a gradual increase from the eastern, western, and southern peripheral sloping plains toward the central valley plain. Vertically, higher fluoride concentrations are found within 100 m of depth. Over a ten-year period, fluoride concentrations have shown minimal variation. Fluoride-rich rocks, unconsolidated sediments, and soils are the primary sources of fluoride in groundwater. The primary mechanisms governing high-fluoride groundwater formation are rock weathering and evaporative concentration, whereas cation exchange adsorption promotes fluoride (F) mobilization into the aquifer. Additional sources of fluoride ions include leaching of fluoride-rich sediments during atmospheric precipitation infiltration and recharge from fluoride-rich surface water. Full article
(This article belongs to the Topic Human Impact on Groundwater Environment, 2nd Edition)
Show Figures

Figure 1

23 pages, 3457 KiB  
Article
Hydrological Implications of Supplemental Irrigation in Cocoa Production Using SWAT Model: Insights from the Upper Offin Sub-Basin, Ghana
by Tewodros T. Assefa, Kekeli K. Gbodji, Gerald Atampugre, Yvonne S. A. Loh, Yared Bayissa and Seifu A. Tilahun
Water 2025, 17(13), 1841; https://doi.org/10.3390/w17131841 - 20 Jun 2025
Viewed by 1053
Abstract
The cocoa production in Ghana, largely reliant on rainfall and undertaken by smallholder farmers, is increasingly endangered by climate change-induced water scarcity. Although supplemental irrigation has been posited as an adaptive measure, its hydrological impacts remain understudied. This current study seeks to bridge [...] Read more.
The cocoa production in Ghana, largely reliant on rainfall and undertaken by smallholder farmers, is increasingly endangered by climate change-induced water scarcity. Although supplemental irrigation has been posited as an adaptive measure, its hydrological impacts remain understudied. This current study seeks to bridge this knowledge gap by employing the Soil and Water Assessment Tool (SWAT) to evaluate the hydrological and water resource implications of supplemental irrigation within the Upper Offin sub-basin of Ghana. High-resolution spatial data and field survey inputs were used to model dry period baseline and irrigation scenarios for cocoa farms with gentle slopes (2%). The results reveal that supplemental irrigation from the shallow aquifer can sustainably support irrigation for up to 5% of the cocoa area (4760 ha) without adversely affecting groundwater flow. Extending irrigation to 30% of the cocoa area (28,540 ha) is feasible with minimal reduction in catchment water yield. This study’s novelty lies in integrating high-resolution data with localized management practices to provide actionable insights for balancing cocoa productivity and water sustainability. The findings offer practical recommendations for policymakers, emphasizing that through solar-powered irrigation the shallow groundwater is a pathway to enhance climate resilience of cocoa productivity. Full article
(This article belongs to the Special Issue Sustainable Water Management in Agricultural Irrigation)
Show Figures

