Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (28)

Search Parameters:
Keywords = slip-critical connection

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 6812 KiB  
Article
Experimental Behavior and FE Modeling of Buckling Restrained Braced Frame with Slip-Critical Connection
by Huseyin Sogut, Ramazan Ozcelik, Kagan Sogut and Ferhat Erdal
Appl. Sci. 2025, 15(10), 5626; https://doi.org/10.3390/app15105626 - 18 May 2025
Cited by 1 | Viewed by 592
Abstract
This paper examines the hysteretic behavior of the buckling restrained braces (BRBs) in the steel frame. Both experimental and finite element (FE) studies were conducted. The experimental results showed that the well-detailed buckling restrained braced frame (BRBF) withstood significant drift demands, while the [...] Read more.
This paper examines the hysteretic behavior of the buckling restrained braces (BRBs) in the steel frame. Both experimental and finite element (FE) studies were conducted. The experimental results showed that the well-detailed buckling restrained braced frame (BRBF) withstood significant drift demands, while the BRB exhibited significant yield without severe damage. Although the BRB inside the steel frame was subjected to 2.69% strain of the CP under the axial compression demands, the local and global deformations were not observed. The FE model was developed and validated. The numerical investigations of hysteretic behavior of the BRBF in the literature are generally focused on the friction between the core plate (CP) and the casing member (CM). The results suggest that the behavior of the BRBF is significantly affected not only by the friction between CP and CM but also by the pretension load on the bolts and the friction between the contact surfaces of steel plates of slip-critical connections in the steel frame. The FE analysis showed that pretension loads of 35 kN and 75 kN gave accurate predictions for cyclic responses of BRBF under tension and compression demands, respectively. Moreover, the FE predictions were in good agreement with the test results when the friction coefficient is 0.05 between CP and CM and it is 0.20 between steel plates. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

25 pages, 12513 KiB  
Article
Script-Based Material and Geometrical Modeling of Steel–Concrete Composite Connections for Comprehensive Analysis Under Varied Configurations
by Dániel Gosztola, Péter Grubits, János Szép and Majid Movahedi Rad
Appl. Sci. 2025, 15(6), 3095; https://doi.org/10.3390/app15063095 - 12 Mar 2025
Viewed by 616
Abstract
The behavior of steel–concrete composite structures is significantly influenced by the efficiency of the shear connections that link the two materials. This research examines the performance of stud shear connectors, with an emphasis on analyzing the effect of different geometric design parameters. A [...] Read more.
The behavior of steel–concrete composite structures is significantly influenced by the efficiency of the shear connections that link the two materials. This research examines the performance of stud shear connectors, with an emphasis on analyzing the effect of different geometric design parameters. A computational model was created utilizing Python 3.13 to enable thorough digital monitoring of the influence of these parameters on the structural performance of composite connections. Developed within the ABAQUS framework, the model integrates geometric nonlinearity and the Concrete Damage Plasticity (CDP) approach to achieve detailed simulation of structural behavior. Essential design aspects, including stud diameter, stud height, head dimensions, and spacing in both longitudinal and transverse directions, were analyzed. The Python-based parametric model allows for easy modification of design parameters, ensuring efficiency and minimizing modeling errors. The significance of stud diameter changes was analyzed in accordance with Eurocode standards and previous studies. It was found that stud length has a reduced effect on structural performance, particularly when considering the concrete properties used in bridge construction, where compressive failure of the concrete zone is more critical at lower concrete strengths. Additional factors, such as stud head dimensions, were investigated but were found to have minimal effect on the behavior of steel–concrete composite connections. Longitudinal stud spacing emerged as a critical factor influencing structural performance, with optimal results achieved at a spacing of 13d. Spacings of 2d, 3d, and 4d demonstrated overlapping effects, leading to significant performance reductions, as indicated by comparisons of ultimate load and force–displacement responses. For transverse spacing, closer stud arrangements proved effective in reducing the likelihood of slip at the steel–concrete interface, enhancing composite action, and lowering stress concentrations. Additionally, reducing the transverse distance between studs allowed for the use of more shear connectors, increasing redundancy and enhancing performance, especially with grouped-stud connectors (GSCs). Full article
Show Figures

