Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (81)

Search Parameters:
Keywords = sliding isolation system

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1362 KB  
Article
A Robust Fuzzy Adaptive Control Scheme for PMSM with Sliding Mode Dynamics
by Guangyu Cao, Zhihan Chen, Daoyuan Wang, Xiujing Zhao and Fanwei Meng
Processes 2025, 13(8), 2635; https://doi.org/10.3390/pr13082635 - 20 Aug 2025
Viewed by 167
Abstract
A key trade-off persists in the control of permanent magnet synchronous motors (PMSMs): achieving fast finite-time convergence often exacerbates control chattering, while conventional chattering-suppression methods can compromise the system’s dynamic response. The existing literature often addresses these challenges in isolation. The core original [...] Read more.
A key trade-off persists in the control of permanent magnet synchronous motors (PMSMs): achieving fast finite-time convergence often exacerbates control chattering, while conventional chattering-suppression methods can compromise the system’s dynamic response. The existing literature often addresses these challenges in isolation. The core original contribution of this research lies in proposing a novel robust fuzzy adaptive control scheme that effectively resolves this trade-off through a synergistic design. The contributions are as follows: (1) A novel reaching law is formulated to significantly accelerate error convergence, achieving finite-time stability and improving upon conventional reaching law designs. (2) A super-twisting sliding mode observer is integrated into the control loop, providing accurate real-time estimation of load torque disturbances, which is used for feedforward compensation to drastically improve the system’s disturbance rejection capability. (3) A fuzzy adaptive mechanism is developed to dynamically tune key gains in the sliding mode law. This approach effectively suppresses chattering without sacrificing response speed, enhancing system robustness. (4) The stability and convergence of the proposed controller are rigorously analyzed. Simulations, comparing the proposed method with conventional adaptive sliding mode control (ASMC), demonstrate its marked superiority in control accuracy, transient behavior, and disturbance rejection. This work provides an integrated solution that balances rapidity and smoothness for high-performance motor control, offering significant theoretical and engineering value. Full article
(This article belongs to the Special Issue Design and Analysis of Adaptive Identification and Control)
Show Figures

Figure 1

31 pages, 4576 KB  
Article
Detection, Isolation, and Identification of Multiplicative Faults in a DC Motor and Amplifier Using Parameter Estimation Techniques
by Sanja Antić, Marko Rosić, Branko Koprivica, Alenka Milovanović and Milentije Luković
Appl. Sci. 2025, 15(15), 8322; https://doi.org/10.3390/app15158322 - 26 Jul 2025
Viewed by 365
Abstract
The increasing complexity of modern control systems highlights the need for reliable and robust fault detection, isolation, and identification (FDII) methods, particularly in safety-critical and industrial applications. The study focuses on the FDII of multiplicative faults in a DC motor and its electronic [...] Read more.
The increasing complexity of modern control systems highlights the need for reliable and robust fault detection, isolation, and identification (FDII) methods, particularly in safety-critical and industrial applications. The study focuses on the FDII of multiplicative faults in a DC motor and its electronic amplifier. To simulate such scenarios, a complete laboratory platform was developed for real-time FDII, using relay-based switching and custom LabVIEW software 2009. This platform enables real-time experimentation and represents an important component of the study. Two estimation-based fault detection (FD) algorithms were implemented: the Sliding Window Algorithm (SWA) for discrete-time models and a modified Sliding Integral Algorithm (SIA) for continuous-time models. The modification introduced to the SIA limits the data length used in least squares estimation, thereby reducing the impact of transient effects on parameter accuracy. Both algorithms achieved high model output-to-measured signal agreement, up to 98.6% under nominal conditions and above 95% during almost all fault scenarios. Moreover, the proposed fault isolation and identification methods, including a decision algorithm and an indirect estimation approach, successfully isolated and identified faults in key components such as amplifier resistors (R1, R9, R12), capacitor (C8), and motor parameters, including armature resistance (Ra), inertia (J), and friction coefficient (B). The decision algorithm, based on continuous-time model coefficients, demonstrated reliable fault isolation and identification, while the reduced Jacobian-based approach in the discrete model enhanced fault magnitude estimation, with deviations typically below 10%. Additionally, the platform supports remote experimentation, offering a valuable resource for advancing model-based FDII research and engineering education. Full article
Show Figures

