The Presence of the Human Auditory Ossicles—Detected Postmortem by CT Scan—As a Taphonomic Indicator
Abstract
:1. Introduction
2. Materials and Methods
3. Results
Sample | PMI and Body Preservation | Type of Analysis | Sample Size, Condition of the Ossicular Chain and Notes | References |
---|---|---|---|---|
Australopithecus africanus | 2.1–3.3 million years ago (Mya) Fossilized skeletal remains | Direct visual observation | 3 Present, incomplete. Moggi-Cecchi and colleagues describe a stapes located in the vestibule of the inner ear, “presumably having slipped through the oval window before fossilization”. | [16,37] |
Australopithecus robustus | 1.2–1.8 Mya Fossilized skeletal remains | Direct visual observation | 4 Present, complete/incomplete Quam and colleagues describe the presence of a complete ossicular chain as “an exceptional case of preservation in the human fossil record”. | [15,37] |
Homo neanderthalensis | 28–300 kiloyears ago (Kya) Fossilized skeletal remains | Direct visual observation CT Scan MicroCT Scan | 3 Present, incomplete | [19,32,33,34] |
Archaeological excavations | 3.3 Mya-Present Era Fossilized and non-fossilized skeletal remains | Direct visual observation X-rays CT Scan | >1000 Present/Absent/Complete/ Incomplete Incomplete or absent in most fragmented skulls, temporal and petrous bones. | [24,35,36] |
Present-day forensic cases | 1999–2019 Present Era 2 decomposing bodies, 2 skeletonized skulls | Ortho pantomography X-rays CT Scan MSCT Scan | Present/Absent Absent in the skeletonized skulls, present in the decomposing bodies | |
Hospital patient | Normal anatomy of the ossicular chain | CT Scan | Present, complete |
4. Discussion
5. Limitations and Future Research
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Scheuer, L.; Black, S.M. Developmental Juvenile Osteology; Academic Press: San Diego, CA, USA, 2000; p. 587. [Google Scholar]
- Leskovar, T.; Beaumont, J.; Lisić, N.; McGalliard, S. Auditory ossicles: A potential biomarker for maternal and infant health in utero. Ann. Hum. Biol. 2019, 46, 367–377. [Google Scholar] [CrossRef] [PubMed]
- Møller, A.R. Hearing: Anatomy, Physiology, and Disorders of the Auditory System, 3rd ed.; Plural Pub: San Diego, CA, USA, 2013. [Google Scholar]
- Noussios, G.; Chouridis, P.; Kostretzis, L.; Natsisc, K. Morphological and morphometrical study of the human ossicular chain: A review of the literature and a meta-analysis of experience over 50 years. J. Clin. Med. Res. 2016, 8, 76–83. [Google Scholar] [CrossRef] [PubMed]
- Juliano, A.F.; Ginat, D.T.; Moonis, G. Imaging Review of the Temporal Bone: Part I. Anatomy and Inflammatory and Neoplastic Processes. Radiology 2013, 269, 17–33. [Google Scholar] [CrossRef] [PubMed]
- Juliano, A.F.; Ginat, D.T.; Moonis, G. Imaging Review of the Temporal Bone: Part II. Traumatic, Postoperative, and Noninflammatory Nonneoplastic Conditions. Radiology 2015, 276, 655–672. [Google Scholar] [CrossRef]
- Ohtsuki, S.; Ishikawa, A.; Yamada, S.; Imai, H.; Matsuda, T.; Takakuwa, T. Morphogenesis of the Middle Ear during Fetal Development as Observed Via Magnetic Resonance Imaging. Anat. Rec. 2018, 301, 757–764. [Google Scholar] [CrossRef]
- Rolvien, T.; Schmidt, F.N.; Milovanovic, P.; Jähn, K.; Riedel, C.; Butscheidt, S.; Püschel, K.; Jeschke, A.; Amling, M.; Busse, B. Early bone tissue aging in human auditory ossicles is accompanied by excessive hypermineralization, osteocyte death and micropetrosis. Sci. Rep. 2018, 8, 1920. [Google Scholar] [CrossRef]
- Quam, R.M.; Coleman, M.N.; Martínez, I. Evolution of the auditory ossicles in extant hominids: Metric variation in African apes and humans. J. Anat. 2014, 225, 167–196. [Google Scholar] [CrossRef]
