Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline

Search Results (137)

Search Parameters:
Keywords = slip regime

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 2384 KiB  
Article
Effects of Grain Size on Mechanical Properties of Nanopolycrystalline Fe-Al Alloy
by Xiaoming Liu, Kun Gao, Long Huang, Peng Chen and Jing Yang
Processes 2025, 13(8), 2462; https://doi.org/10.3390/pr13082462 - 4 Aug 2025
Viewed by 11
Abstract
FeAl intermetallic compounds exhibit high application potential in high-voltage transmission lines to withstand external forces such as powerlines’ own gravity and wind force. The ordered crystal structure in FeAl intermetallic compounds endows materials with high strength, but the remarkable brittleness at room temperature [...] Read more.
FeAl intermetallic compounds exhibit high application potential in high-voltage transmission lines to withstand external forces such as powerlines’ own gravity and wind force. The ordered crystal structure in FeAl intermetallic compounds endows materials with high strength, but the remarkable brittleness at room temperature restricts engineering applications. This contradiction is essentially closely related to the deformation mechanism at the nanoscale. Here, we performed molecular dynamics simulations to reveal anomalous grain size effects and deformation mechanisms in nanocrystalline FeAl intermetallic material. Models with grain sizes ranging from 6.2 to 17.4 nm were systematically investigated under uniaxial tensile stress. The study uncovers a distinctive inverse Hall-Petch relationship governing flow stress within the nanoscale regime. This behavior stems from high-density grain boundaries promoting dislocation annihilation over pile-up. Crucially, the material exhibits anomalous ductility at ultra-high strain rates due to stress-induced phase transformation dominating the plastic deformation. The nascent FCC phase accommodates strain through enhanced slip systems and inherent low stacking fault energy with the increasing phase fraction paralleling the stress plateau. Nanoconfinement suppresses the propagation of macroscopic defects while simultaneously suppressing room-temperature brittle fracture and inhibiting the rapid phase transformation pathways at extreme strain rates. These findings provide new theoretical foundations for designing high-strength and high-toughness intermetallic nanocompounds. Full article
(This article belongs to the Section Materials Processes)
Show Figures

Figure 1

36 pages, 10414 KiB  
Article
Forces During the Film Drainage and Detachment of NMC and Spherical Graphite in Particle–Bubble Interactions Quantified by CP-AFM and Modeling to Understand the Salt Flotation of Battery Black Mass
by Jan Nicklas, Claudia Heilmann, Lisa Ditscherlein and Urs A. Peuker
Minerals 2025, 15(8), 809; https://doi.org/10.3390/min15080809 - 30 Jul 2025
Viewed by 237
Abstract
The salt flotation of graphite in the presence of lithium nickel manganese cobalt oxide (NMC) was assessed by performing colloidal probe atomic force microscopy (CP-AFM) on sessile gas bubbles and conducting batch flotation tests with model lithium-ion-battery black mass. The modeling of film [...] Read more.
The salt flotation of graphite in the presence of lithium nickel manganese cobalt oxide (NMC) was assessed by performing colloidal probe atomic force microscopy (CP-AFM) on sessile gas bubbles and conducting batch flotation tests with model lithium-ion-battery black mass. The modeling of film drainage and detachment during particle–bubble interactions provides insight into the fundamental microprocesses during salt flotation, a special variant of froth flotation. The interfacial properties of particles and gas bubbles were tailored with salt solutions containing sodium chloride and sodium acetate buffer. Graphite particles can attach to gas bubbles under all tested conditions in the range pH 3 to pH 10. The attractive forces for spherical graphite are strongest at high salt concentrations and pH 3. The conditions for the attachment of NMC to gas bubbles were evaluated with simulations using the Stokes–Reynolds–Young–Laplace model for film drainage, under consideration of DLVO forces and a hydrodynamic slip to account for irregularities of the particle surface. CP-AFM measurements in the capillary force regime provide additional parameters for the modeling of salt flotation, such as the force and work of detachment. The contact angles of graphite and NMC particles during retraction and detachment from gas bubbles were obtained from a quasi-equilibrium model using CP-AFM data as input. All CP-AFM experiments and theoretical results suggest that pristine NMC particles do not attach to gas bubbles during flotation, which is confirmed by the low rate of NMC recovery in batch flotation tests. Full article
(This article belongs to the Special Issue Particle–Bubble Interactions in the Flotation Process)
Show Figures