Figure 1

19 pages, 81265 KiB  
Article
Structure and Evolution of Multi-Trend Faults in BZ19-6 Buried Hill of the Bohai Bay Basin, Eastern China
by Rui Lou, Yonghe Sun, Fujie Jiang, Yumin Liu and Tian Gao
J. Mar. Sci. Eng. 2024, 12(10), 1727; https://doi.org/10.3390/jmse12101727 - 1 Oct 2024
Cited by 2 | Viewed by 1003
Abstract
Defining the structure and evolution of multi-trend faults is critical for analyzing the accumulation of hydrocarbons in buried hills. Based on high-resolution seismic and drilling data, the structural characteristics and evolutionary mechanism of multi-trend faults were investigated in detail through the structural analysis [...] Read more.
Defining the structure and evolution of multi-trend faults is critical for analyzing the accumulation of hydrocarbons in buried hills. Based on high-resolution seismic and drilling data, the structural characteristics and evolutionary mechanism of multi-trend faults were investigated in detail through the structural analysis theory and quantitative calculations of fault activity, allowing us to determine the implication that fault evolution exerts on hydrocarbon accumulation in the BZ19-6 buried hill. There are four kinds of strike faults developed on the buried hill: SN-, NNE-, NE–ENE-, and nearly EW-trending, which experienced the Mesozoic Indosinian, Yanshan, and Cenozoic Himalayan tectonic movements. During the Indosinian, the BZ19-6 was in a SN-oriented compressional setting, with active faults composed of SN-trending strike-slip faults (west branch of the Tanlu fault zone) and near EW-trending thrust faults (Zhang-peng fault zone). During the Yanshanian, the NNE-trending normal faults were formed under the WNW–ESE tensile stress field. Since the Himalayan period, the BZ19-6 buried hill has evolved into the rifting stage. In rifting stage Ⅰ, all of the multi-trend pre-existing faults were reactivated, and the EW-trending thrust faults became normal faults due to negative inversion. In rifting stage II, a large number of NE–ENE-trending normal faults were newly formed in the NW–SE-oriented extensional setting, which made the structure pattern more complicated. In rifting stage III, the buried hill entered the post-rift stage, with only part of the NNE- and NE–ENE-trending faults continuously active. Multi-trend faults are the result of the combination of various multi-phase stress fields and pre-existing structures, which have great influence on the formation of tectonic fractures and then control the distribution of high-quality reservoirs in buried hills. The fractures controlled by the NNE- and EW-trending faults have higher density and scale, and fractures controlled by NE–ENE trending faults have stronger connectivity and effectiveness. The superposition of multi-trend faults is the favorable distribution of high-quality reservoirs and the favorable accumulation area of hydrocarbon. Full article
(This article belongs to the Section Geological Oceanography)
Show Figures