Figure 1

26 pages, 2710 KiB  
Article
From Contamination to Conservation: A Hydrochemical and Isotopic Evaluation of Groundwater Quality in the Semi-Arid Guire Basin (Morocco)
by Hanane Marzouki, Nouayti Nordine, El Mustapha Azzirgue, Joaquim C. G. Esteves da Silva and El Khalil Cherif
Water 2025, 17(11), 1688; https://doi.org/10.3390/w17111688 - 3 Jun 2025
Cited by 2 | Viewed by 694
Abstract
Groundwater is a critical resource in semi-arid regions like Morocco’s Guire Basin, yet pollution and overexploitation threaten its sustainability. This study evaluates the groundwater quality of the Guire aquifer (Eastern High Atlas) using an integrated approach combining hydrochemical, isotopic (δ18O, δ [...] Read more.
Groundwater is a critical resource in semi-arid regions like Morocco’s Guire Basin, yet pollution and overexploitation threaten its sustainability. This study evaluates the groundwater quality of the Guire aquifer (Eastern High Atlas) using an integrated approach combining hydrochemical, isotopic (δ18O, δ2H, δ13C), multivariate statistical, and Geographic Information System (GIS) analyses alongside the Water Quality Index (WQI). Sixteen wells were monitored for physicochemical parameters (pH: 7–7.9; EC: 480–3004 μS/cm; BOD5: 1.03–30.5 mg/L; COD: 10.2–45.75 mg/L) and major ions, revealing widespread exceedances of Moroccan standards for Cl, HCO3, Mg2+, Ca2+, and NH4+. WQI classified 81% of samples as “Poor” to “Unsuitable for drinking” (WQI: 51–537), driven by elevated Cl, Na+, and SO42− from Triassic evaporite dissolution and NO3 (up to 45 mg/L) from agricultural runoff. Stable isotopes (δ18O: −7.73‰ to −5.08‰; δ2H: −66.14‰ to −44.20‰) indicate Atlantic-influenced recharge at 900–2200 m altitudes, with a δ18O-δ2H slope of 5.93 reflecting evaporation during infiltration. Strontium (Sr2+/Ca2+: 0.0024–0.0236) and bromide (Br/Cl: 8.47 × 10−5–9.88 × 10−4) ratios further confirm evaporitic dominance over anthropogenic contamination. This work provides actionable insights for policymakers, advocating for targeted restrictions on fertilizers, enhanced monitoring near evaporite zones, and artificial recharge initiatives. By linking geogenic/anthropogenic contamination to governance strategies, this study advances sustainable groundwater management in semi-arid regions. Full article
(This article belongs to the Section Water Quality and Contamination)
Show Figures

Figure 1

34 pages, 6364 KiB  
Review
Salinity Barriers to Manage Saltwater Intrusion in Coastal Zone Aquifers During Global Climate Change: A Review and New Perspective
by Thomas M. Missimer and Robert G. Maliva
Water 2025, 17(11), 1651; https://doi.org/10.3390/w17111651 - 29 May 2025
Viewed by 1545
Abstract
Climate change will have a significant impact on saltwater intrusion in coastal aquifers between now and 2150. Global sea levels are predicted to rise somewhere between 0.5 and 1.8 m. To mitigate sea level rise, coastal aquifers will require intensive management to avoid [...] Read more.
Climate change will have a significant impact on saltwater intrusion in coastal aquifers between now and 2150. Global sea levels are predicted to rise somewhere between 0.5 and 1.8 m. To mitigate sea level rise, coastal aquifers will require intensive management to avoid inland migration of seawater that could impact water supplies. In addition to reducing pumping of freshwater, the construction and operation of salinity barriers will be required in many locations. Eleven types of salinity barriers were investigated, including physical barriers (curtain wall and grout curtains), infiltration canals filled with freshwater paralleling the coastline, injection of freshwater (treated surface water or wastewater), pumping or abstraction barriers, mixed injection and abstraction barriers, combined abstraction, desalination, and recharge (ADR), ADR hybrid barriers using various water sources including desalinated water and treated wastewater, compressed air barriers, aquifer storage and recovery dual use systems, biofilm barriers, and clay swelling or dispersion barriers. Feasibility of the use of each salinity barrier type was evaluated within the context of the most recent projections of sea level changes. Key factors used in the evaluation included local hydrogeology, land surface slope, water use, the rate of sea level rise, technical feasibility (operational track record), and economics. Full article
(This article belongs to the Special Issue Research on Hydrogeology and Hydrochemistry: Challenges and Prospects)
Show Figures