Figure 1

21 pages, 18596 KiB  
Article
Thermal Accumulation Mechanisms of Deep Geothermal Reservoirs in the Moxi Area, Sichuan Basin, SW China: Evidence from Temperature Measurements and Structural Characteristics
by Wenbo Yang, Weiqi Luo, Simian Yang, Wei Zheng, Luquan Zhang, Fang Lai, Shuang Yang and Zhongquan Li
Energies 2025, 18(15), 3901; https://doi.org/10.3390/en18153901 - 22 Jul 2025
Viewed by 226
Abstract
The Moxi area in the Sichuan Basin hosts abundant deep geothermal resources, but their thermal regime and accumulation mechanisms remain poorly understood. Using 2D/3D seismic data, drilling records, and temperature measurements (DST), we analyze deep thermal fields, reservoir–caprock systems, and structural features. The [...] Read more.
The Moxi area in the Sichuan Basin hosts abundant deep geothermal resources, but their thermal regime and accumulation mechanisms remain poorly understood. Using 2D/3D seismic data, drilling records, and temperature measurements (DST), we analyze deep thermal fields, reservoir–caprock systems, and structural features. The following are our key findings: (1) Heat transfer is conduction-dominated, with thermal anomalies in Late Permian–Early Cambrian strata. Four mudstone/shale caprocks and three carbonate reservoirs occur, with the Longtan Formation as the key seal. Reservoir geothermal gradients (25.05–32.55 °C/km) exceed basin averages. (2) Transtensional strike-slip faults form E-W/NE/NW networks; most terminate at the Permian Longtan Formation, with few extending into the Lower Triassic while penetrating the Archean–Lower Proterozoic basement. (3) Structural highs positively correlate with higher geothermal gradients. (4) The deep geothermal reservoirs and thermal accumulation mechanisms in the Moxi area are jointly controlled by crustal thinning, basement uplift, and structural architecture. Mantle-derived heat converges at basement uplift cores, generating localized thermal anomalies. Fault networks connect these deep heat sources, facilitating upward fluid migration. Thick Longtan Formation shale seals these rising thermal fluids, causing anomalous heating in underlying strata and concentrated thermal accumulation in reservoirs—enhanced by thermal focusing effects from uplift structures. This study establishes a theoretical framework for target selection and industrial-scale geothermal exploitation in sedimentary basins, highlighting the potential for repurposing oil/gas infrastructure. Full article
Show Figures

Figure 1

16 pages, 1681 KiB  
Article
Thermal–Condensate Collisional Effects on Atomic Josephson Junction Dynamics
by Klejdja Xhani and Nick P. Proukakis
Atoms 2025, 13(8), 68; https://doi.org/10.3390/atoms13080068 - 22 Jul 2025
Viewed by 340
Abstract
We investigate how collisional interactions between the condensate and the thermal cloud influence the distinct dynamical regimes (Josephson plasma, phase-slip-induced dissipative regime, and macroscopic quantum self-trapping) emerging in ultracold atomic Josephson junctions at non-zero subcritical temperatures. Specifically, we discuss how the self-consistent dynamical [...] Read more.
We investigate how collisional interactions between the condensate and the thermal cloud influence the distinct dynamical regimes (Josephson plasma, phase-slip-induced dissipative regime, and macroscopic quantum self-trapping) emerging in ultracold atomic Josephson junctions at non-zero subcritical temperatures. Specifically, we discuss how the self-consistent dynamical inclusion of collisional processes facilitating the exchange of particles between the condensate and the thermal cloud impacts both the condensate and the thermal currents, demonstrating that their relative importance depends on the system’s dynamical regime. Our study is performed within the full context of the Zaremba–Nikuni–Griffin (ZNG) formalism, which couples a dissipative Gross–Pitaevskii equation for the condensate dynamics to a quantum Boltzmann equation with collisional terms for the thermal cloud. In the Josephson plasma oscillation and vortex-induced dissipative regimes, collisions markedly alter dynamics at intermediate-to-high temperatures, amplifying damping in the condensate imbalance mode and inducing measurable frequency shifts. In the self-trapping regime, collisions destabilize the system even at low temperatures, prompting a transition to Josephson-like dynamics on a temperature-dependent timescale. Our results show the interplay between coherence, dissipation, and thermal effects in a Bose–Einstein condensate at a finite temperature, providing a framework for tailoring Josephson junction dynamics in experimentally accessible regimes. Full article
(This article belongs to the Special Issue Quantum Technologies with Ultracold Atoms)
Show Figures