- Lastella, S.; Siori, M.S.; Ligabue Stricker, F.; Micheletti Cremasco, M. The primate ear bone collection of the University of Turin: Revision and improvement. J. Biol. Res. 2012, 85, 302–305. [Google Scholar] [CrossRef]
- Qvist, M. Auditory Ossicles in Archaeological Skeletal Material from Medieval Denmark. Acta Oto-Laryngol. 2000, 120, 82–85. [Google Scholar] [CrossRef]
- Sirak, K.; Fernandes, D.; Cheronet, O.; Harney, E.; Mah, M.; Mallick, S.; Rohland, N.; Adamski, N.; Broomandkhoshbacht, N.; Callan, K.; et al. Human auditory ossicles as an alternative optimal source of ancient DNA. Genome Res. 2020, 30, 427–436. [Google Scholar] [CrossRef]
- Quam, R.M.; Rak, Y. Auditory ossicles from southwest Asian Mousterian sites. J. Hum. Evol. 2008, 54, 414–433. [Google Scholar] [CrossRef] [PubMed]
- Krenz-Niedbała, M.; Łukasik, S. Skeletal Evidence for Otitis Media in Mediaeval and Post-Mediaeval Children from Poland, Central Europe. Int. J. Osteoarchaeol. 2017, 27, 375–386. [Google Scholar] [CrossRef]
- Clarke, R.J.; Rak, Y. Ear ossicle of Australopithecus robustus. Nature 1979, 279, 62–63. [Google Scholar] [CrossRef]
- Moggi-Cecchi, J.; Collard, M. A fossil stapes from Sterkfontein, South Africa, and the hearing capabilities of early hominids. J. Hum. Evol. 2002, 42, 259–265. [Google Scholar] [CrossRef] [PubMed]
- Kontopoulos, I.; Penkman, K.; McAllister, G.D.; Lynnerup, N.; Damgaard, P.B.; Hansen, H.B.; Allentoft, M.E.; Collins, M.J. Petrous bone diagenesis: A multi-analytical approach. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2019, 518, 143–154. [Google Scholar] [CrossRef]
- Schwark, T.; Modrow, J.-H.; Steinmeier, E.; Poetsch, M.; Hasse, J.; Fischer, H.; von Wurmb-Schwark, N. The auditory ossicles as a DNA source for genetic identification of highly putrefied cadavers. Int. J. Leg. Med. 2015, 129, 457–462. [Google Scholar] [CrossRef]
- Stoessel, A.; David, R.; Gunz, P.; Schmidt, T.; Spoor, F.; Hublin, J.-J. Morphology and function of Neandertal and modern human ear ossicles. Proc. Natl. Acad. Sci. USA 2016, 113, 11489–11494. [Google Scholar] [CrossRef]
- Sarment, D.P.; Christensen, A.M. The use of cone beam computed tomography in forensic radiology. J. Forensic Radiol. Imaging 2014, 2, 173–181. [Google Scholar] [CrossRef]
- Hollinger, A.; Christe, A.; Thali, M.J.; Kneubuehl, B.P.; Oesterhelweg, L.; Ross, S.; Spendlove, D.; Bolliger, S.A. Incidence of auditory ossicle luxation and petrous bone fractures detected in post-mortem multislice computed tomography (MSCT). Forensic Sci. Int. 2009, 183, 60–66. [Google Scholar] [CrossRef]
- Guareschi, E.E. Postmortem imaging in forensic cases. In Forensic Pathology Case Studies, 1st ed.; Elsevier/Academic Press: Amsterdam, The Netherlands, 2021; pp. 79–93. [Google Scholar]
- Ruiter, D.; Moggi-Cecchi, J.; Masali, M. Auditory ossicles of Paranthropus robustus from Swartkrans, South Africa. Am. J. Phys. Anthropol. 2002, 60. [Google Scholar]
- Lisonek, P.; Kutal, M.; Peske, L.; Kubinek, R. Auditory Ossicles from Archaeological Finds. Anthropologie 1986, 24, 185–188. [Google Scholar]
- Krenz-Niedbała, M.; Łukasik, S.; Macudziński, J.; Chowański, S. Morphometry of auditory ossicles in medieval human remains from Central Europe. Anat. Rec. 2022, 305, 1947–1961. [Google Scholar] [CrossRef] [PubMed]
- Sigmund, G.; Minas, M. The Trier mummy Paï-es-tjau-em-aui-nu: Radiological and histological findings. Eur. Radiol. 2002, 12, 1854–1862. [Google Scholar] [CrossRef] [PubMed]
- Symes, S.A.; Rainwater, C.W.; Chapman, E.N.; Gipson, D.R.; Piper, A.L. 2—Patterned thermal destruction of human remains in a forensic setting. In The Analysis of Burned Human Remains; Schmidt, C.W., Symes, S.A., Eds.; Academic Press: San Diego, CA, USA, 2008; p. 15-vi. [Google Scholar]
- Correia, P. Fire modification of bone: A review of the literature. Forensic Taphon. Postmortem Fate Hum. Remain. 1997, 275–293. [Google Scholar]