Figure 1

18 pages, 6257 KiB  
Article
Submarine Groundwater Discharge in the Nice Airport Landslide Area
by Christoph Witt and Achim Kopf
J. Mar. Sci. Eng. 2025, 13(5), 909; https://doi.org/10.3390/jmse13050909 - 3 May 2025
Cited by 1 | Viewed by 476
Abstract
Natural radioactivity was measured and analyzed at the Nice Slope for over a month using radon daughters in order to trace groundwater movement from a coastal aquifer to a nearshore continental shelf. Such groundwater movement may have resulted in submarine groundwater discharge (SGD) [...] Read more.
Natural radioactivity was measured and analyzed at the Nice Slope for over a month using radon daughters in order to trace groundwater movement from a coastal aquifer to a nearshore continental shelf. Such groundwater movement may have resulted in submarine groundwater discharge (SGD) and potentially sediment weakening and slope failure. The relationship among major hydrological parameters (precipitation, Var discharge, groundwater level, salinity and water origin) in the area is demonstrated in this study. Time series analyses also helped to detect tidal fluctuations in freshwater input, highlighting the crucial role SGD plays in the slope stability of the still failure-prone Nice Slope, parts of which collapsed in a tsunamigenic submarine landslide in 1979. Earlier deployments of the underwater mass spectrometer KATERINA showed that SGD is limited to the region of the 1979 landslide scar, suggesting that the spatially heterogenous lithologies do not support widespread groundwater charging. The calculated volumetric activities from groundwater tracing isotopes revealed peaks up to ca. 150 counts 214Bi, which is similar to those measured at other prominent SGD sites along the Mediterranean shoreline. Therefore, this rare long-term radioisotope dataset is a valuable contribution to the collaborative research at the Nice Slope and may not remain restricted to the unconfined landslide scar but may charge permeable sub-bottom areas nearby. Hence, it has to be taken into account for further slope stability studies. Full article
Show Figures

Figure 1

31 pages, 13223 KiB  
Article
An Integrated Approach for Groundwater Potential Prediction Using Multi-Criteria and Heuristic Methods
by Aslı Bozdağ, Zeynep Ünal, Ahmet Emin Karkınlı, Arjumand Bano Soomro, Mohammad Shuaib Mir and Yonis Gulzar
Water 2025, 17(8), 1212; https://doi.org/10.3390/w17081212 - 18 Apr 2025
Cited by 1 | Viewed by 566
Abstract
This research focuses on groundwater mapping for the Çumra and Beyşehir Basins in Konya, a semi-arid region in Turkey that plays a crucial role in agriculture and the food industry. Geographic information systems (GIS), the analytical hierarchical process (AHP), and the multi-population-based differential [...] Read more.
This research focuses on groundwater mapping for the Çumra and Beyşehir Basins in Konya, a semi-arid region in Turkey that plays a crucial role in agriculture and the food industry. Geographic information systems (GIS), the analytical hierarchical process (AHP), and the multi-population-based differential evolution algorithm (MDE) were combined to identify potential groundwater zones. Since direct data on groundwater presence are costly to obtain, thematic maps created from groundwater conditioning factors (such as aquifer, slope, permeability, alluvial soil, soil quality, lithology, precipitation, temperature, salinity, and stone density) can be used to estimate groundwater potential. In this study, these factors were assigned weights using the AHP technique in Model 1 and the MDE technique in Model 2. The TOPSIS (technique for order preference by similarity to ideal solution) method was then employed to simulate groundwater potential, using weights from both techniques. The performance metrics of both models were as follows: Model 1 (RMSE: 114.219, MSE: 13,046.091, and MAE: 99.663) and Model 2 (RMSE: 114.209, MSE: 13,043.785, and MAE: 99.652). The proposed method addresses issues of consistency and bias that might arise from relying on expert opinions through the use of heuristic techniques. Moreover, this approach, which does not require direct data on groundwater availability, enables the creation of accurate predictions while overcoming the challenges of obtaining expensive data in underdeveloped and developing countries. It provides a scientifically sound way to identify and conserve water resources, reducing drilling and other related costs in watershed management and planning. Full article
(This article belongs to the Special Issue Spatial Analysis of Flooding Phenomena: Challenges and Case Studies)
Show Figures