Figure 1

26 pages, 23038 KiB  
Article
Geometry and Kinematics of the North Karlik Tagh Fault: Implications for the Transpressional Tectonics of Easternmost Tian Shan
by Guangxue Ren, Chuanyou Li, Chuanyong Wu, Kai Sun, Quanxing Luo, Xuanyu Zhang and Bowen Zou
Remote Sens. 2025, 17(14), 2498; https://doi.org/10.3390/rs17142498 - 18 Jul 2025
Viewed by 374
Abstract
Quantifying the slip rate along geometrically complex strike-slip faults is essential for understanding kinematics and strain partitioning in orogenic systems. The Karlik Tagh forms the easternmost terminus of Tian Shan and represents a critical restraining bend along the sinistral strike-slip Gobi-Tian Shan Fault [...] Read more.
Quantifying the slip rate along geometrically complex strike-slip faults is essential for understanding kinematics and strain partitioning in orogenic systems. The Karlik Tagh forms the easternmost terminus of Tian Shan and represents a critical restraining bend along the sinistral strike-slip Gobi-Tian Shan Fault System. The North Karlik Tagh Fault (NKTF) is an important fault demarcating the north boundary of the Karlik Tagh. While structurally significant, it is poorly understood in terms of its late Quaternary tectonic activity. In this study, we analyze the offset geomorphology based on interpretations of satellite imagery, field survey, and digital elevation models derived from structure-from-motion (SfM), and we provide the first quantitative constraints on the late-Quaternary slip rate using the abandonment age of deformed fan surfaces and river terraces constrained by the 10Be cosmogenic dating method. Our results reveal that the NKTF can be divided into the Yanchi and Xiamaya segments based on along-strike variations. The NW-striking Yanchi segment exhibits thrust faulting with a 0.07–0.09 mm/yr vertical slip, while the NE-NEE-striking Xiamaya segment displays left-lateral slip at 1.1–1.4 mm/yr since 180 ka. In easternmost Tian Shan, the interaction between thrust and sinistral strike-slip faults forms a transpressional regime. These left-lateral faults, together with those in the Gobi Altai, collectively facilitate eastward crustal escape in response to ongoing Indian indentation. Full article
(This article belongs to the Section Environmental Remote Sensing)
Show Figures

