Assessment of Potential Aquifer Recharge Zones in the Locumba Basin, Arid Region of the Atacama Desert Using Integration of Two MCDM Methods: Fuzzy AHP and TOPSIS
Abstract
:1. Introduction
2. Study Area
2.1. Climate and Hydrology
2.2. Hydrogeology
3. Materials and Methods
3.1. Aquifer Recharge Influencing Factors
3.1.1. Lithology
3.1.2. Permeability
3.1.3. Precipitation
3.1.4. Stream Power Index
3.1.5. Slope
3.1.6. Geomorphology
3.1.7. Topographic Roughness Index
3.1.8. LU/LC
3.1.9. NDVI
3.1.10. Soil Type
3.2. Fuzzy Analytic Hierarchy Process
3.3. Technique for Order of Preference by Similarity to Ideal Solution
4. Results
4.1. Multi-Criteria Decision Analysis and Criteria Weighting
4.2. Aquifer Recharge Potential Map
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Makonyo, M.; Msabi, M.M. Identification of Groundwater Potential Recharge Zones Using GIS-Based Multi-Criteria Decision Analysis: A Case Study of Semi-Arid Midlands Manyara Fractured Aquifer, North-Eastern Tanzania. Remote Sens. Appl. Soc. Environ. 2021, 23, 100544. [Google Scholar] [CrossRef]
- Ifediegwu, S.I. Assessment of Groundwater Potential Zones Using GIS and AHP Techniques: A Case Study of the Lafia District, Nasarawa State, Nigeria. Appl. Water Sci. 2022, 12, 10. [Google Scholar] [CrossRef]
- Shandu, I.D.; Atif, I. An Integration of Geospatial Modelling and Machine Learning Techniques for Mapping Groundwater Potential Zones in Nelson Mandela Bay, South Africa. Water 2023, 15, 3447. [Google Scholar] [CrossRef]
- Sheikha-BagemGhaleh, S.; Babazadeh, H.; Rezaie, H.; Sarai-Tabrizi, M. The Effect of Climate Change on Surface and Groundwater Resources Using WEAP-MODFLOW Models. Appl. Water Sci. 2023, 13, 121. [Google Scholar] [CrossRef]
- Magesh, N.S.; Chandrasekar, N.; Soundranayagam, J.P. Delineation of Groundwater Potential Zones in Theni District, Tamil Nadu, Using Remote Sensing, GIS and MIF Techniques. Geosci. Front. 2012, 3, 189–196. [Google Scholar] [CrossRef]
- Houghton, J.T.; Ding, Y.; Griggs, D.J.; Noguer, M.; Van Der Linden, P.J.; Dai, X.; Maskell, K.; Johnson, C.A. Climate Change 2001: The Scientific Basis; Cambridge University Press: Cambridge, UK, 2001. [Google Scholar]
- Nafchi, R.F.; Yaghoobi, P.; Vanani, H.R.; Ostad-Ali-Askari, K.; Nouri, J.; Maghsoudlou, B. Correction to: Eco-Hydrologic Stability Zonation of Dams and Power Plants Using the Combined Models of SMCE and CEQUALW2. Appl. Water Sci. 2022, 12, 55. [Google Scholar] [CrossRef]
- Naghibi, S.A.; Pourghasemi, H.R.; Pourtaghi, Z.S.; Rezaei, A. Groundwater Qanat Potential Mapping Using Frequency Ratio and Shannon’s Entropy Models in the Moghan Watershed, Iran. Earth Sci. Inform. 2015, 8, 171–186. [Google Scholar] [CrossRef]
- Lapworth, D.; Boving, T.; Brauns, B.; Dottridge, J.; Hynds, P.; Kebede, S.; Kreamer, D.; Misstear, B.; Mukherjee, A.; Re, V.; et al. Groundwater Quality: Global Challenges, Emerging Threats and Novel Approaches. Hydrogeol. J. 2023, 31, 15–18. [Google Scholar] [CrossRef]