Figure 1

30 pages, 31803 KiB  
Article
An NMPC-Based Integrated Longitudinal and Lateral Vehicle Stability Control Based on the Double-Layer Torque Distribution
by Xu Bai, Yinhang Wang, Mingchen Jia, Xinchen Tan, Liqing Zhou, Liang Chu and Di Zhao
Sensors 2024, 24(13), 4137; https://doi.org/10.3390/s24134137 - 26 Jun 2024
Cited by 1 | Viewed by 2069
Abstract
With the ongoing promotion and adoption of electric vehicles, intelligent and connected technologies have been continuously advancing. Electrical control systems implemented in electric vehicles have emerged as a critical research direction. Various drive-by-wire chassis systems, including drive-by-wire driving and braking systems and steer-by-wire [...] Read more.
With the ongoing promotion and adoption of electric vehicles, intelligent and connected technologies have been continuously advancing. Electrical control systems implemented in electric vehicles have emerged as a critical research direction. Various drive-by-wire chassis systems, including drive-by-wire driving and braking systems and steer-by-wire systems, are extensively employed in vehicles. Concurrently, unavoidable issues such as conflicting control system objectives and execution system interference emerge, positioning integrated chassis control as an effective solution to these challenges. This paper proposes a model predictive control-based longitudinal dynamics integrated chassis control system for pure electric commercial vehicles equipped with electro–mechanical brake (EMB) systems, centralized drive, and distributed braking. This system integrates acceleration slip regulation (ASR), a braking force distribution system, an anti-lock braking system (ABS), and a direct yaw moment control system (DYC). This paper first analyzes and models the key components of the vehicle. Then, based on model predictive control (MPC), it develops a controller model for integrated stability with double-layer torque distribution. The required driving and braking torque for each wheel are calculated according to the actual and desired motion states of the vehicle and applied to the corresponding actuators. Finally, the effectiveness of this strategy is verified through simulation results from Matlab/Simulink. The simulation shows that the braking deceleration of the braking condition is increased by 32% on average, and the braking distance is reduced by 15%. The driving condition can enter the smooth driving faster, and the time is reduced by 1.5 s~5 s. The lateral stability parameters are also very much improved compared with the uncontrolled vehicles. Full article
(This article belongs to the Special Issue Integrated Control and Sensing Technology for Electric Vehicles)
Show Figures

Figure 1

11 pages, 5089 KiB  
Article
Deformation Mechanisms of Magnesium Alloys with Rare-Earth and Zinc Additions under Plane Strain Compression
by Xun Zeng and Sangbong Yi
Materials 2024, 17(1), 33; https://doi.org/10.3390/ma17010033 - 21 Dec 2023
Cited by 2 | Viewed by 1809
Abstract
The introduction of rare-earth (RE) elements into magnesium (Mg) alloys can significantly improve their ductility, thereby extending the applications of Mg products. However, the impacts of their chemical composition, temperature and processing methods on the mechanical properties of Mg products are highly debatable. [...] Read more.
The introduction of rare-earth (RE) elements into magnesium (Mg) alloys can significantly improve their ductility, thereby extending the applications of Mg products. However, the impacts of their chemical composition, temperature and processing methods on the mechanical properties of Mg products are highly debatable. In this work, we systematically investigate the deformation behaviors of Mg–Nd and Mg–Zn–Nd alloys using electron backscattered diffraction (EBSD) characterization. The samples were deformed to different stress levels to study the microstructure and texture development during channel die compression. The results reveal that the room temperature formability of the Mg–Nd alloy can be enhanced with the addition of Zn. This is attributed to the higher activities of prismatic slip and tensile twinning in the Mg–Zn–Nd alloy as compared to the binary counterpart, facilitating strain accommodation. When the strain increases, the growing and merging of the same twin variant rapidly consumes the parent grain, which is responsible for the texture modification from the transverse to the basal direction. At elevated temperatures, the twinning is suppressed in both alloys due to the decreased critical resolved shear stress of the non-basal slip systems. Additionally, an obvious sigmoidal yielding phenomenon is observed due to the multiple activation of the different deformation modes. These findings offer valuable insights into the evolution of the microstructure and texture during plane strain compression, elucidating the connections between material chemical composition, processing and mechanical properties, which are important for the advancement of Mg alloy application. Full article
(This article belongs to the Special Issue Mechanical Properties and Corrosion Behavior of Advanced Materials)
Show Figures