- Pinhasi, R.; Fernandes, D.; Sirak, K.; Novak, M.; Connell, S.; Alpaslan-Roodenberg, S.; Gerritsen, F.; Moiseyev, V.; Gromov, A.; Raczky, P.; et al. Optimal Ancient DNA Yields from the Inner Ear Part of the Human Petrous Bone. PLoS ONE 2015, 10, e0129102. [Google Scholar] [CrossRef]
- Pilli, E.; Vai, S.; Caruso, M.G.; D’Errico, G.; Berti, A.; Caramelli, D. Neither femur nor tooth: Petrous bone for identifying archaeological bone samples via forensic approach. Forensic Sci. Int. 2018, 283, 144–149. [Google Scholar] [CrossRef]
- Kulstein, G.; Hadrys, T.; Wiegand, P. As solid as a rock-comparison of CE- and MPS-based analyses of the petrosal bone as a source of DNA for forensic identification of challenging cranial bones. Int. J. Leg. Med. 2018, 132, 13–24. [Google Scholar] [CrossRef]
- Arensburg, B.; Pap, I.; Tillier, A.M.; Chech, M. The Subalyuk 2 middle ear stapes. Int. J. Osteoarchaeol. 1996, 6, 185–188. [Google Scholar] [CrossRef]
- Maureille, B. A lost Neanderthal neonate found. Nature 2002, 419, 33–34. [Google Scholar] [CrossRef]
- Ponce De León, M.S.; Zollikofer, C.P.E. New evidence from Le Moustier 1: Computer-assisted reconstruction and morphometry of the skull. Anat. Rec. 1999, 254, 474–489. [Google Scholar] [CrossRef]
- Bruintje, T.D. The auditory ossicles in human skeletal remains from a leper cemetery in Chichester, England. J. Archaeol. Sci. 1990, 17, 627–633. [Google Scholar] [CrossRef]
- Dedouit, F.; Loubes-Lacroix, F.; Costagliola, R.; Guilbeau-Frugier, C.; Alengrin, D.; Otal, P.; Telmon, N.; Joffre, F.; Rougé, D. Post-mortem changes of the middle ear: Multislice computed tomography study. Forensic Sci. Int. 2007, 175, 149–154. [Google Scholar] [CrossRef] [PubMed]
- Quam, R.M.; de Ruiter, D.J.; Masali, M.; Arsuaga, J.-L.; Martínez, I.; Moggi-Cecchi, J. Early hominin auditory ossicles from South Africa. Proc. Natl. Acad. Sci. USA 2013, 110, 8847. [Google Scholar] [CrossRef] [PubMed]
- Crevecoeur, I. New discovery of an Upper Paleolithic auditory ossicle: The right malleus of Nazlet Khater 2. J. Hum. Evol. 2007, 52, 341–345. [Google Scholar] [CrossRef]
- Vermeersch, P.M.; Paulissen, E.; Gijselings, G.; Otte, M.; Thoma, A.; van Peer, P.; Lauwers, R. 33,000-yr old chert mining site and related Homo in the Egyptian Nile Valley. Nature 1984, 309, 342–344. [Google Scholar] [CrossRef]
- Hagedorn, H.G.; Zink, A.; Szeimies, U.; Nerlich, A.G. Macroscopic and endoscopic examinations of the head and neck region in ancient Egyptian mummies. HNO 2004, 52, 413–422. [Google Scholar]
- Hoffman, H.; Hudgins, P.A. Head and skull base features of nine Egyptian mummies: Evaluation with high-resolution CT and reformation techniques. Am. J. Roentgenol. 2002, 178, 1367. [Google Scholar] [CrossRef]
- Cockburn, A.; Barraco, R.A.; Reyman, T.A.; Peck, W.H. Autopsy of an Egyptian Mummy. Science 1975, 187, 1155–1160. [Google Scholar] [CrossRef]
- Spoor, F.; Stringer, C.; Zonneveld, F. Rare temporal bone pathology of the Singa calvaria from Sudan. Am. J. Phys. Anthropol. 1998, 107, 41–50. [Google Scholar] [CrossRef]
- Gregg, J.B.; Gregg, P.S. Dry Bones, Dakota Territory Reflected: An Illustrated Descriptive Analysis of the Health and Well Being of Previous People and Cultures as is Mirrored in Their Remnants; University of South Dakota Press: Sioux Fall, SD, USA, 1987. [Google Scholar]
- Dirnhofer, R.; Jackowski, C.; Vock, P.; Potter, K.; Thali, M.J. VIRTOPSY: Minimally invasive, imaging-guided virtual autopsy. Radiographics 2006, 26, 1305–1333. [Google Scholar] [CrossRef]
- Haglund, W.D.; Sorg, M. Forensic Taphonomy: The Postmortem Fate of Human Remains; CRC Press: Boca Raton, FL, USA, 1997. [Google Scholar]