- Pino-Vargas, E.; Espinoza-Molina, J.; Chávarri-Velarde, E.; Quille-Mamani, J.; Ingol-Blanco, E. Impacts of Groundwater Management Policies in the Caplina Aquifer, Atacama Desert. Water 2023, 15, 2610. [Google Scholar] [CrossRef]
- Stein, B.A.; Staudt, A.; Cross, M.S.; Dubois, N.S.; Enquist, C.; Griffis, R.; Hansen, L.J.; Hellmann, J.J.; Lawler, J.J.; Nelson, E.J.; et al. Preparing for and Managing Change: Climate Adaptation for Biodiversity and Ecosystems. Front. Ecol. Environ. 2013, 11, 502–510. [Google Scholar] [CrossRef]
- Pino, E.; Tacora, P.; Steenken, A.; Alfaro, L.; Valle, A.; Chávarri, E.; Ascencios, D.; Mejía, J. Efecto de Las Características Ambientales y Geológicas Sobre La Calidad Del Agua En La Cuenca Del Río Caplina, Tacna, Perú. Tecnol. Cienc. Agua 2017, 08, 77–99. [Google Scholar] [CrossRef]
- Pino, E.; Ramos, L.; Avalos, O.; Tacora, P.; Chávarri, E.; Angulo, O.; Ascensios, D.; Mejía, J. Factores Que Inciden En El Agotamiento y La Contaminación Por Intrusión Marina En El Acuífero Costero de La Yarada, Tacna, Perú. Tecnol. Cienc. Agua 2019, 10, 177–213. [Google Scholar] [CrossRef]
- Edwin Pino, V.; Eduardo Chávarri, V.; Lia Ramos, F. Crisis de Gobernanza y Gobernabilidad y Sus Implicancias En El Uso Inadecuado Del Agua Subterránea, Caso Acuífero Costero de La Yarada, Tacna, Perú. Idesia 2018, 36, 77–85. [Google Scholar]
- Garreaud, R.; Vuille, M.; Clement, A.C. The Climate of the Altiplano: Observed Current Conditions and Mechanisms of Past Changes. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2003, 194, 5–22. [Google Scholar] [CrossRef]
- Garreaud, R.D.; Molina, A.; Farias, M. Andean Uplift, Ocean Cooling and Atacama Hyperaridity: A Climate Modeling Perspective. Earth Planet. Sci. Lett. 2010, 292, 39–50. [Google Scholar] [CrossRef]
- Mejia, A. Déficit Hídrico En El Distrito De Locumba—Tacna; Centro de Operaciones de Emergencia Nacional—COEN: Tacna, Peru, 2023.
- Edwin Pino, V. Conflictos Por El Uso Del Agua En Una Región Árida: Caso Tacna, Perú. Diálogo Andin. 2021, 65, 405–415. [Google Scholar] [CrossRef]
- Pino Vargas, E.M.; Huayna, G. Spatial and Temporal Evolution of Olive Cultivation Due to Pest Attack, Using Remote Sensing and Satellite Image Processing. Sci. Agropecu. 2022, 13, 149–157. [Google Scholar] [CrossRef]
- Edwin Pino, V.; Isaac Montalván, D.; Alissa Vera, M.; Lia Ramos, F. La Conductancia Estomática y Su Relación Con La Temperatura Foliar y Humedad Del Suelo En El Cultivo Del Olivo (Olea Europaea L.), En Periodo de Maduración de Frutos, En Zonas Áridas.La Yarada, Tacna, Perú. Idesia 2019, 37, 55–64. [Google Scholar] [CrossRef]