Figure 1

18 pages, 3855 KiB  
Article
Numerical Prediction of Refrigerant Oil Two-Phase Flow from Scroll Compressor Discharge to the Suction Side via Back Pressure Chamber
by Vladimir D. Stevanovic, Milan M. Petrovic, Stojan Cucuz, Sanja Milivojevic and Milica Ilic
Processes 2024, 12(1), 6; https://doi.org/10.3390/pr12010006 - 19 Dec 2023
Cited by 2 | Viewed by 1541
Abstract
Oil lubricates the contact between the orbiting and stationary scroll in the refrigerant scroll compressor, while the sealing between the scrolls is achieved through the refrigerant vapour pressure in the sealed back pressure chamber. The back pressure should be adjusted using the refrigerant [...] Read more.
Oil lubricates the contact between the orbiting and stationary scroll in the refrigerant scroll compressor, while the sealing between the scrolls is achieved through the refrigerant vapour pressure in the sealed back pressure chamber. The back pressure should be adjusted using the refrigerant oil two-phase flow from the oil separator at the compressor discharge to the back pressure chamber and the refrigerant oil flow from the back pressure chamber to the compressor suction side. Both of the flows are conducted through connecting tubes with corresponding high-pressure and low-pressure nozzles with small diameters. Models for predicting the refrigerant oil critical and subcritical flows through the nozzles were developed and applied in enable the prediction of the back pressure. The models are original, because the slip between the oil and the refrigerant as well as the refrigerant solubility in the oil are taken into account. The critical flow model is validated against the experimental data that are available in the literature. The back pressure is predicted by equating the mass flow rates of refrigerant and oil two-phase mixtures through the high- and low-pressure nozzles. The results show that the critical flow takes place through the high-pressure nozzle, while the subcritical flow through the low-pressure nozzle can also exist in cases with a small pressure difference between the back pressure chamber and the compressor suction side. The refrigerant solubility in the oil has a small influence on the critical and subcritical refrigerant oil mixture mass flow rates, while the influence on the back pressure is more pronounced. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

19 pages, 7113 KiB  
Article
Seismic Performance Evaluation and Retrofit Strategy of Overhead Gas-Insulated Transmission Lines
by Xiaoxuan Li, Qiang Xie and Jiayi Wen
Buildings 2023, 13(12), 2968; https://doi.org/10.3390/buildings13122968 - 28 Nov 2023
Cited by 3 | Viewed by 1284
Abstract
The overhead gas-insulated transmission line (GIL) in ultra-high-voltage converter stations, distinct from traditional buried pipelines, demands a thorough investigation into its seismic behavior due to limitations in existing codes. A refined finite element model is established, considering internal structure, slip between various parts, [...] Read more.
The overhead gas-insulated transmission line (GIL) in ultra-high-voltage converter stations, distinct from traditional buried pipelines, demands a thorough investigation into its seismic behavior due to limitations in existing codes. A refined finite element model is established, considering internal structure, slip between various parts, and the relative displacement at the internal conductor joint. Seismic analysis reveals the vulnerability of the GIL at the corner of the pipeline height change, with two failure modes: housing strength failure and internal conductor displacement exceeding the limit. Furthermore, the acceleration amplification coefficient of the support generally exceeds 2.0. Two retrofit methods, namely increasing the fundamental frequency of all supports and fixing the connections between all supports and the housing, have been proposed. The results indicate the effectiveness of both methods in reducing the relative displacement. Fixing all the supports effectively reduces the stress, whereas the other one yields the opposite effect. The seismic performance of a GIL is determined not by the dynamic amplification of supports, but by the control of relative displacement between critical sections, specifically influenced by the angular deformation of the pipeline’s first-order translational vibration mode along the line direction. Seismic vulnerability analysis reveals a reduction of over 50% in the failure probability of the GIL after the retrofit compared to before the retrofit, with the PGA exceeding 0.4 g. Full article
Show Figures