Figure 1

18 pages, 3180 KiB  
Article
Significance in Numerical Simulation and Optimization Method Based on Multi-Indicator Sensitivity Analysis for Low Impact Development Practice Strategy
by Qian Zhang, Mucheng Zhang, Wanjun Jiang, Yizhi Sheng, Yingwei Yuan and Meng Zhang
Appl. Sci. 2025, 15(8), 4165; https://doi.org/10.3390/app15084165 - 10 Apr 2025
Viewed by 401
Abstract
Evaluating the performance of sponge city practices under actual conditions is essential for managing urban stormwater. Existing studies in urban stormwater management have rarely employed numerical simulations to model hydrological processes under actual Three-Dimensional (3D) conditions. In this study, a numerical computational model [...] Read more.
Evaluating the performance of sponge city practices under actual conditions is essential for managing urban stormwater. Existing studies in urban stormwater management have rarely employed numerical simulations to model hydrological processes under actual Three-Dimensional (3D) conditions. In this study, a numerical computational model is developed to simulate the hydrological processes and reveal the temporal and spatial variation of runoff in relation to impervious surfaces and concave herbaceous fields. The applicability of the 3D modules was evaluated using the Chicago rain pattern formula under three recurrence periods: precipitation within one, five, and ten years. The results indicate that the thickness and slope of planting soil are the most sensitive factors regarding sponge city performance, with comprehensive factors of 0.754 and 0.461. The optimal structural parameters of the concave herbaceous field were obtained as follows: aquifer height, 200 mm; planting soil thickness, 600 mm; planting soil slope, 1.5%; planting soil porosity, 0.45; overflow pipeline porosity, 0.3. The flood peak reduction rate, delay rate, and total runoff control rate were the best in a recurrence period of 5a, with 88.93%, 51.11%, and 78.76%, respectively. This study offers technical and conformed methodological support for simulating water quantity processes in sponge cities, and for the control of waterlogging and the recycling of runoff. Full article
Show Figures

Figure 1

27 pages, 10829 KiB  
Article
Potentiality Delineation of Groundwater Recharge in Arid Regions Using Multi-Criteria Analysis
by Heba El-Bagoury, Mahmoud H. Darwish, Sedky H. A. Hassan, Sang-Eun Oh, Kotb A. Attia and Hanaa A. Megahed
Water 2025, 17(5), 766; https://doi.org/10.3390/w17050766 - 6 Mar 2025
Viewed by 1069
Abstract
This study integrates morphometric analysis, remote sensing, and GIS with the analytical hierarchical process (AHP) to identify high potential groundwater recharge areas in Wadi Abadi, Egyptian Eastern Desert, supporting sustainable water resource management. Groundwater recharge primarily comes from rainfall and Nile River water, [...] Read more.
This study integrates morphometric analysis, remote sensing, and GIS with the analytical hierarchical process (AHP) to identify high potential groundwater recharge areas in Wadi Abadi, Egyptian Eastern Desert, supporting sustainable water resource management. Groundwater recharge primarily comes from rainfall and Nile River water, particularly for Quaternary aquifers. The analysis focused on the Quaternary and Nubian Sandstone aquifers, evaluating 16 influencing parameters, including elevation, slope, rainfall, lithology, soil type, and land use/land cover (LULC). The drainage network was derived from a 30 m-resolution Digital Elevation Model (DEM). ArcGIS 10.8 was used to classify the basin into 13 sub-basins, with layers reclassified and weighted using a raster calculator. The groundwater potential map revealed that 24.95% and 29.87% of the area fall into very low and moderate potential categories, respectively, while low, high, and very high potential zones account for 18.62%, 17.65%, and 8.91%. Data from 41 observation wells were used to verify the potential groundwater resources. In this study, the ROC curve was applied to assess the accuracy of the GWPZ models generated through different methods. The validation results indicated that approximately 87% of the wells corresponded accurately with the designated zones on the GWPZ map, confirming its reliability. Over-pumping in the southwest has significantly lowered water levels in the Quaternary aquifer. This study provides a systematic approach for identifying groundwater recharge zones, offering insights that can support resource allocation, well placement, and aquifer sustainability in arid regions. This study also underscores the importance of recharge assessment for shallow aquifers, even in hyper-arid environments. Full article
(This article belongs to the Special Issue Advance in Groundwater in Arid Areas)
Show Figures