Figure 1

29 pages, 1602 KB  
Article
A Recommender System Model for Presentation Advisor Application Based on Multi-Tower Neural Network and Utility-Based Scoring
by Maria Vlahova-Takova and Milena Lazarova
Electronics 2025, 14(13), 2528; https://doi.org/10.3390/electronics14132528 - 22 Jun 2025
Viewed by 847
Abstract
Delivering compelling presentations is a critical skill across academic, professional, and public domains—yet many presenters struggle with structuring content, maintaining visual consistency, and engaging their audience effectively. Existing tools offer isolated support for design or delivery but fail to promote long-term skill development. [...] Read more.
Delivering compelling presentations is a critical skill across academic, professional, and public domains—yet many presenters struggle with structuring content, maintaining visual consistency, and engaging their audience effectively. Existing tools offer isolated support for design or delivery but fail to promote long-term skill development. This paper presents a novel intelligent application, the Presentation Advisor application, powered by a personalized recommendation engine that goes beyond fixing slide content and visualization, enabling users to build presentation competence. The recommendation engine leverages a model based on hybrid multi-tower neural network architecture enhanced with temporal encoding, problem sequence modeling, and utility-based scoring to deliver adaptive context-aware feedback. Unlike current tools, the presented system analyzes user-submitted presentations to detect common issues and delivers curated educational content tailored to user preferences, presentation types, and audiences. The system also incorporates strategic cold-start mitigation, ensuring high-quality recommendations even for new users or unseen content. Comprehensive experimental evaluations demonstrate that the suggested model significantly outperforms content-based filtering, collaborative filtering, autoencoders, and reinforcement learning approaches across both accuracy and personalization metrics. By combining cutting-edge recommendation techniques with a pedagogical framework, the Presentation Advisor application enables users not only to improve individual presentations but to become consistently better presenters over time. Full article
(This article belongs to the Section Computer Science & Engineering)
Show Figures

Figure 1

26 pages, 2591 KB  
Article
RHAD: A Reinforced Heterogeneous Anomaly Detector for Robust Industrial Control System Security
by Xiaopeng Han, Yukun Niu, Zhigang Cao, Ding Zhou and Bo Liu
Electronics 2025, 14(12), 2440; https://doi.org/10.3390/electronics14122440 - 16 Jun 2025
Viewed by 488
Abstract
Industrial Control Systems (ICS) are increasingly targeted by sophisticated and evolving cyberattacks, while conventional static defense mechanisms and isolated intrusion detection models often lack the robustness required to cope with such dynamic threats. To overcome these limitations, we propose RHAD (Reinforced Heterogeneous Anomaly [...] Read more.
Industrial Control Systems (ICS) are increasingly targeted by sophisticated and evolving cyberattacks, while conventional static defense mechanisms and isolated intrusion detection models often lack the robustness required to cope with such dynamic threats. To overcome these limitations, we propose RHAD (Reinforced Heterogeneous Anomaly Detector), a resilient and adaptive anomaly detection framework specifically designed for ICS environments. RHAD combines a heterogeneous ensemble of detection models with a confidence-aware scheduling mechanism guided by reinforcement learning (RL), alongside a time-decaying sliding window voting strategy to enhance detection accuracy and temporal robustness. The proposed architecture establishes a modular collaborative framework that enables dynamic and fine-grained protection for industrial network traffic. At its core, the RL-based scheduler leverages the Proximal Policy Optimization (PPO) algorithm to dynamically assign model weights and orchestrate container-level executor replacement in real time, driven by network state observations and runtime performance feedback. We evaluate RHAD using two publicly available ICS datasets—SCADA and WDT—achieving 99.19% accuracy with an F1-score of 0.989 on SCADA, and 98.35% accuracy with an F1-score of 0.987 on WDT. These results significantly outperform state-of-the-art deep learning baselines, confirming RHAD’s robustness under class imbalance conditions. Thus, RHAD provides a promising foundation for resilient ICS security and shows strong potential for broader deployment in cyber-physical systems. Full article
Show Figures