Figure 1

18 pages, 2421 KiB  
Review
Frictional Experiments on Granitic Faults: New Insights into Continental Earthquakes and Micromechanical Mechanisms
by Huiru Lei, Shimin Liu and Wenhao Dai
Appl. Sci. 2025, 15(13), 7207; https://doi.org/10.3390/app15137207 - 26 Jun 2025
Viewed by 312
Abstract
Granitic faults within the crystalline upper-to-middle continental crust play a critical role in accommodating tectonic deformation and controlling earthquake nucleation. To better understand their frictional behavior, we review experimental studies conducted under both dry and hydrothermal conditions using velocity-stepping (VS), constant-velocity (CV), and [...] Read more.
Granitic faults within the crystalline upper-to-middle continental crust play a critical role in accommodating tectonic deformation and controlling earthquake nucleation. To better understand their frictional behavior, we review experimental studies conducted under both dry and hydrothermal conditions using velocity-stepping (VS), constant-velocity (CV), and slide-hold-slide (SHS) tests. These approaches allow the quantification of frictional strength, velocity dependence, and healing behavior across a range of conditions. Our synthesis highlights that the friction coefficient of granite gouges decreases with increasing temperature and pore fluid pressure, decreasing slip velocity, and increasing slip displacement. The velocity-weakening regime shifts to higher temperatures with increasing slip velocity or decreasing pore fluid pressure. Temperature, normal stress, pore fluid pressure, and slip velocity interact to modulate frictional stability. In particular, microstructural observations reveal that grain size reduction, pressure solution creep, and fluid-assisted chemical processes are key mechanisms governing transitions between velocity-weakening and velocity-strengthening regimes. These insights support the growing application of microphysical-based models, which integrate micromechanical processes and offer improved extrapolation from the laboratory to natural fault systems compared to classical rate-and-state friction laws. The collective evidence underscores the importance of considering fault rheology in a temperature- and fluid-sensitive context, with implications for interpreting seismic cycle behavior in continental regions. Full article
Show Figures

Figure 1

24 pages, 17868 KiB  
Article
Shallow Structural Deformation Reveals Intraplate Seismicity Triggered by Graben Motion in the South China Littoral Fault Zone
by Hu Yi, Wenhuan Zhan, Xiaodong Yang, Jian Li, Xiaochuan Wu, Jie Sun, Yantao Yao, Jiaxian Huang and Zelong Ju
Remote Sens. 2025, 17(13), 2153; https://doi.org/10.3390/rs17132153 - 23 Jun 2025
Viewed by 461
Abstract
High-resolution seismic reflection profiles from the offshore segment of the Littoral Fault Zone (LFZ) near Nan’ao Island were analyzed to investigate fault activity and its potential link to the 1918 M7.3 earthquake. The data reveal a ~19 km-wide graben bounded by seaward- and [...] Read more.
High-resolution seismic reflection profiles from the offshore segment of the Littoral Fault Zone (LFZ) near Nan’ao Island were analyzed to investigate fault activity and its potential link to the 1918 M7.3 earthquake. The data reveal a ~19 km-wide graben bounded by seaward- and landward-dipping normal faults, with fault-propagation folds and growth faults reaching the seafloor. Forward modeling of the fault-propagation fold indicates three discrete episodes of normal dip-slip displacement (~20 m per phase), separated by prolonged quiescent periods, suggesting episodic fault activity and seismic-scale strain accumulation. Despite the regional NW–SE compressional stress regime, active normal faulting is observed, implying vertical stress as the dominant driving force. A gravitational seismic model driven by upper crustal loading is proposed to explain both the fault motion and the down-draw tsunami observed during the 1918 event. These findings offer new insights into intraplate seismogenic mechanisms and associated hazards along the South China coast. Full article
Show Figures