Figure 1

17 pages, 5550 KiB  
Article
Groundwater Tracer Tests as a Supporting Method for Interpreting the Complex Hydrogeological Environment of the Urbas Landslide in NW Slovenia
by Luka Serianz and Mitja Janža
Appl. Sci. 2025, 15(5), 2707; https://doi.org/10.3390/app15052707 - 3 Mar 2025
Viewed by 855
Abstract
This study investigates groundwater flow patterns in a landslide area above the settlement of Koroška Bela in NW Slovenia using a series of tracer tests with sodium chloride (NaCl) and fluorescein (uranine). The tracer experiments, using a combination of pumping tests and continuous [...] Read more.
This study investigates groundwater flow patterns in a landslide area above the settlement of Koroška Bela in NW Slovenia using a series of tracer tests with sodium chloride (NaCl) and fluorescein (uranine). The tracer experiments, using a combination of pumping tests and continuous groundwater observations, reveal two distinct groundwater flow horizons within the landslide body: a prevailing shallower flow within highly permeable gravel layers and a slower deep flow in the weathered low-permeability clastic layers. Uranine injections suggest longer retentions, indicating complex hydrogeological conditions. Groundwater is recharged by the infiltration of precipitation and subsurface inflow from the upper-lying carbonate rocks. In the upper landslide, highly permeable gravel layers accelerate flow, especially during heavy rainfall, while downstream interactions between permeable gravel and less permeable clastic materials create local aquifers and springs. These groundwater dynamics significantly influence landslide stability, as rapid infiltration during intense precipitation events can lead to transient increases in pore water pressure, reducing shear strength and potentially triggering slope movement. Meanwhile, slow deep flows contribute to prolonged saturation of critical failure surfaces, which may weaken the landslide structure over time. The study emphasizes the region’s geological heterogeneity and landslide stability, providing valuable insights into the groundwater dynamics of this challenging environment. By integrating hydrogeological assessments with engineering measures, the study provides supportive information for mitigating landslide risks and improving groundwater management strategies. Full article
(This article belongs to the Section Earth Sciences)
Show Figures

Figure 1

12 pages, 2781 KiB  
Article
Quantile-Based Approach for Improving the Identification of Preferential Groundwater Networks
by Massimiliano Schiavo
Water 2025, 17(2), 282; https://doi.org/10.3390/w17020282 - 20 Jan 2025
Cited by 7 | Viewed by 1072
Abstract
Identifying preferential paths for groundwater flow is one of the basics for understanding aquifer systems. Shallow free-surface aquifers often have flow directions (locally) similar to those of their surface counterparts, especially if surface and groundwater bodies are directly connected. This work proposes a [...] Read more.
Identifying preferential paths for groundwater flow is one of the basics for understanding aquifer systems. Shallow free-surface aquifers often have flow directions (locally) similar to those of their surface counterparts, especially if surface and groundwater bodies are directly connected. This work proposes a novel and simple framework to improve the identification of Preferential Groundwater Networks in free-surface aquifers. This is possible by proposing a quantile mapping procedure borrowed from stochastic hydrology, usually employed to adjust rainfall simulations (for example, achieved via climate models) upon available gauge-based data. This well-known procedure is applied to redistribute simulations of the aquifer bottom elevation for a real case study in Lombardy, Northern Italy. The result is a spatial redistribution of the elevation quantiles that leads to aquifer bottom surfaces carved with Preferential Groundwater Networks that are spatially consistent with the surface river network. This way, groundwater flow directions are redistributed to mimic their surface counterparts, but aquifer bottom elevations and slopes are far gentler as they were previously simulated from borehole data information. Furthermore, the errors in the spatial reframing of borehole data and the discrepancy of variogram structures before and after the redistribution procedure are not dramatically dissimilar. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