Figure 1

23 pages, 2742 KB  
Article
A Comparative Analysis of International Standards on Curved Surface Isolators for Buildings
by David Vargas, Roberto Nascimbene, Agostino Marioni and Marco Banfi
Appl. Sci. 2025, 15(8), 4254; https://doi.org/10.3390/app15084254 - 11 Apr 2025
Cited by 1 | Viewed by 509
Abstract
This study presents a comprehensive comparative analysis of a hospital located in Costa Rica, examining the performance of sliding pendulum isolators under different international seismic design standards. The standards considered in this research include the U.S. code ASCE/SEI 7-22 and various European standards, [...] Read more.
This study presents a comprehensive comparative analysis of a hospital located in Costa Rica, examining the performance of sliding pendulum isolators under different international seismic design standards. The standards considered in this research include the U.S. code ASCE/SEI 7-22 and various European standards, namely EN 15129, EN 1337, and EN 1998-1. The case study employs the Equivalent Linear Analysis method, as prescribed by Eurocode 8, alongside the Equivalent Lateral Force procedure from ASCE/SEI 7-22. The seismic action is defined using the acceleration response spectrum from the Costa Rican Seismic Code (CSCR-10, 2010). However, certain limitations must be acknowledged when applying the equivalent linear analysis approach. One key restriction is that the isolation system must be modeled with equivalent viscoelastic behavior, which is feasible for sliding pendulum isolators. Despite being a simplified method, this approach proves valuable in the initial selection and optimization of an isolation system, particularly for practitioners. It is recommended that this method be applied as a preliminary step before performing more advanced nonlinear analyses. After determining the optimized parameters for the friction pendulum system, the detailed design of the isolators will be conducted following the provisions of the selected international standards. This process includes verifying compliance with key performance requirements such as self-recentering capability, type testing procedures, deformation verification, and partial load verification on the concrete pedestal, where the isolators are assumed to be installed. These requirements ensure that the isolation system meets the necessary structural performance criteria, providing reliable seismic protection while adhering to international engineering best practices. Full article
Show Figures

Figure 1

32 pages, 4386 KB  
Article
Multi-Source, Fault-Tolerant, and Robust Navigation Method for Tightly Coupled GNSS/5G/IMU System
by Zhongliang Deng, Zhichao Zhang, Zhenke Ding and Bingxun Liu
Sensors 2025, 25(3), 965; https://doi.org/10.3390/s25030965 - 5 Feb 2025
Viewed by 1406
Abstract
The global navigation satellite system (GNSS) struggles to deliver the precision and reliability required for positioning, navigation, and timing (PNT) services in environments with severe interference. Fifth-generation (5G) cellular networks, with their low latency, high bandwidth, and large capacity, offer a robust communication [...] Read more.
The global navigation satellite system (GNSS) struggles to deliver the precision and reliability required for positioning, navigation, and timing (PNT) services in environments with severe interference. Fifth-generation (5G) cellular networks, with their low latency, high bandwidth, and large capacity, offer a robust communication infrastructure, enabling 5G base stations (BSs) to extend coverage into regions where traditional GNSSs face significant challenges. However, frequent multi-sensor faults, including missing alarm thresholds, uncontrolled error accumulation, and delayed warnings, hinder the adaptability of navigation systems to the dynamic multi-source information of complex scenarios. This study introduces an advanced, tightly coupled GNSS/5G/IMU integration framework designed for distributed PNT systems, providing all-source fault detection with weighted, robust adaptive filtering. A weighted, robust adaptive filter (MCC-WRAF), grounded in the maximum correntropy criterion, was developed to suppress fault propagation, relax Gaussian noise constraints, and improve the efficiency of observational weight distribution in multi-source fusion scenarios. Moreover, we derived the intrinsic relationships of filtering innovations within wireless measurement models and proposed a time-sequential, observation-driven full-source FDE and sensor recovery validation strategy. This approach employs a sliding window which expands innovation vectors temporally based on source encoding, enabling real-time validation of isolated faulty sensors and adaptive adjustment of observational data in integrated navigation solutions. Additionally, a covariance-optimal, inflation-based integrity protection mechanism was introduced, offering rigorous evaluations of distributed PNT service availability. The experimental validation was carried out in a typical outdoor scenario, and the results highlight the proposed method’s ability to mitigate undetected fault impacts, improve detection sensitivity, and significantly reduce alarm response times across step, ramp, and multi-fault mixed scenarios. Additionally, the dynamic positioning accuracy of the fusion navigation system improved to 0.83 m (1σ). Compared with standard Kalman filtering (EKF) and advanced multi-rate Kalman filtering (MRAKF), the proposed algorithm achieved 28.3% and 53.1% improvements in its 1σ error, respectively, significantly enhancing the accuracy and reliability of the multi-source fusion navigation system. Full article
(This article belongs to the Section Navigation and Positioning)
Show Figures