Figure 1

30 pages, 3495 KiB  
Review
Research Progress on Micro/Nanopore Flow Behavior
by Jinbo Yu, Meng Du, Yapu Zhang, Xinliang Chen and Zhengming Yang
Molecules 2025, 30(8), 1807; https://doi.org/10.3390/molecules30081807 - 17 Apr 2025
Viewed by 1035
Abstract
Fluid flow in microporous and nanoporous media exhibits unique behaviors that deviate from classical continuum predictions due to dominant surface forces at small scales. Understanding these microscale flow mechanisms is critical for optimizing unconventional reservoir recovery and other energy applications. This review provides [...] Read more.
Fluid flow in microporous and nanoporous media exhibits unique behaviors that deviate from classical continuum predictions due to dominant surface forces at small scales. Understanding these microscale flow mechanisms is critical for optimizing unconventional reservoir recovery and other energy applications. This review provides a comparative analysis of the existing literature, highlighting key advances in experimental techniques, theoretical models, and numerical simulations. We discuss how innovative micro/nanofluidic devices and high-resolution imaging methods now enable direct observation of confined flow phenomena, such as slip flow, phase transitions, and non-Darcy behavior. Recent theoretical models have clarified scale-dependent flow regimes by distinguishing microscale effects from macroscopic Darcy flow. Likewise, advanced numerical simulations—including molecular dynamics (MD), lattice Boltzmann methods (LBM), and hybrid multiscale frameworks—capture complex fluid–solid interactions and multiphase dynamics under realistic pressure and wettability conditions. Moreover, the integration of artificial intelligence (e.g., data-driven modeling and physics-informed neural networks) is accelerating data interpretation and multiscale modeling, offering improved predictive capabilities. Through this critical review, key phenomena, such as adsorption layers, fluid–solid interactions, and pore surface heterogeneity, are examined across studies, and persistent challenges are identified. Despite notable progress, challenges remain in replicating true reservoir conditions, bridging microscale and continuum models, and fully characterizing multiphase interface dynamics. By consolidating recent progress and perspectives, this review not only summarizes the state-of-the-art but underscores remaining knowledge gaps and future directions in micro/nanopore flow research. Full article
Show Figures

Graphical abstract

16 pages, 4156 KiB  
Article
Flow Management in High-Viscosity Oil–Gas Mixing Systems: A Study of Flow Regimes
by Jiaming Tian, Mao Li and Yueshe Wang
Energies 2025, 18(6), 1550; https://doi.org/10.3390/en18061550 - 20 Mar 2025
Viewed by 467
Abstract
The flow management of the gas–liquid mixture module is crucial for the transmission efficiency of crude oil-and-natural gas-gathering and transportation systems. The concurrent flow of high-viscosity crude oil and natural gas in gas–liquid mixing is investigated numerically by adopting an improved volume of [...] Read more.
The flow management of the gas–liquid mixture module is crucial for the transmission efficiency of crude oil-and-natural gas-gathering and transportation systems. The concurrent flow of high-viscosity crude oil and natural gas in gas–liquid mixing is investigated numerically by adopting an improved volume of fluid (VOF) model programmed with the OpenFOAM v2012 software package. Over a wide range of superficial velocities for the oil, from 0.166 to 5.529 m/s, and natural gas, from 0.138 to 27.645 m/s, a variety of flow regimes of bubble flow, plug flow, slug flow, and annular flow are encountered successively, which are essentially consistent with the Brill and Mandhane flow regime identification criteria. The results show that the oil volume fraction, fluid velocity, and bubble slip velocity together affect the growth of bubbles in the pipeline at a low gas velocity. In the case of slug flow, the phenomenon of liquid film plugging is noticeable, and the flow is very unstable, which should be avoided as much as possible. Nonetheless, it is commended that stable plug flow and annular flow with a high oil transportation efficiency and minimal power consumption are friendly working conditions. Full article
(This article belongs to the Section H: Geo-Energy)
Show Figures

Figure 1

13 pages, 8620 KiB  
Article
Damping of Liquid Sloshing Using Hydrophobic Walls in the Off-Impulse Regime
by R. C. Cruz-Gómez, Anne Cros, C. O. Monzón and L. E. Capetillo-Peréz
Appl. Sci. 2025, 15(5), 2841; https://doi.org/10.3390/app15052841 - 6 Mar 2025
Viewed by 734
Abstract
In this experimental work, sloshing tests were performed with containers filled with water at 50% of their volume capacity. Two boundary conditions were considered: uncoated containers and containers with hydrophobic coated walls. In addition, several aspect ratios λ (container width over length) were [...] Read more.
In this experimental work, sloshing tests were performed with containers filled with water at 50% of their volume capacity. Two boundary conditions were considered: uncoated containers and containers with hydrophobic coated walls. In addition, several aspect ratios λ (container width over length) were tested. We characterized two regimes, the first when the container is periodically forced at a frequency lower than its resonant frequency and the second after the forcing is suddenly stopped. In each case, the amplitude of the waves was measured. Several surprising results were found. First, in the forced regime, the sloshing amplitude was lower in the hydrophobic containers than in the containers with the non-hydrophobic walls, despite the free-slip condition in the former case. Second, the damping after sudden stoppage was much higher in the containers with hydrophobic walls than in the uncoated containers. This behavior is explained by the collision of waves with oil-coated walls, which generates a lower load pressure. Finally, we found that the damping depends on the dimension of the container through λ, and is greater when λ=1.00. These experimental findings open the way for further innovative research. Full article
(This article belongs to the Section Fluid Science and Technology)
Show Figures