Figure 1

11 pages, 1142 KiB  
Article
The Presence of the Human Auditory Ossicles—Detected Postmortem by CT Scan—As a Taphonomic Indicator
by Edda E. Guareschi, Sara Poggesi, Marco Palmesino and Paola A. Magni
Forensic Sci. 2023, 3(4), 560-570; https://doi.org/10.3390/forensicsci3040039 - 2 Nov 2023
Viewed by 5143
Abstract
Introduction: Three tiny bones compose the human ossicular chain: malleus, incus and stapes. Also known as auditory ossicles, they are united by joints in the middle ear cavity of the petrous part of the temporal bone. Completely developed two years after birth, the [...] Read more.
Introduction: Three tiny bones compose the human ossicular chain: malleus, incus and stapes. Also known as auditory ossicles, they are united by joints in the middle ear cavity of the petrous part of the temporal bone. Completely developed two years after birth, the ossicular chain is involved in the physiological process of hearing, by which sound waves from the environment are converted into electrochemical impulses. In the last 500 years, most studies have focused on the morphogenesis, morphological variability and clinical pathology of the ossicular chain, whilst only a few studies have added relevant knowledge to anthropology and forensic science. The auditory ossicles and the enclosing petrous bone are some of the hardest in the human skeleton. This is reflected in a relative resistance to fire and in the possibility of preservation and fossilization in millions of years. Materials and Methods: The literature and four present-day forensic cases were included in studying the postmortem loss of the auditory ossicles in skeletal or decomposing remains. Results indicate that it can be ascribed to their destruction or physical displacement, by either macro-micro-faunal action and/or any other natural or artificial disturbance. Discussion: Physical displacement is closely connected to the depositional environment of the skeletal remains, such as burial, entombment (sarcophagus, coffin, vault…), submersion or exposure to natural elements. Auditory ossicles can be recovered in situ, or very close to their anatomical location, when the skeletal material has been involved in an archaeological excavation. In the case of accessible or disturbed remains, scavengers may remove the tiny ossicles and/or they can slip out of the middle ear cavity following skull movements. Entombment offers effective protection against the displacement of the auditory ossicles, whereas aquatic submersion and aquatic movement almost invariably displace them. Conclusion: the preservation of the human auditory ossicles should be critically considered in the comprehensive context of any forensic investigation on human remains since it can assist the reconstruction of their taphonomic history. Taphonomic histories of remains can add crucial information to forensic investigations (e.g., the Post Mortem Interval, PMI). The aim of this study, limited by scarce relevant literature, is to discuss the potential role of the ossicular chain, detected by postmortem imaging techniques, as a taphonomical indicator in decomposing and/or skeletonized bodies. Full article
Show Figures

Figure 1

10 pages, 8803 KiB  
Proceeding Paper
Test of Slip-Critical Connection System with Embedded Nuts for Aluminum Bridge Application
by Petrino Buzatu, Benoit Cusson, John Erian and Mario Fafard
Eng. Proc. 2023, 43(1), 42; https://doi.org/10.3390/engproc2023043042 - 27 Sep 2023
Viewed by 1169
Abstract
Aluminum is a common material in construction and relatively new in infrastructure, such as bridges. One advantage of aluminum is the production of complex geometry extrusions, which optimizes the mass of components. In order to assemble aluminum deck panels, a mechanical assembly method [...] Read more.
Aluminum is a common material in construction and relatively new in infrastructure, such as bridges. One advantage of aluminum is the production of complex geometry extrusions, which optimizes the mass of components. In order to assemble aluminum deck panels, a mechanical assembly method must be used. One solution is to access the fasteners (nuts) in closed areas of the extrusions. As was found, to embed the nuts in an aluminum flat bar, the goal was to assure non-slip grip at maximum torque and minimum fabrication cost. Full-scale physical tests were performed to verify the compliance with standardized turn-of-nut tightening requirements. The good test results will help introduce this solution in future aluminum bridge construction projects and improve bridge standards. Full article
(This article belongs to the Proceedings of The 15th International Aluminium Conference)
Show Figures