- Machaca-Pillaca, R.; Pino-Vargas, E.; Ramos-Fernández, L.; Quille-Mamani, J.; Torres-Rua, A. Estimación de La Evapotranspiración Con Fines de Riego En Tiempo Real de Un Olivar a Partir de Imágenes de Un Drone En Zonas Áridas, Caso La Yarada, Tacna, Perú. Idesia 2022, 40, 55–65. [Google Scholar] [CrossRef]
- Quille-Mamani, J.A.; Huayna, G.; Pino-Vargas, E.; Chucuya-Mamani, S.; Vera-Barrios, B.; Ramos-Fernandez, L.; Espinoza-Molina, J.; Cabrera-Olivera, F. Spatio-Temporal Evolution of Olive Tree Water Status Using Land Surface Temperature and Vegetation Indices Derived from Landsat 5 and 8 Satellite Imagery in Southern Perú. Agriculture 2024, 14, 662. [Google Scholar] [CrossRef]
- Vera, A.; Pino-Vargas, E.; Verma, M.P.; Chucuya, S.; Chávarri, E.; Canales, M.; Torres-Martínez, J.A.; Mora, A.; Mahlknecht, J. Hydrodynamics, Hydrochemistry, and Stable Isotope Geochemistry to Assess Temporal Behavior of Seawater Intrusion in the La Yarada Aquifer in the Vicinity of Atacama Desert, Tacna, Perú. Water 2021, 13, 3161. [Google Scholar] [CrossRef]
- Chucuya, S.; Vera, A.; Pino-Vargas, E.; Steenken, A.; Mahlknecht, J.; Montalván, I. Hydrogeochemical Characterization and Identification of Factors Influencing Groundwater Quality in Coastal Aquifers, Case: La Yarada, Tacna, Perú. Int. J. Environ. Res. Public Health 2022, 19, 2815. [Google Scholar] [CrossRef] [PubMed]
- Lanchipa-Ale, T.; Cruz-Baltuano, A.; Molero-Yañez, N.; Chucuya, S.; Vera-Barrios, B.; Pino-Vargas, E. Assessment of Greywater Reuse in a University Building in a Hyper-Arid Region: Quantity, Quality, and Social Acceptance. Sustainability 2024, 16, 3088. [Google Scholar] [CrossRef]
- Edwin Pino, V. El Acuífero Costero La Yarada, Después de 100 Años de Explotación Como Sustento de Una Agricultura En Zonas Áridas: Una Revisión Histórica. Idesia 2019, 37, 39–45. [Google Scholar] [CrossRef]
- Edwin Pino, V.; Lia Ramos, F.; Jesús Mejía, M.; Eduardo Chávarri, V.; David Ascensios, T. Medidas de Mitigación Para El Acuífero Costero La Yarada, Un Sistema Sobreexplotado En Zonas Áridas. Idesia 2020, 38, 21–31. [Google Scholar] [CrossRef]
- Narvaez-Montoya, C.; Torres-Martínez, J.A.; Pino-Vargas, E.; Cabrera-Olivera, F.; Loge, F.J.; Mahlknecht, J. Predicting Adverse Scenarios for a Transboundary Coastal Aquifer System in the Atacama Desert (Perú/Chile). Sci. Total Environ. 2022, 806, 150386. [Google Scholar] [CrossRef]
- Ekmekcioğlu, Ö.; Koc, K.; Özger, M. Stakeholder Perceptions in Flood Risk Assessment: A Hybrid Fuzzy AHP-TOPSIS Approach for Istanbul, Turkey. Int. J. Disaster Risk Reduct. 2021, 60, 102327. [Google Scholar] [CrossRef]
- Koc, K.; Ekmekcioğlu, Ö.; Özger, M. An Integrated Framework for the Comprehensive Evaluation of Low Impact Development Strategies. J. Environ. Manag. 2021, 294, 113023. [Google Scholar] [CrossRef] [PubMed]
- Mohamed Mouhoumed, R.; Ekmekcioğlu, Ö.; Özger, M. A Hybrid MCDA Approach for Delineating Sites Suitable for Artificial Groundwater Recharge Using Drywells. J. Hydrol. 2023, 620, 129387. [Google Scholar] [CrossRef]