Figure 1

29 pages, 9768 KB  
Article
Modeling, Design, and Laboratory Testing of a Passive Friction Seismic Metamaterial Base Isolator (PFSMBI)
by Shayan Khosravi and Mohsen Amjadian
Materials 2025, 18(2), 363; https://doi.org/10.3390/ma18020363 - 15 Jan 2025
Cited by 1 | Viewed by 1200
Abstract
This paper focuses on the theoretical and analytical modeling of a novel seismic isolator termed the Passive Friction Mechanical Metamaterial Seismic Isolator (PFSMBI) system, which is designed for seismic hazard mitigation in multi-story buildings. The PFSMBI system consists of a lattice structure composed [...] Read more.
This paper focuses on the theoretical and analytical modeling of a novel seismic isolator termed the Passive Friction Mechanical Metamaterial Seismic Isolator (PFSMBI) system, which is designed for seismic hazard mitigation in multi-story buildings. The PFSMBI system consists of a lattice structure composed of a series of identical small cells interconnected by layers made of viscoelastic materials. The main function of the lattice is to shift the fundamental natural frequency of the building away from the dominant frequency of earthquake excitations by creating low-frequency bandgaps (FBGs) below 20 Hz. In this configuration, each unit cell contains an inner resonator that slides over a friction surface while it is tuned to vibrate at the fundamental natural frequency of the building. This resonance enhances the energy dissipation capacity of the PFSMBI system. After deriving the governing equations for four selected lattice configurations (i.e., Cases 1–4), a parametric study is performed to optimize the PFSMBI system for a wide range of harmonic ground motion frequencies. In this study, we examine how key parameters, such as the mass ratios of the cells and resonators, tuning frequency ratios, the number of cells, and the coefficient of friction, affect the system’s performance. The PFSMBI system is then incorporated into the dynamic model of a six-story base-isolated building to evaluate its effectiveness in reducing the floor acceleration and inter-story drift under actual earthquake ground motion records. This dynamic model is used to investigate the effect of stick–slip motion (SSM) on the energy dissipation performance of a PFSMBI system by employing the LuGre friction model. The numerical results show that the optimized PFSMBI system, through its lattice structure and frictional resonators, effectively reduces floor acceleration and inter-story drift by leveraging FBGs and frictional energy dissipation, particularly when SSM effects are properly accounted for. Finally, a small-scale prototype of the PFSMBI system with two cells is developed to verify the effect of SSM. This experimental validation highlights that neglecting SSM can lead to an overestimation of the energy dissipation performance of PFSMBI systems. Full article
Show Figures

Figure 1

19 pages, 887 KB  
Article
Fault-Tolerant Closed-Loop Controller Using Online Fault Detection by Neural Networks
by Alma Y. Alanis, Jesus G. Alvarez, Oscar D. Sanchez, Hannia M. Hernandez and Arturo Valdivia-G
Machines 2024, 12(12), 844; https://doi.org/10.3390/machines12120844 - 25 Nov 2024
Cited by 1 | Viewed by 1025
Abstract
This paper presents an online model-free sensor fault-tolerant control scheme capable of tolerating the most common faults affecting an induction motor. This approach involves using neural networks for fault detection to provide the controller with sufficient information to counteract adverse consequences due to [...] Read more.
This paper presents an online model-free sensor fault-tolerant control scheme capable of tolerating the most common faults affecting an induction motor. This approach involves using neural networks for fault detection to provide the controller with sufficient information to counteract adverse consequences due to sensor faults, such as degradation in performance, reliability, and even failures in the control system. The proposed approach does not consider the knowledge of the nominal model of the system or when the fault may occur. Therefore, a high-order recurrent neural network trained online by the Extended Kalman Filter is used to obtain a mathematical model of the system. The obtained model is used to synthesize a discrete-time sliding mode control. Then, the fault-detection and -isolation stage is performed by independent neural networks, which have as input the signal from the current sensor and the position sensor, respectively. In this way, the neural classifiers continuously monitor the sensors, showing the ability to know the sensor status. The combination of controller and fault detection maintains the operation of the motor during the time of the fault occurrence, whether due to sensor disconnection, degradation, or connection failure. In fact, the MLP neural network achieves an accuracy between 95% and 99% and shows an AUC of 97% to 99%, and this neural network correctly classifies true positives with acceptable performance. The Recall value is high, between 97% and 99%, and the F1 score confirms a good performance. In contrast, the CNN shows a higher accuracy, between 96% and 99% in accuracy and 98% to 99% in AUC. In addition, its Recall and F1 reflect a better balance and capacity to handle complex data, demonstrating its superiority to MLP in fault classification. Therefore, neural networks are a promising approach in areas such as fault-tolerant control. Full article
(This article belongs to the Special Issue Computational Intelligence for Fault Detection and Classification)
Show Figures