Figure 1

18 pages, 6409 KiB  
Article
An Experimental Study on the Bond–Slip Relationship between Rebar and Ultra-High-Performance Concrete Grouted in Bellows
by Zhongling Wang, Xiaohong Zheng, Qiqi Wang and Qian Wang
Buildings 2023, 13(9), 2375; https://doi.org/10.3390/buildings13092375 - 18 Sep 2023
Cited by 1 | Viewed by 2045
Abstract
Ultra-high-performance concrete (UHPC)-filled duct connection is an innovative solution for joining assembled structures, in which the anchorage performance of the rebar and UHPC filled in bellows plays a critical role in determining the overall connection effectiveness. To establish a reliable anchorage length and [...] Read more.
Ultra-high-performance concrete (UHPC)-filled duct connection is an innovative solution for joining assembled structures, in which the anchorage performance of the rebar and UHPC filled in bellows plays a critical role in determining the overall connection effectiveness. To establish a reliable anchorage length and a bond–slip relationship between rebar and UHPC within a bellow, a total of 16 specimens were conducted, and pullout tests were carried out. Two parameters were considered, including the diameter ratio (D/d), representing the proportion of the diameter of the bellow D to the diameter of the steel bar d, and anchorage length (L). By analyzing the failure modes, load versus deflection curves, and steel strain data, the influences of the diameter ratio and anchorage length on the anchorage performance were discussed. The test results showed that the failure mode changed from rebar pullout to rebar breakage as the anchorage length increased from 3 d to over 10 d. The reliable anchorage length of the rebar was recommended to be at least 10 d with a diameter ratio (D/d) of 2.4. Moreover, a fitting bond–slip model was proposed based on the experimental bond–slip curves between the rebar and UHPC interface within the bellows with high precision. These findings constitute a crucial basis for the comprehensive stress analysis of assembled structures connected using UHPC grouted in bellows. Full article
(This article belongs to the Special Issue Advanced Concrete Structures: Structural Behaviors and Design Methods)
Show Figures

Figure 1

18 pages, 6920 KiB  
Article
Modeling and Testing of a Composite Steel–Concrete Joint for Hybrid Girder Bridges
by Bing Shangguan, Qingtian Su, Joan R. Casas, Hang Su, Shengyun Wang and Rongxin Zhao
Materials 2023, 16(8), 3265; https://doi.org/10.3390/ma16083265 - 21 Apr 2023
Cited by 9 | Viewed by 2662
Abstract
A hybrid girder bridge adopts a steel segment at the mid-span of the main span of a continuous concrete girder bridge. The critical point of the hybrid solution is the transition zone, connecting the steel and concrete segments of the beam. Although many [...] Read more.
A hybrid girder bridge adopts a steel segment at the mid-span of the main span of a continuous concrete girder bridge. The critical point of the hybrid solution is the transition zone, connecting the steel and concrete segments of the beam. Although many girder tests revealing the structural behavior of hybrid girders have been conducted by previous studies, few specimens took the full section of a steel–concrete joint due to the large size of prototype hybrid bridges. In this study, a static load test on a composite segment to bridge the joint between the concrete and steel parts of a hybrid bridge with full section was conducted. A finite element model replicating the tested specimen results was established through Abaqus, while parametric studies were also conducted. The test and numerical results revealed that the concrete filling in the composite solution prevented the steel flange from extensive buckling, which significantly improved the load-carrying capacity of the steel–concrete joint. Meanwhile, strengthening the interaction between the steel and concrete helps to prevent the interlayer slip and simultaneously contributes to a higher flexural stiffness. These results are an important basis for establishing a rational design scheme for the steel–concrete joint of hybrid girder bridges. Full article
Show Figures