Figure 1

20 pages, 7555 KiB  
Article
Atomistic Investigation of Plastic Deformation and Dislocation Motion in Uranium Mononitride
by Mohamed AbdulHameed, Benjamin Beeler and Antoine Claisse
Appl. Sci. 2025, 15(5), 2666; https://doi.org/10.3390/app15052666 - 1 Mar 2025
Viewed by 1182
Abstract
Uranium mononitride (UN) is a promising advanced nuclear fuel due to its high thermal conductivity and high fissile density. However, many aspects of its mechanical behavior, particularly at reactor-relevant conditions, remain unclear. In this study, molecular dynamics (MD) simulations were employed to investigate [...] Read more.
Uranium mononitride (UN) is a promising advanced nuclear fuel due to its high thermal conductivity and high fissile density. However, many aspects of its mechanical behavior, particularly at reactor-relevant conditions, remain unclear. In this study, molecular dynamics (MD) simulations were employed to investigate the deformation behavior and dislocation motion in UN. We found that the Kocevski potential predicts the principal slip system as 12110{110}, aligning with experimental data. On the other hand, the Tseplyaev potential predicts slip to primarily occur on 12110{111}. MD simulations of stress–strain behavior were used to estimate the nanoindentation hardness, revealing that the Kocevski potential accurately predicts hardness even though it fails to model dynamic plasticity. Complete dislocation mobility functions have been fitted for the edge and screw dislocations in both the thermally activated and phonon-drag regimes. The 300 K linear mobility of the edge dislocation using the Tseplyaev potential was found to be 817 Pa1·s1, whereas that of the screw dislocation using the Kocevski potential was found to be 4546 Pa1·s1. At intermediate stresses, we observed that the subsonic steady-state motion of the edge dislocation in UN is intermittently interrupted by velocity jumps, reaching the average sound velocity. Finally, the threshold Schmid stress is calculated as 179–197 MPa, which gives an upper-limit estimate of the uniaxial yield stress of polycrystalline UN of 548–603 MPa. These findings, including the fitted dislocation mobility function, provide essential input for future plasticity and dislocation dynamics models of nuclear fuels. Full article
Show Figures