- Mouhoumed, R.M.; Ekmekcioğlu, Ö.; Başakın, E.E.; Özger, M. Integrated Fuzzy AHP-TOPSIS Model for Assessing Managed Aquifer Recharge Potential in a Hot Dry Region: A Case Study of Djibouti at a Country Scale. Water 2023, 15, 2534. [Google Scholar] [CrossRef]
- Saaty, T.L. Axiomatic Foundation of the Analytic Hierarchy Process. Manag. Sci. 1986, 32, 841–855. [Google Scholar] [CrossRef]
- Saaty, T.L. What Is the Analytic Hierarchy Process? In Mathematical Models for Decision Support; Springer: Berlin/Heidelberg, Germany, 1988; pp. 109–121. [Google Scholar]
- Liu, Y.; Eckert, C.M.; Earl, C. A Review of Fuzzy AHP Methods for Decision-Making with Subjective Judgements. Expert Syst. Appl. 2020, 161, 113738. [Google Scholar] [CrossRef]
- Önüt, S.; Soner, S. Transshipment Site Selection Using the AHP and TOPSIS Approaches under Fuzzy Environment. Waste Manag. 2008, 28, 1552–1559. [Google Scholar] [CrossRef] [PubMed]
- Siabi, E.K.; Dile, Y.T.; Kabo-Bah, A.T.; Amo-Boateng, M.; Anornu, G.K.; Akpoti, K.; Vuu, C.; Donkor, P.; Mensah, S.K.; Incoom, A.B.M.; et al. Machine Learning Based Groundwater Prediction in a Data-Scarce Basin of Ghana. Appl. Artif. Intell. 2022, 36, 2138130. [Google Scholar] [CrossRef]
- Israil, M.; Al-hadithi, M.; Singhal, D.C. Application of a Resistivity Survey and Geographical Information System (GIS) Analysis for Hydrogeological Zoning of a Piedmont Area, Himalayan Foothill Region, India. Hydrogeol. J. 2006, 14, 753–759. [Google Scholar] [CrossRef]
- Singh, L.K.; Jha, M.K.; Chowdary, V.M. Multi-Criteria Analysis and GIS Modeling for Identifying Prospective Water Harvesting and Artificial Recharge Sites for Sustainable Water Supply. J. Clean. Prod. 2017, 142, 1436–1456. [Google Scholar] [CrossRef]
- Chávarri, E.; Pino, E.; Espíritu, G.; Gonzales, J.; Villanueva, E. Evaluación de Recursos Hídricos Cuencas de Los Ríos Locumba y Sama; Autoridad Nacional del Agua—ANA: Tacna, Peru, 2010. [Google Scholar]
- Rosazza, E. Plan de Gestión de Los Recursos Hídricos de La Cuenca Caplina—Locumba; Autoridad Nacional del Agua—ANA: Tacna, Peru, 2013. [Google Scholar]
- Lazarow, N.; Hopkins, R.; Peña-Arancibia, J.; Chiew, F.; Tapsuwan, S.; Zheng, H.; Penton, D.; Rojas, R.; Rocha, A.G.; Albisetti, M.; et al. Desarrollo De Un Plan De Gestión De Sequías Para Una Cuenca Árida Altamente Regulada Con Usuarios Multisectoriales Caplina Locumba, Tacna, Peru; Commonwealth Scientific and Industrial Research Organisation—CSIRO: Tacna, Peru, 2018. [Google Scholar]
- Cotrina, G.; Olarte, Y.; Peña, F. Hidrogeología de La Cuenca Del Río Locumba—Región Tacna—[Boletín H 2]; Instituto Geológico, Minero y Metalúrgico—INGEMMET: Lima, Peru, 2009.
- Geng, D. Implementando Desigualdades: Reprodução de Desigualdades Na Implementação de Políticas Públicas; Instituto de Pesquisa Econômica Aplicada: Rio de Janeiro, Brazil, 2019.