20 pages, 5123 KiB  
Article
Research on the Patterns of Seawater Intrusion in Coastal Aquifers Induced by Sea Level Rise Under the Influence of Multiple Factors
by Xinzhe Cao, Qiaona Guo and Wenheng Liu
Water 2024, 16(23), 3457; https://doi.org/10.3390/w16233457 - 1 Dec 2024
Cited by 2 | Viewed by 1510
Abstract
In the context of global warming, rising sea levels are intensifying seawater intrusion in coastal areas. Due to the complex hydrodynamic conditions and increasing groundwater over-extraction in these regions, understanding the patterns of seawater intrusion is crucial for effective prevention and control. This [...] Read more.
In the context of global warming, rising sea levels are intensifying seawater intrusion in coastal areas. Due to the complex hydrodynamic conditions and increasing groundwater over-extraction in these regions, understanding the patterns of seawater intrusion is crucial for effective prevention and control. This study employed a sandbox model to investigate both vertical and horizontal seawater intrusion into a coastal unconfined aquifer with an impermeable dam under varying conditions of sea level rise, coastal slope, and groundwater pumping rate. Additionally, a two-dimensional SEAWAT model was developed to simulate seawater intrusion under these experimental conditions. The results indicate that sea level rise significantly increases the extent and intensity of seawater intrusion. When sea level rises by 3.5 cm, 4.5 cm, and 5.5 cm, the areas of the saline wedge reached 362 cm2, 852 cm2, and 1240 cm2, respectively, with both horizontal and vertical intrusion ranges expanding considerably. When groundwater extraction is superimposed, vertical seawater intrusion is notably intensified. At an extraction rate of 225 cm3/min, the vertical intrusion areas corresponding to sea level rises of 3.5 cm, 4.5 cm, and 5.5 cm were 495 cm2, 1035 cm2, and 1748 cm2, respectively, showing significant expansion, and this expansion becomes more pronounced as sea levels rise. In contrast, slope variations had a significant impact only on vertical seawater intrusion. As the slope decreased from tanα = 1/5 to tanα = 1/9, the upper saline wedge area expanded from 525 cm2 to 846 cm2, considerably increasing the vertical intrusion range. Finally, the combined effects of groundwater extraction and sea level rise exacerbate seawater intrusion more severely than either factor alone, presenting greater challenges for coastal water resource management. Full article
(This article belongs to the Section Oceans and Coastal Zones)
Show Figures

Figure 1

12 pages, 2799 KiB  
Article
Groundwater Dynamics in the Middle Brahmaputra River Basin: A Case Study of Shallow Aquifers in Inner Guwahati City, Assam, India
by Smitakshi Medhi, Runti Choudhury, Pallavi Sharma and Bibhash Nath
Geographies 2024, 4(4), 675-686; https://doi.org/10.3390/geographies4040037 - 4 Nov 2024
Viewed by 1737
Abstract
This study investigated the hydrogeological characteristics and groundwater dynamics in the shallow aquifer zones of inner Guwahati city, Assam, India. Sixteen dug wells spread across the city, specifically used for domestic purposes, were selected for this study. Additionally, ten wells were selected for [...] Read more.
This study investigated the hydrogeological characteristics and groundwater dynamics in the shallow aquifer zones of inner Guwahati city, Assam, India. Sixteen dug wells spread across the city, specifically used for domestic purposes, were selected for this study. Additionally, ten wells were selected for trend analysis. The borehole lithology reveals predominant compositions of clay, sand, and granules, with thin clay cappings indicating significant groundwater potential. Depth-to-water level analysis revealed varying water levels across the study area, with shallow levels in the northern and western regions and gradual deepening toward the eastern and southern parts. The groundwater flow directions show nonuniform patterns and reflect the influence of topography and domestic pumping in urban residential zones. The general groundwater flow direction is toward the Brahmaputra River. Trends in groundwater level, assessed using the Mann–Kendall test and Sen’s slope, suggest both falling and rising trends across different locations, indicating complex groundwater dynamics influenced by factors such as recharge, extraction, and topography. However, the long-term rainfall data indicate no significant trend over the studied period, suggesting limited natural influence on groundwater level trends. These findings may contribute to a comprehensive understanding of groundwater dynamics in the study area and are essential for sustainable water resource management and mitigation of groundwater depletion risks. Full article
Show Figures