Figure 1

22 pages, 9608 KiB  
Article
Research and Application of Geomechanics Using 3D Model of Deep Shale Gas in Luzhou Block, Sichuan Basin, Southwest China
by Ye Chen, Wenzhe Li, Xudong Wang, Yuan Wang, Li Fu, Pengcheng Wu and Zhiqiang Wang
Geosciences 2025, 15(2), 65; https://doi.org/10.3390/geosciences15020065 - 13 Feb 2025
Cited by 4 | Viewed by 808
Abstract
The deep shale gas resources of the Sichuan Basin are abundant and constitute an important component of China’s natural gas production. Complicated by fault zones and other geostructures, the in situ stress state of the deep shale gas reservoirs in the Luzhou block [...] Read more.
The deep shale gas resources of the Sichuan Basin are abundant and constitute an important component of China’s natural gas production. Complicated by fault zones and other geostructures, the in situ stress state of the deep shale gas reservoirs in the Luzhou block remains poorly understood. This study integrated multiple datasets, including acoustic logging, diagnostic fracture injection testing (DFIT), imaging logging, and laboratory stress measurements, for calibration and constraint. A high-precision geomechanical model of the Luzhou block was constructed using the finite element method. This model characterizes the geomechanical properties of the reservoir and explores its applications in optimizing shale gas horizontal well placement, drilling processes, and fracture design. The study findings indicate that the Longmaxi Formation reservoir demonstrates abnormally high pore pressure, with gradients ranging from 16.7 to 21.7 kPa/m. The predominant stress regime is strike-slip, with an overburden stress gradient of 25.5 kPa/m and a minimum horizontal principal stress gradient ranging from 18.8 to 24.5 kPa/m. Based on a three-dimensional geomechanical model, a quantitative delineation of areas conducive to density reduction and pressure control drilling was conducted, and field experiments were implemented in well Y65-X. Utilizing an optimized drilling fluid density of 1.85 g/cm3, the deviated horizontal section was completed in a single trip, resulting in a 67% reduction in the drilling cycle compared to adjacent wells. Similarly, the Y2-X well demonstrated a test daily output of 506,900 cubic meters following an optimization of segmentation clustering and fracturing parameters. Studies indicate that 3D geomechanical modeling, informed by multi-source data constraints, can markedly enhance model precision, and such geomechanical models and their results can effectively augment drilling operational efficiency, elevate single-well production, and are advantageous for development. Full article
(This article belongs to the Section Geomechanics)
Show Figures

Figure 1

24 pages, 25220 KiB  
Article
Comparison of Crustal Stress and Strain Fields in the Himalaya–Tibet Region: Geodynamic Implications
by Federico Pietrolungo, Giusy Lavecchia, Asier Madarieta-Txurruka, Federica Sparacino, Eshaan Srivastava, Daniele Cirillo, Rita de Nardis, Carlo Andrenacci, Simone Bello, Nicolò Parrino, Attilio Sulli and Mimmo Palano
Remote Sens. 2024, 16(24), 4765; https://doi.org/10.3390/rs16244765 - 20 Dec 2024
Cited by 3 | Viewed by 1638
Abstract
The Himalaya–Tibet region represents a complex region of active deformation related to the ongoing India–Eurasia convergence process. To provide additional constraints on the active processes shaping this region, we used a comprehensive dataset of GNSS and focal mechanisms data and derived crustal strain [...] Read more.
The Himalaya–Tibet region represents a complex region of active deformation related to the ongoing India–Eurasia convergence process. To provide additional constraints on the active processes shaping this region, we used a comprehensive dataset of GNSS and focal mechanisms data and derived crustal strain and stress fields. The results allow the detection of features such as the arc-parallel extension along the Himalayan Arc and the coexistence of strike-slip and normal faulting across Tibet. We discuss our findings concerning the relevant geodynamic models proposed in the literature. While earlier studies largely emphasized the role of either compressional or extensional processes, our findings suggest a more complex interaction between them. In general, our study highlights the critical role of both surface and deep processes in shaping the geodynamic processes. The alignment between tectonic stress and strain rate patterns indicates that the crust is highly elastic and influenced by present-day tectonics. Stress and strain orientations show a clockwise rotation at 31°N, reflecting deep control by the underthrusted Indian Plate. South of this boundary, compression is driven by basal drag from the underthrusting Indian Plate, while northward, escape tectonics dominate, resulting in eastward movement of the Tibetan Plateau. Localized stretching along the Himalaya is likely driven by the oblique convergence resulting from the India–Eurasia collision generating a transtensional regime over the Main Himalayan Thrust. In Tibet, stress variations appear mainly related to changes in the vertical axis, driven by topographically induced stresses linked to the uniform elevation of the plateau. From a broader perspective, these findings improve the understanding of driving crustal forces in the Himalaya–Tibet region and provide insights into how large-scale geodynamics drives surface deformation. Additionally, they contribute to the ongoing debate regarding the applicability of the stress–strain comparison and offer a more comprehensive framework for future research in similar tectonic settings worldwide. Full article
(This article belongs to the Section Remote Sensing in Geology, Geomorphology and Hydrology)
Show Figures