Figure 1

19 pages, 583 KB  
Article
Control Conditions for Equal Power Sharing in Multi-Area Power Systems for Resilience Against False Data Injection Attacks
by Zahoor Ahmed, Muhammad Nasir, Deema Mohammed Alsekait, Muhammad Zohaib Hassan Shah, Diaa Salama AbdElminaam and Furqan Ahmad
Energies 2024, 17(22), 5757; https://doi.org/10.3390/en17225757 - 18 Nov 2024
Cited by 1 | Viewed by 784
Abstract
Power cyber–physical systems such as multi-area power systems (MAPSs) have gained considerable attention due to their integration of power electronics with wireless communications technologies. Incorporating a communication setup enhances the sustainability, reliability, and efficiency of these systems. Amidst these exceptional benefits, such systems’ [...] Read more.
Power cyber–physical systems such as multi-area power systems (MAPSs) have gained considerable attention due to their integration of power electronics with wireless communications technologies. Incorporating a communication setup enhances the sustainability, reliability, and efficiency of these systems. Amidst these exceptional benefits, such systems’ distributed nature invites various cyber-attacks. This work focuses on the equal power sharing of MAPSs in the event of false data injection (FDI) attacks. The proposed work uses a sliding mode control (SMC) mechanism to ensure timely detection of challenges such as FDI attacks and load change, making MAPSs reliable and secure. First, a SMC-based strategy is deployed to enable the detection and isolation of compromised participants in MAPS operations to achieve equal power sharing. Second, time-varying FDI attacks on MAPSs are formulated and demonstrate their impact on equal power sharing. Third, a robust adaptive sliding mode observer is used to accurately assess the state of the MAPS to handle state errors robustly and automatically adjust parameters for identifying FDI attacks and load changes. Lastly, simulation results are presented to explain the useful ability of the suggested method. Full article
Show Figures

Figure 1

31 pages, 2827 KB  
Article
Research on Triplex Redundant Flight Control System Based on M1394B Bus
by Yuchen Zhang, Yu Yang, Yu Zhang, Liaoni Wu and Zhiming Guo
Aerospace 2024, 11(11), 909; https://doi.org/10.3390/aerospace11110909 - 5 Nov 2024
Cited by 1 | Viewed by 2412
Abstract
In the modern aviation field, flight control systems’ reliability and safety are paramount. This paper presents a triplex redundant flight control system based on the M1394B bus and designs several key algorithms to enhance system performance. Firstly, a triplex redundant flight control system [...] Read more.
In the modern aviation field, flight control systems’ reliability and safety are paramount. This paper presents a triplex redundant flight control system based on the M1394B bus and designs several key algorithms to enhance system performance. Firstly, a triplex redundant flight control system with a redundant bus structure is constructed based on the characteristics of the M1394B bus. Secondly, a periodic synchronization algorithm with automatic adjustment capabilities is designed to achieve periodic synchronization among the Vehicle Management Computers. An improved voting algorithm based on a sliding window is proposed to enhance the decision-making accuracy and reliability of the control commands output by the flight control system. Additionally, a system reconstruction algorithm is designed to promptly identify and isolate faults, enabling the recovery and reallocation of system resources. Finally, experiments validate the effectiveness of the synchronization algorithm, voting algorithm, and system reconstruction algorithm. The results indicate that the system can effectively address practical engineering challenges and significantly improve reliability and stability. This research provides an essential theoretical foundation and practical reference for the design of future flight control systems for unmanned aerial vehicles and aircraft, holding significant relevance to application. Full article
Show Figures