- Moura-Bueno, J.M.; Dalmolin, R.S.D.; ten Caten, A.; Ruiz, L.F.C.; Ramos, P.V.; Dotto, A.C. Assessment of Digital Elevation Model for Digital Soil Mapping in a Watershed with Gently Undulating Topography. Rev. Bras. Ciência Solo 2016, 40, e0150022. [Google Scholar] [CrossRef]
- Freeze, R.A.; Cherry, J. Groundwater; Prentice-Hall: Hoboken, NJ, USA, 1979. [Google Scholar]
- Patra, S.; Mishra, P.; Mahapatra, S.C. Delineation of Groundwater Potential Zone for Sustainable Development: A Case Study from Ganga Alluvial Plain Covering Hooghly District of India Using Remote Sensing, Geographic Information System and Analytic Hierarchy Process. J. Clean. Prod. 2018, 172, 2485–2502. [Google Scholar] [CrossRef]
- Ikirri, M.; Boutaleb, S.; Ibraheem, I.M.; Abioui, M.; Echogdali, F.Z.; Abdelrahman, K.; Id-Belqas, M.; Abu-Alam, T.; El Ayady, H.; Essoussi, S.; et al. Delineation of Groundwater Potential Area Using an AHP, Remote Sensing, and GIS Techniques in the Ifni Basin, Western Anti-Atlas, Morocco. Water 2023, 15, 1436. [Google Scholar] [CrossRef]
- Grinevskii, S.O. The Effect of Topography on the Formation of Groundwater Recharge. Moscow Univ. Geol. Bull. 2014, 69, 47–52. [Google Scholar] [CrossRef]
- Nadiri, A.A.; Sedghi, Z.; Khatibi, R.; Gharekhani, M. Mapping Vulnerability of Multiple Aquifers Using Multiple Models and Fuzzy Logic to Objectively Derive Model Structures. Sci. Total Environ. 2017, 593–594, 75–90. [Google Scholar] [CrossRef] [PubMed]
- Prapanchan, V.N.; Subramani, T.; Karunanidhi, D. GIS and Fuzzy Analytical Hierarchy Process to Delineate Groundwater Potential Zones in Southern Parts of India. Groundw. Sustain. Dev. 2024, 25, 101110. [Google Scholar] [CrossRef]
- Ahmed, A.A.; Shabana, A.R. Integrating of Remote Sensing, GIS and Geophysical Data for Recharge Potentiality Evaluation in Wadi El Tarfa, Eastern Desert, Egypt. J. African Earth Sci. 2020, 172, 103957. [Google Scholar] [CrossRef]
- Helbich, M. Spatiotemporal Contextual Uncertainties in Green Space Exposure Measures: Exploring a Time Series of the Normalized Difference Vegetation Indices. Int. J. Environ. Res. Public Health 2019, 16, 852. [Google Scholar] [CrossRef] [PubMed]
- Xu, G.; Su, X.; Zhang, Y.; You, B. Identifying Potential Sites for Artificial Recharge in the Plain Area of the Daqing River Catchment Using GIS-Based Multi-Criteria Analysis. Sustainability 2021, 13, 3978. [Google Scholar] [CrossRef]
- Saaty, T.L. A Scaling Method for Priorities in Hierarchical Structures. J. Math. Psychol. 1977, 15, 234–281. [Google Scholar] [CrossRef]
- Pocco, V.; Chucuya, S.; Huayna, G.; Ingol-Blanco, E.; Pino-Vargas, E. A Multi-Criteria Decision-Making Technique Using Remote Sensors to Evaluate the Potential of Groundwater in the Arid Zone Basin of the Atacama Desert. Water 2023, 15, 1344. [Google Scholar] [CrossRef]