Graphical abstract

16 pages, 7121 KiB  
Article
Experimental Aerodynamics of a Small Fixed-Wing Unmanned Aerial Vehicle Coated with Bio-Inspired Microfibers Under Static and Dynamic Stall
by Dioser Santos, Guilherme D. Fernandes, Ali Doosttalab and Victor Maldonado
Aerospace 2024, 11(11), 947; https://doi.org/10.3390/aerospace11110947 - 17 Nov 2024
Cited by 1 | Viewed by 1435
Abstract
A passive flow control technique in the form of microfiber coatings with a diverging pillar cross-section area was applied to the wing suction surface of a small tailless unmanned aerial vehicle (UAV). The coatings are inspired from ‘gecko feet’ surfaces, and their impact [...] Read more.
A passive flow control technique in the form of microfiber coatings with a diverging pillar cross-section area was applied to the wing suction surface of a small tailless unmanned aerial vehicle (UAV). The coatings are inspired from ‘gecko feet’ surfaces, and their impact on steady and unsteady aerodynamics is assessed through wind tunnel testing. Angles of attack from −2° to 17° were used for static experiments, and for some cases, the elevon control surface was deflected to study its effectiveness. In forced oscillation, various combinations of mean angle of attack, frequency and amplitude were explored. The aerodynamic coefficients were calculated from load cell measurements for experimental variables such as microfiber size, the region of the wing coated with microfibers, Reynolds number and angle of attack. Microfibers with a 140 µm pillar height reduce drag by a maximum of 24.7% in a high-lift condition and cruise regime, while 70 µm microfibers work best in the stall flow regime, reducing the drag by 24.2% for the same high-lift condition. Elevon deflection experiments showed that pitch moment authority is significantly improved near stall when microfibers cover the control surface and upstream, with an increase in CM magnitude of up to 22.4%. Dynamic experiments showed that microfibers marginally increase dynamic damping in pitch, improving load factor production in response to control surface actuation at low angles of attack, but reducing it at higher angles. In general, the microfiber pillars are within the laminar boundary layer, and they create a periodic slip condition on the top surface of the pillars, which increases the near-wall momentum over the wing surface. This mechanism is particularly effective in mitigating flow separation at high angles of attack, reducing pressure drag and restoring pitching moment authority provided by control surfaces. Full article
Show Figures

Figure 1

15 pages, 4530 KiB  
Article
Numerical Assessment of the Thermal Performance of Microchannels with Slip and Viscous Dissipation Effects
by Pamela Vocale and Gian Luca Morini
Micromachines 2024, 15(11), 1359; https://doi.org/10.3390/mi15111359 - 8 Nov 2024
Cited by 1 | Viewed by 917
Abstract
Microchannels are widely used across various industries, including pharmaceuticals and biochemistry, automotive and aerospace, energy production, and many others, although they were originally developed for the computing and electronics sectors. The performance of microchannels is strongly affected by factors such as rarefaction and [...] Read more.
Microchannels are widely used across various industries, including pharmaceuticals and biochemistry, automotive and aerospace, energy production, and many others, although they were originally developed for the computing and electronics sectors. The performance of microchannels is strongly affected by factors such as rarefaction and viscous dissipation. In the present paper, a numerical analysis of the performance of microchannels featuring rectangular, trapezoidal and double-trapezoidal cross-sections in the slip flow regime is presented. The fully developed laminar forced convection of a Newtonian fluid with constant properties is considered. The non-dimensional forms of governing equations are solved by setting slip velocity and uniform heat flux as boundary conditions. Model accuracy was established using the available scientific literature. The numerical results indicated that viscous dissipation effects led to a decrease in the average Nusselt number across all the microchannels examined in this study. The degree of reduction is influenced by the cross-section, aspect ratio and Knudsen number. The highest reductions in the average Nusselt number values were observed under continuum flow conditions for all the microchannels investigated. Full article
(This article belongs to the Section A:Physics)
Show Figures

Figure 1

Back to TopTop