Figure 1

15 pages, 4982 KB  
Article
Research on DC Electric Shock Protection Method Based on Sliding Curvature Accumulation Quantity
by Hongzhang Zhu, Chuanping Wu, Yao Xie, Yang Zhou, Xiujin Liao and Jian Li
Electronics 2024, 13(16), 3336; https://doi.org/10.3390/electronics13163336 - 22 Aug 2024
Cited by 1 | Viewed by 1128
Abstract
To address the limitations of current DC residual current protection methods, which primarily rely on the amplitude of DC residual current for fault detection and fail to safeguard against electric shocks at two points on the same side in DC Isolated Terra (IT) [...] Read more.
To address the limitations of current DC residual current protection methods, which primarily rely on the amplitude of DC residual current for fault detection and fail to safeguard against electric shocks at two points on the same side in DC Isolated Terra (IT) System systems, this paper introduces a novel protection method based on DC electric shock features. This paper first analyzes the sliding curvature accumulation and peak rise time features of DC basic residual current, load mutation current, and animal body electric shock current under multi-factor conditions. The analysis shows that sliding curvature accumulation in the range of 0.1 ≤ K ≤ 1 and a peak rise time of Δt ≥ 20 ms can effectively distinguish animal body electric shock. Then, based on this electric shock’s distinctive characteristics, an approach for identifying types of electric shock is developed. Finally, a DC residual current protective device (DC-RCD) is designed. The prototype test results demonstrate that the DC-RCD has an action time of ts < 70 ms. The proposed method accurately provides protection against electric shocks and effectively addresses the issue of inadequate protection when two fault points occur on the same side within an IT system. This approach holds significant reference value for the development of next-generation DC-RCDs. Full article
(This article belongs to the Section Power Electronics)
Show Figures

Figure 1

19 pages, 39781 KB  
Article
An On-Line Sensor Fault Detection System for an AC Microgrid Secondary Control Based on a Sliding Mode Observer Model
by John Bravo, Leony Ortiz, Edwin García, Milton Ruiz and Alexander Aguila
Energies 2024, 17(15), 3808; https://doi.org/10.3390/en17153808 - 2 Aug 2024
Cited by 3 | Viewed by 1160
Abstract
The current study proposes a strategy for sensing fault detection in the secondary control of an isolated Microgrid based on a high-order Sliding Mode Robust Observers design. The proposed strategy’s main objective is to support future diagnostic and fault tolerance systems in handling [...] Read more.
The current study proposes a strategy for sensing fault detection in the secondary control of an isolated Microgrid based on a high-order Sliding Mode Robust Observers design. The proposed strategy’s main objective is to support future diagnostic and fault tolerance systems in handling these extreme situations. The proposal is based on a generation system and a waste management system. Four test scenarios were generated in a typical Microgrid to validate the designed strategy, including two Battery Energy Storage Systems in parallel, linear, and non-linear loads. The scenarios included normal grid operation and three types of sensing faults (abrupt, incipient, and random) directly affecting the secondary control of a hierarchical control strategy. The results showed that the proposed strategy could provide a real-time decision for detection and reduce the occurrence of false alarms in this process. The effectiveness of the fault detection strategy was verified and tested by digital simulation in Matlab/Simulink R2023b. Full article
(This article belongs to the Section A1: Smart Grids and Microgrids)
Show Figures