- Chang, D.-Y. Applications of the Extent Analysis Method on Fuzzy AHP. Eur. J. Oper. Res. 1996, 95, 649–655. [Google Scholar] [CrossRef]
- Zadeh, L.A. Fuzzy Sets. Inf. Control 1965, 8, 338–353. [Google Scholar] [CrossRef]
- Vahidnia, M.H.; Alesheikh, A.A.; Alimohammadi, A. Hospital Site Selection Using Fuzzy AHP and Its Derivatives. J. Environ. Manage. 2009, 90, 3048–3056. [Google Scholar] [CrossRef]
- Hwang, C.-L.; Yoon, K. Multiple Attribute Decision Making; Springer: Berlin/Heidelberg, Germany, 1981; Volume 186. [Google Scholar]
- Chatterjee, K.; Pamucar, D.; Zavadskas, E.K. Evaluating the Performance of Suppliers Based on Using the R’AMATEL-MAIRCA Method for Green Supply Chain Implementation in Electronics Industry. J. Clean. Prod. 2018, 184, 101–129. [Google Scholar] [CrossRef]
- Ahmad, N.; Qahmash, A. Implementing Fuzzy AHP and FUCOM to Evaluate Critical Success Factors for Sustained Academic Quality Assurance and ABET Accreditation. PLoS ONE 2020, 15, e0239140. [Google Scholar] [CrossRef] [PubMed]
- Ki, I.; Chakroun, H.; Koussoube, Y.; Zouari, K. Assessment of Aquifer Recharge Potential Using Remote Sensing, GIS and the Analytical Hierarchy Process (AHP) Combined with Hydrochemical and Isotope Data (Tamassari Basin, Burkina Faso). Water 2023, 15, 650. [Google Scholar] [CrossRef]
- Aluko, O.E.; Igwe, O. An Integrated Geomatics Approach to Groundwater Potential Delineation in the Akoko-Edo Area, Nigeria. Environ. Earth Sci. 2017, 76, 240. [Google Scholar] [CrossRef]
- Mengistu, T.D.; Chang, S.W.; Kim, I.-H.; Kim, M.-G.; Chung, I.-M. Determination of Potential Aquifer Recharge Zones Using Geospatial Techniques for Proxy Data of Gilgel Gibe Catchment, Ethiopia. Water 2022, 14, 1362. [Google Scholar] [CrossRef]
- Chávarri, E.; Rodríguez, E.; Vásquez, F.; Zumarán, C.; Suarez, W. Estudio de Los Recursos Hídricos Superficiales y Subterráneos e Infraestructura Hidraúlica Para El Aprovechamiento En La Cuenca Del Río Locumba, En La Región de Tacna; Autoridad Nacional del Agua—ANA: Tacna, Peru, 2017. [Google Scholar]
- Kazakis, N. Delineation of Suitable Zones for the Application of Managed Aquifer Recharge (MAR) in Coastal Aquifers Using Quantitative Parameters and the Analytical Hierarchy Process. Water 2018, 10, 804. [Google Scholar] [CrossRef]
- Khan, M.Y.A.; ElKashouty, M.; Zaidi, F.K.; Egbueri, J.C. Mapping Aquifer Recharge Potential Zones (ARPZ) Using Integrated Geospatial and Analytic Hierarchy Process (AHP) in an Arid Region of Saudi Arabia. Remote Sens. 2023, 15, 2567. [Google Scholar] [CrossRef]
- Mallick, J.; Khan, R.A.; Ahmed, M.; Alqadhi, S.D.; Alsubih, M.; Falqi, I.; Hasan, M.A. Modeling Groundwater Potential Zone in a Semi-Arid Region of Aseer Using Fuzzy-AHP and Geoinformation Techniques. Water 2019, 11, 2656. [Google Scholar] [CrossRef]
- Papadopoulos, C.; Spiliotis, M.; Pliakas, F.; Gkiougkis, I.; Kazakis, N.; Papadopoulos, B. Hybrid Fuzzy Multi-Criteria Analysis for Selecting Discrete Preferable Groundwater Recharge Sites. Water 2022, 14, 107. [Google Scholar] [CrossRef]