Figure 1

18 pages, 4735 KiB  
Article
Gradeability of a Forwarder Based on Traction Performance
by Zoran Bumber, Andreja Đuka, Zdravko Pandur and Tomislav Poršinsky
Forests 2023, 14(1), 103; https://doi.org/10.3390/f14010103 - 5 Jan 2023
Cited by 1 | Viewed by 3605
Abstract
Based on the knowledge of the dimensional and mass features of a forwarder, a model was developed to assess its mobility during timber forwarding uphill in a safe and eco-efficient way. The model is based on knowledge of the position of the forwarder’s [...] Read more.
Based on the knowledge of the dimensional and mass features of a forwarder, a model was developed to assess its mobility during timber forwarding uphill in a safe and eco-efficient way. The model is based on knowledge of the position of the forwarder’s centre of gravity, its declared payload and the length of the loaded timber, as well as the gradeability for uphill timber forwarding based on the traction characteristics of the vehicle. The model connects two research approaches, (1) vehicle–terrain approach (distribution of axle loads depending on the longitudinal terrain slope) and (2) wheel–soil approach (estimation of the traction characteristics of the forwarder based on the wheel numeric), concerning previous research: (i) underload on the front axle of the vehicle, (ii) overload on the rear axle of the vehicle, (iii) permissible tire load, (iv) minimal soil bearing capacity, (v) wheel slip. Simulation modelling for the assessment of the forwarders’ mobility range during timber forwarding uphill was conducted on an example of an eight-wheel Komatsu 875 forwarder, with a declared payload of 16,000 kg, equipped with 710/45-26.5 tires, for which the position of the centre of gravity was determined by the method of lifting the axle. The results of the distribution of the adhesion load on the front and rear axles of the forwarder indicated that, during timber forwarding of 16,000 kg and 4.82 m long hardwood logs on a terrain slope below 68%, there is no critical unloading on the front bogie axle, nor overloading on the rear bogie axle, i.e., wheel tire overload that could limit forwarder mobility. For the specified range of longitudinal terrain slope, a minimal cone index of 950 kPa for an exemplary forwarder is an environmental factor and was calculated based on the nominal ground pressure of the reference (heavier loaded) rear wheels of the vehicle. The forwarders’ mobility range was determined by the intersection curves of the gradeability (based on forwarders’ traction characteristics at wheel slip of 25% vs. cone index) and the curve of the minimal soil cone index. Full article
Show Figures

Figure 1

12 pages, 37140 KiB  
Article
Fiber Bragg Grating Sensors for Reinforcing Bar Slippage Detection and Bond-Slip Gradient Characterization
by Luis Pereira, Esequiel Mesquita, Nélia Alberto, José Melo, Carlos Marques, Paulo Antunes, Paulo S. André and Humberto Varum
Sensors 2022, 22(22), 8866; https://doi.org/10.3390/s22228866 - 16 Nov 2022
Cited by 6 | Viewed by 2100
Abstract
The detection of bond-slip between the reinforcing bar (RB) and concrete is of great importance to ensure the safety of reinforced concrete (RC) structures. The techniques to monitor the connection between the RB and concrete are in constant development, with special focus on [...] Read more.
The detection of bond-slip between the reinforcing bar (RB) and concrete is of great importance to ensure the safety of reinforced concrete (RC) structures. The techniques to monitor the connection between the RB and concrete are in constant development, with special focus on the ones with straightforward operation and simple non-intrusive implementation. In this work, a simple configuration is developed using 10 optical fiber sensors, allowing different sections of the same RC structure to be monitored. Since the RB may suffer different strains along its length, the location of the sensors is critical to provide an early warning about any displacement. Bragg gratings were inscribed in both silica and polymer optical fibers and these devices worked as displacement sensors by monitoring the strain variations on the fibers. The results showed that these sensors can be easily implemented in a civil construction environment, and due to the small dimensions, they can be a non-intrusive technique when multiple sensors are implemented in the same RC structure. Full article
(This article belongs to the Special Issue Optical Sensors for Structural Health Monitoring II)
Show Figures