Figure 1

22 pages, 5697 KiB  
Article
Groundwater Geochemistry in the Karst-Fissure Aquifer System of the Qinglian River Basin, China
by Lanfang Xu, Zehua Ni, Wenlong Huang, Shiliang Tu, Shoujun Jiang, Zhuohan Zhuang, Libo Zhao and Hongyu Yang
Hydrology 2024, 11(11), 184; https://doi.org/10.3390/hydrology11110184 - 30 Oct 2024
Cited by 2 | Viewed by 1651
Abstract
The Qinglian River plays a significant role in China’s national water conservation security patterns. To clarify the relationship between hydrogeochemical properties and groundwater quality in this karst-fissure aquifer system, drilling data, hydrochemical parameters, and δ2H and δ18O values of [...] Read more.
The Qinglian River plays a significant role in China’s national water conservation security patterns. To clarify the relationship between hydrogeochemical properties and groundwater quality in this karst-fissure aquifer system, drilling data, hydrochemical parameters, and δ2H and δ18O values of groundwater were analyzed. Multiple indications (Piper diagram, Gibbs diagram, Na+-normalized molar ratio diagram, chloro-alkaline index 1, mineral saturation index, and principal component analysis) were used to identify the primary sources of chemicals in the groundwater. Silicate weathering, oxidation of pyrite and chlorite, cation exchange reactions, and precipitation are the primary sources of dissolved chemicals in the igneous-fissure water. The most relevant parameters in the karst water are possibly from anthropogenic activities, and other chemicals are mostly derived from the dissolution of calcite and dolomite and cation exchange reactions. Notably, the chemical composition of the deep karst water from the karst basin is mainly influenced by the weathering of carbonate and cation exchange reactions and is less affected by human activities. The hydrogeochemical properties of groundwater in the karst hyporheic zone are influenced by the dissolution of carbonates and silicates, evaporation, and the promotion effect of dissolution of anorthite or Ca-containing minerals. Moreover, the smallest slope of the groundwater line from the karst hyporheic zone among all groundwater groups revealed that the mixing effects of evaporation, isotope exchange in water–rock interaction or deep groundwater recharge in the karst hyporheic zone are the strongest. The methods used in this study contribute to an improved understanding of the hydrogeochemical processes that occur in karst-fissure water systems and can be useful in zoning management and decision-making for groundwater resources. Full article
(This article belongs to the Section Surface Waters and Groundwaters)
Show Figures

Figure 1

21 pages, 7689 KiB  
Article
Assessment of Potential Aquifer Recharge Zones in the Locumba Basin, Arid Region of the Atacama Desert Using Integration of Two MCDM Methods: Fuzzy AHP and TOPSIS
by Víctor Pocco, Arleth Mendoza, Samuel Chucuya, Pablo Franco-León, Germán Huayna, Eusebio Ingol-Blanco and Edwin Pino-Vargas
Water 2024, 16(18), 2643; https://doi.org/10.3390/w16182643 - 18 Sep 2024
Cited by 3 | Viewed by 1990
Abstract
Natural aquifers used for human consumption are among the most important resources in the world. The Locumba basin faces significant challenges due to its limited water availability for the local population. In this way, the search for possible aquifer recharge zones is crucial [...] Read more.
Natural aquifers used for human consumption are among the most important resources in the world. The Locumba basin faces significant challenges due to its limited water availability for the local population. In this way, the search for possible aquifer recharge zones is crucial work for urban development in areas that have water scarcity. To evaluate this problem, this research proposes the use of the hybrid Fuzzy AHP methodology in conjunction with the TOPSIS algorithm to obtain a potential aquifer recharge map. Ten factors that influence productivity and capacity in an aquifer were implemented, which were subjected to Fuzzy AHP to obtain their weighting. Using the TOPSIS algorithm, the delineation of the most favorable areas with high recharge potential was established. The result shows that the most influential factors for recharge are precipitation, permeability, and slopes, which obtained the highest weights of 0.22, 0.19, and 0.17, respectively. In parallel, the TOPSIS result highlights the potential recharge zones distributed in the Locumba basin, which were classified into five categories: very high (13%), high (28%), moderate (15%), low (28%), and very low (16%). The adapted methodology in this research seeks to be the first step toward effective water resource management in the study area. Full article
Show Figures

Figure 1

Back to TopTop