- Sahoo, S.K.; Goswami, S.S. A Comprehensive Review of Multiple Criteria Decision-Making (MCDM) Methods: Advancements, Applications, and Future Directions. Decis. Mak. Adv. 2023, 1, 25–48. [Google Scholar] [CrossRef]
Data | Year | Product Identifier |
---|---|---|
SRTM | 2000 | ’NASA/NASADEM_HGT/001’ 2000-02-11T00:00:00– 2000-02-22T00:00:00 |
Sentinel-2 10 m Land use/Land cover | 2020 | ’projects/sat-io/open-datasets/landcover/ESRI_Global-LULC_10m’ |
Terraclimate | 2020 | IDAHO_EPSCOR/TERRACLIMATE/202001 |
IDAHO_EPSCOR/TERRACLIMATE/202002 | ||
IDAHO_EPSCOR/TERRACLIMATE/202003 | ||
IDAHO_EPSCOR/TERRACLIMATE/202004 | ||
IDAHO_EPSCOR/TERRACLIMATE/202005 | ||
IDAHO_EPSCOR/TERRACLIMATE/202006 | ||
IDAHO_EPSCOR/TERRACLIMATE/202007 | ||
IDAHO_EPSCOR/TERRACLIMATE/202008 | ||
IDAHO_EPSCOR/TERRACLIMATE/202009 | ||
IDAHO_EPSCOR/TERRACLIMATE/2020010 | ||
IDAHO_EPSCOR/TERRACLIMATE/2020011 | ||
IDAHO_EPSCOR/TERRACLIMATE/2020012 | ||
Landsat-8 | 2024 | LANDSAT/LC08/C02/T1_L2/LC08_002072_20240330 |
LANDSAT/LC08/C02/T1_L2/LC08_002073_20240204 |
Cluster | Criteria | Classes | Rating |
---|---|---|---|
Aquifer | Lithology | Alluvial Sediment | 5 |
Fluvio-glacial Deposits | 3 | ||
Intrusive Rocks | 1 | ||
Sedimentary Rocks | 4 | ||
Volcanic Rocks | 1 | ||
Sedimentary Volcano | 2 | ||
Permeability | High Permeability | 4 | |
Medium Permeability | 3 | ||
Low Permeability | 2 | ||
Very Low Permeability | 1 | ||
Precipitation | 0–88.5 | 1 | |
88.5–233.5 | 2 | ||
233.5–381.1 | 3 | ||
381.1–506.5 | 4 | ||
506.5–627 | 5 | ||
SPI | −13.8–−5.3 | 5 | |
−5.3–−1.1 | 4 | ||
−1.1–0.8 | 3 | ||
0.8–3.7 | 2 | ||
3.7–14.3 | 1 | ||
Topography | Slope | 0–6 | 5 |
6–13 | 4 | ||
13–22 | 3 | ||
22–31 | 2 | ||
31–75 | 1 | ||
Geomorphology | Wetland | 4 | |
Hill | 3 | ||
Complex Volcano | 2 | ||
Lagoon | 1 | ||
Mountains | 1 | ||
Moraine | 4 | ||
Plains | 5 | ||
TRI | 0.11–0.38 | 1 | |
0.38–0.46 | 2 | ||
0.46–0.53 | 3 | ||
0.53–0.61 | 4 | ||
0.61–0.88 | 5 | ||
Surface | LULC | Water Bodies | 1 |
Crops | 5 | ||
Shrubs | 3 | ||
Urban Zone | 2 | ||
Bare Soil | 1 | ||
NDVI | −0.53–1 | 1 | |
0.1–0.25 | 2 | ||
0.25–0.37 | 3 | ||
0.37–0.42 | 4 | ||
0.42–0.58 | 5 | ||
Soil Type | FLe- RGe | 3 | |
LPd-ANz | 2 | ||
LPd-R | 4 | ||
LPq-R | 1 | ||
SCh-LPe | 5 |
Linguistic Variables | Importance | ) | ) |
---|---|---|---|
Equally import | 1 | (1,1,1) | (1,1,1) |
Intermediate value | 2 | (1,2,3) | (1/3,1/2,1) |
Moderately important | 3 | (2,3,4) | (1/4,1/3,1/2) |
Intermediate value | 4 | (3,4,5) | (1/5,1/4,1/3) |
Important | 5 | (4,5,6) | (1/6,1/5,1/4) |
Intermediate value | 6 | (5,6,7) | (1/7,1/6,1/5) |
Very important | 7 | (6,7,8) | (1/8,1/7,1/6) |
Intermediate value | 8 | (7,8,9) | (1/9,1/8,1/7) |
Extremely important | 9 | (9,9,9) | (1/9,1/9,1/9) |
N | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