- Haglund, W.D.; Sorg, M. Advances in Forensic Taphonomy (Method, Theory and Archaeological Perspectives); CRC Press: Boca Raton, FL, USA, 2002. [Google Scholar]
- Pokines, J.T.; Symes, S.A. Manual of Forensic Taphonomy; Taylor & Francis: Boca Raton, FL, USA, 2014. [Google Scholar]
- Miranker, M.; Giordano, A.; Spradley, K. Phase II Spatial Patterning of Vulture-Scavenged Human Remains. A66. In Proceedings of the American Academy of Forensic Sciences, 73rd Annual Scientific Meeting 2021, Virtual, 15–19 February 2021. [Google Scholar]
- Keyes, C.A.; Myburgh, J.; Brits, D. Vulture and Black-Backed Jackal Scavenging: Forensic Implications for the Recovery of Scattered Remains in South Africa. A67. In Proceedings of the American Academy of Forensic Sciences, 73rd Annual Scientific Meeting, Virtual, 15–19 February 2021. [Google Scholar]
- Pokines, J.T. Faunal Dispersal, Reconcentration, and Gnawing to Bone in Terrestrial Environments. In Manual of Forensic Taphonomy; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Magni, P.A.; Tingey, E.; Armstrong, N.J.; Verduin, J. Evaluation of barnacle (Crustacea: Cirripedia) colonisation on different fabrics to support the estimation of the time spent in water by human remains. Forensic Sci. Int. 2021, 318, 110526. [Google Scholar] [CrossRef] [PubMed]
- Pokines, J.T.; Higgs, N.D. Marine Environmental Alterations to Bone. In Manual of Forensic Taphonomy; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Sorg, M.H. Differentiating trauma from taphonomic alterations. Forensic Sci. Int. 2019, 302, 109893. [Google Scholar] [CrossRef] [PubMed]
- Berna, F.; Matthews, A.; Weiner, S. Solubilities of bone mineral from archaeological sites: The recrystallization window. J. Archaeol. Sci. 2004, 31, 867–882. [Google Scholar] [CrossRef]
- Christensen, A.M.; Myers, S.W. Macroscopic Observations of the Effects of Varying Fresh Water pH on Bone. J. Forensic Sci. 2011, 56, 475–479. [Google Scholar] [CrossRef] [PubMed]
- Forbes, S.L. Decomposition Chemistry in a Burial Environment. In Soil Analysis in Forensic Taphonomy, 1st ed.; CRC Press: Boca Raton, FL, USA, 2008. [Google Scholar]
- Magni, P.A.; Lawn, J.; Guareschi, E.E. A practical review of adipocere: Key findings, case studies and operational considerations from crime scene to autopsy. J. Forensic Leg. Med. 2020, 78, 102109. [Google Scholar] [CrossRef]
- Turner-Walker, G.; Peacock, E.E. Preliminary results of bone diagenesis in Scandinavian bogs. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2008, 266, 151–159. [Google Scholar] [CrossRef]
- Painter, T.J. Lindow man, tollund man and other peat-bog bodies: The preservative and antimicrobial action of Sphagnan, a reactive glycuronoglycan with tanning and sequestering properties. Carbohydr. Polym. 1991, 15, 123–142. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guareschi, E.E.; Poggesi, S.; Palmesino, M.; Magni, P.A. The Presence of the Human Auditory Ossicles—Detected Postmortem by CT Scan—As a Taphonomic Indicator. Forensic Sci. 2023, 3, 560-570. https://doi.org/10.3390/forensicsci3040039
Guareschi EE, Poggesi S, Palmesino M, Magni PA. The Presence of the Human Auditory Ossicles—Detected Postmortem by CT Scan—As a Taphonomic Indicator. Forensic Sciences. 2023; 3(4):560-570. https://doi.org/10.3390/forensicsci3040039
Chicago/Turabian StyleGuareschi, Edda E., Sara Poggesi, Marco Palmesino, and Paola A. Magni. 2023. "The Presence of the Human Auditory Ossicles—Detected Postmortem by CT Scan—As a Taphonomic Indicator" Forensic Sciences 3, no. 4: 560-570. https://doi.org/10.3390/forensicsci3040039
APA StyleGuareschi, E. E., Poggesi, S., Palmesino, M., & Magni, P. A. (2023). The Presence of the Human Auditory Ossicles—Detected Postmortem by CT Scan—As a Taphonomic Indicator. Forensic Sciences, 3(4), 560-570. https://doi.org/10.3390/forensicsci3040039