Figure 1

22 pages, 11286 KB  
Article
Advancing Dual-Active-Bridge DC–DC Converters with a New Control Strategy Based on a Double Integral Super Twisting Sliding Mode Control
by Irfan Sami, Waleed Alhosaini, Danish Khan and Emad M. Ahmed
World Electr. Veh. J. 2024, 15(8), 348; https://doi.org/10.3390/wevj15080348 - 1 Aug 2024
Cited by 7 | Viewed by 2757
Abstract
Dual-Active-Bridge (DAB) DC–DC converters are becoming increasingly favored for their efficiency in transferring electrical power across varying voltage levels. They are crucial in enhancing safety and reliability in various fields, such as renewable energy systems, electric vehicles, and the power supplies of electronic [...] Read more.
Dual-Active-Bridge (DAB) DC–DC converters are becoming increasingly favored for their efficiency in transferring electrical power across varying voltage levels. They are crucial in enhancing safety and reliability in various fields, such as renewable energy systems, electric vehicles, and the power supplies of electronic devices. This paper introduces a new control strategy for bidirectional isolated DAB DC–DC converters, implementing a Double Integral Super Twisting Sliding Mode Control (DI-STSMC) to accurately regulate the output voltage and current. The approach starts with a state-space representation to mathematically model the DAB converter. In light of model uncertainties and external disturbances, a robust DI-STSMC controller has been formulated to optimize the DAB converter’s output performance. This method achieves zero steady-state error without chattering and provides a quick response to fluctuations in load and reference changes. The validity of the proposed technique is demonstrated through simulation results and a control hardware-in-the-loop (CHIL) experimental setup, using Typhoon HIL 606 and Imperix B-Box RCP 3.0 on a 230 W DAB converter. Furthermore, the paper offers a comparative analysis of the DI-STSMC with other control strategies, such as the proportional-integral (PI) controller, standard sliding mode control (SMC), and integral sliding mode control (ISMC). Full article
(This article belongs to the Special Issue Power Electronics for Electric Vehicles)
Show Figures

Figure 1

16 pages, 2099 KB  
Article
Modeling of the Human Cardiovascular System: Implementing a Sliding Mode Observer for Fault Detection and Isolation
by Dulce A. Serrano-Cruz, Latifa Boutat-Baddas, Mohamed Darouach, Carlos M. Astorga-Zaragoza and Gerardo V. Guerrero Ramírez
Math. Comput. Appl. 2024, 29(4), 57; https://doi.org/10.3390/mca29040057 - 17 Jul 2024
Cited by 2 | Viewed by 1970
Abstract
This paper presents a mathematical model of the cardiovascular system (CVS) designed to simulate both normal and pathological conditions within the systemic circulation. The model introduces a novel representation of the CVS through a change of coordinates, transforming it into the “quadratic normal [...] Read more.
This paper presents a mathematical model of the cardiovascular system (CVS) designed to simulate both normal and pathological conditions within the systemic circulation. The model introduces a novel representation of the CVS through a change of coordinates, transforming it into the “quadratic normal form”. This model facilitates the implementation of a sliding mode observer (SMO), allowing for the estimation of system states and the detection of anomalies, even though the system is linearly unobservable. The primary focus is on identifying valvular heart diseases, which are significant risk factors for cardiovascular diseases. The model’s validity is confirmed through simulations that replicate hemodynamic parameters, aligning with existing literature and experimental data. Full article
(This article belongs to the Special Issue Numerical and Evolutionary Optimization 2024)
Show Figures

Figure 1

15 pages, 11625 KB  
Article
Non-Linear Dynamics of Simple Elastic Systems Undergoing Friction-Ruled Stick–Slip Motions
by Riccardo Barsotti, Stefano Bennati and Giovanni Migliaccio
CivilEng 2024, 5(2), 420-434; https://doi.org/10.3390/civileng5020021 - 3 May 2024
Cited by 3 | Viewed by 2533
Abstract
The stick–slip phenomenon is a jerking motion that can occur while two objects slide over each other with friction. There are several situations in which this phenomenon can be observed: between the slabs of the friction dampers used to mitigate vibrations in buildings, [...] Read more.
The stick–slip phenomenon is a jerking motion that can occur while two objects slide over each other with friction. There are several situations in which this phenomenon can be observed: between the slabs of the friction dampers used to mitigate vibrations in buildings, as well as between the components of the base isolation systems used for seismic protection. The systems of this kind are usually designed to work in a smooth and flawless manner, but under particular conditions undesired jerking motions may develop, yielding complex dynamic behavior even when only a few degrees of freedom are involved. A simplified approach to the problems of this kind leads to the mechanical model of a rigid block connected elastically to a rigid support and at the same time with friction to a second rigid support, both the supports having a prescribed motion. Despite the apparent simplicity of this model, it is very useful for studying important features of the non-linear dynamics of many physical systems. In this work, after a suitable formulation of the problem, the equations of motion are solved analytically in the sticking and sliding phases, and the influence of the main parameters of the system on its dynamics and limit cycles is investigated and discussed. Full article
(This article belongs to the Special Issue "Stability of Structures", in Memory of Prof. Marcello Pignataro)
Show Figures

Figure 1

Back to TopTop