Figure 1

27 pages, 11552 KiB  
Article
Experimental Study on Mechanical Properties of Half-Grouted Sleeve Connections with Grouted Defects
by Dong Chen, Zhixiang Wu, Yu Bao, Shaopeng Ding, Ye Shao and Tao Xu
Buildings 2022, 12(11), 1807; https://doi.org/10.3390/buildings12111807 - 28 Oct 2022
Cited by 3 | Viewed by 2607
Abstract
Prefabricated concrete structures are driving the development of green buildings, and the connection between prefabricated components is the main factor affecting the safety performance of these structures. Grouted sleeve technology can effectively improve the safety performance of precast component connections. In the process [...] Read more.
Prefabricated concrete structures are driving the development of green buildings, and the connection between prefabricated components is the main factor affecting the safety performance of these structures. Grouted sleeve technology can effectively improve the safety performance of precast component connections. In the process of grouting operation, the grouted sleeves are affected by the construction environment and often have various defects. In this work, to study the influence of defects on the mechanical properties of half-grouted steel sleeve connections, 33 specimens (10 groups of defective specimens (three in each group) and 1 standard group) were prepared and subjected to uniaxial tensile tests. The failure modes, load–displacement curves, stress distribution, and other mechanical properties of the specimens were studied. Sleeves with different defects were simulated, and the simulation results were compared with the experimental results. The experimental results showed that the failure modes are rebar fracture and rebar pull-out. In the strengthening stage, the specimens exhibited a large slip. The critical length for failure mode transition was 2.5 d (defect length). The middle defects and uniform defects had the most unfavorable effect on the ultimate bearing capacity of the specimens. The stress transfer was blocked in specimens with end and middle defects. The numerical simulation results were consistent with the experimental results, thus verifying the accuracy and feasibility of the simulation method for practical applications. Full article
Show Figures

Figure 1

25 pages, 6255 KiB  
Review
Review of Modeling Techniques for Analysis and Assessment of RC Beam–Column Joints Subjected to Seismic Loads
by Muhammad Ilyas, Awais Ahmad, Abdullah Riaz, Fayaz Ahmad Khan, Sadaf Sher, Muhammad Waseem, Syeda Zunaira Ali, Yasir Irfan Badrashi, Hafiz Ahmed Waqas, Hermann Seitz, Khan Shahzada and Megersa Kebede Leta
Materials 2022, 15(21), 7448; https://doi.org/10.3390/ma15217448 - 24 Oct 2022
Cited by 6 | Viewed by 2742
Abstract
Beam–column connections are the most critical components of reinforced concrete (RC) structures. They serve as a load transfer path and take a significant portion of the overall shear. Joints in RC structures constructed with no seismic provisions have an insufficient capacity and ductility [...] Read more.
Beam–column connections are the most critical components of reinforced concrete (RC) structures. They serve as a load transfer path and take a significant portion of the overall shear. Joints in RC structures constructed with no seismic provisions have an insufficient capacity and ductility under lateral loading and can cause the progressive failure of the entire structure. The joint may fail in the shear prior to the connecting beam and column elements. Therefore, several modeling techniques have been devised in the past to capture the non-linear response of such joints. Modeling techniques used to capture the non-linear response of reinforced-concrete-beam–column joints range from simplified lumped plasticity models to detailed fiber-based finite element (FE) models. The macro-modeling technique for joint modeling is highly efficient in terms of the computational effort, analysis time, and computer memory requirements, and is one of the most widely used modeling techniques. The non-linear shear response of the joint panel and interface bond–slip mechanism are concentrated in zero-length linear and rotational springs while the connecting elements are modeled through elastic elements. The shear response of joint panels has also been captured through rigid panel boundary elements with rotational springs. The computational efficiency of these models is significantly high compared to continuum models, as each joint act as a separate supe-element. This paper aims to provide an up-to-date review of macro-modeling techniques for the analysis and assessment of RC-beam–column connections subjected to lateral loads. A thorough understanding of existing models is necessary for developing new mechanically adequate and computationally efficient joint models for the analysis and assessment of deficient RC connections. This paper will provide a basis for further research on the topic and will assist in the modification and optimization of existing models. As each model is critically evaluated, and their respective capabilities and limitations are explored, it should help researchers to improve and build on modeling techniques both in terms of accuracy and computational efficiency. Full article
(This article belongs to the Special Issue Confined Concrete and Its Application in Structural Engineering)
Show Figures

Figure 1

Back to TopTop