RI | 0 | 0 | 0.52 | 0.89 | 1.11 | 1.25 | 1.35 | 1.40 | 1.45 | 1.49 |
CLUSTERS | Aquifer | Topography | Surface | |||
---|---|---|---|---|---|---|
Aquifer | (1,1,1) | (1,2,3) | (3,4,5) | |||
Topography | (1/3,1/2,1) | (1,1,1) | (2,3,4) | |||
Surface | (1/5,1/4,1/3) | (1/4,1/3,1/2) | (1,1,1) | |||
C1: AQUIFER | Lithology | Permeability | Precipitation | SPI | ||
Lithology | (1,1,1) | (1/4,1/3,1/2) | (1/3,1/2,1) | (3,4,5) | ||
Permeability | (2,3,4) | (1,1,1) | (1,1,1) | (4,5,6) | ||
Precipitation | (1,2,3) | (1,1,1) | (1,1,1) | (5,6,7) | ||
SPI | (1/5,1/4,1/3) | (1/6,1/5,1/4) | (1/7,1/6,1/5) | (1,1,1) | ||
C2: TOPOGRAPHY | Slope | Geomorphology | Roughness | |||
Slope | (1,1,1) | (1,1,1) | (5,6,7) | |||
Geomorphology | (1/3,1/2,1) | (1,1,1) | (4,5,6) | |||
Roughness | (1/7,1/6,1/5) | (1/6, 1/5,1/4) | (1,1,1) | |||
C3: SURFACE | LULC | NDVI | Soil | |||
LULC | (1,1,1) | (1/4,1/3,1/2) | (1,1,1) | |||
NDVI | (2,3,4) | (1,1,1) | (1,2,3) | |||
Soil | (1,1,1) | (1/3,1/2,1) | (1,1,1) |
Cluster | Weight | Criteria | L.W. | G.W. | Rank |
---|---|---|---|---|---|
Aquifer | 0.5666 | Lithology | 0.2004 | 0.1135 | 5 |
Permeability | 0.3326 | 0.1885 | 2 | ||
Precipitation | 0.3867 | 0.2191 | 1 | ||
SPI | 0.0803 | 0.0455 | 7 | ||
Topography | 0.3199 | Slope | 0.5507 | 0.1762 | 3 |
Geomorphology | 0.3632 | 0.1162 | 4 | ||
Roughness | 0.0862 | 0.0276 | 9 | ||
Surface | 0.1135 | LULC | 0.2089 | 0.0237 | 10 |
NDVI | 0.5430 | 0.0617 | 6 | ||
Soil | 0.2481 | 0.0282 | 8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pocco, V.; Mendoza, A.; Chucuya, S.; Franco-León, P.; Huayna, G.; Ingol-Blanco, E.; Pino-Vargas, E. Assessment of Potential Aquifer Recharge Zones in the Locumba Basin, Arid Region of the Atacama Desert Using Integration of Two MCDM Methods: Fuzzy AHP and TOPSIS. Water 2024, 16, 2643. https://doi.org/10.3390/w16182643
Pocco V, Mendoza A, Chucuya S, Franco-León P, Huayna G, Ingol-Blanco E, Pino-Vargas E. Assessment of Potential Aquifer Recharge Zones in the Locumba Basin, Arid Region of the Atacama Desert Using Integration of Two MCDM Methods: Fuzzy AHP and TOPSIS. Water. 2024; 16(18):2643. https://doi.org/10.3390/w16182643
Chicago/Turabian StylePocco, Víctor, Arleth Mendoza, Samuel Chucuya, Pablo Franco-León, Germán Huayna, Eusebio Ingol-Blanco, and Edwin Pino-Vargas. 2024. "Assessment of Potential Aquifer Recharge Zones in the Locumba Basin, Arid Region of the Atacama Desert Using Integration of Two MCDM Methods: Fuzzy AHP and TOPSIS" Water 16, no. 18: 2643. https://doi.org/10.3390/w16182643
APA StylePocco, V., Mendoza, A., Chucuya, S., Franco-León, P., Huayna, G., Ingol-Blanco, E., & Pino-Vargas, E. (2024). Assessment of Potential Aquifer Recharge Zones in the Locumba Basin, Arid Region of the Atacama Desert Using Integration of Two MCDM Methods: Fuzzy AHP and TOPSIS. Water, 16(18), 2643. https://doi.org/10.3390/w16182643