Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (646)

Search Parameters:
Keywords = six degrees-of-freedom

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 615 KiB  
Article
Translating SGRT from Breast to Lung Cancer: A Study on Frameless Immobilization and Real-Time Monitoring Efficacy, Focusing on Setup Accuracy
by Jang Bo Shim, Hakyoung Kim, Sun Myung Kim and Dae Sik Yang
Life 2025, 15(8), 1234; https://doi.org/10.3390/life15081234 - 4 Aug 2025
Abstract
Objectives: Surface-Guided Radiation Therapy (SGRT) has been widely adopted in breast cancer radiotherapy, particularly for improving setup accuracy and motion management. Recently, its application in lung cancer has attracted growing interest due to similar needs for precision. This study investigates the feasibility and [...] Read more.
Objectives: Surface-Guided Radiation Therapy (SGRT) has been widely adopted in breast cancer radiotherapy, particularly for improving setup accuracy and motion management. Recently, its application in lung cancer has attracted growing interest due to similar needs for precision. This study investigates the feasibility and clinical utility of SGRT in lung cancer treatment, focusing on its effectiveness in patient setup and real-time motion monitoring under frameless immobilization conditions. Materials and Methods: A total of 204 treatment records from 17 patients with primary lung cancer who underwent radiotherapy at Korea University Guro Hospital between October 2024 and April 2025 were retrospectively analyzed. Patients were initially positioned using the Identify system (Varian) in the CT suite, with surface data transferred to the treatment room system. Alignment was performed to within ±1 cm and ±2° across six degrees of freedom. Cone-beam CT (CBCT) was acquired prior to treatment for verification, and treatment commenced when the Distance to Correspondence Surface (DCS) was ≤0.90. Setup deviations from the Identify system were recorded and compared with CBCT in three translational axes to evaluate positioning accuracy and PTV displacement. Results and Conclusions: The Identify system was shown to provide high setup accuracy and reliable real-time motion monitoring in lung cancer radiotherapy. Its ability to detect patient movement and automatically interrupt beam delivery contributes to enhanced treatment safety and precision. In addition, even though the maximum longitudinal (Lng) shift reached up to −1.83 cm with surface-guided setup, and up to 1.78 cm (Lat) 5.26 cm (Lng), 9.16 cm (Vrt) with CBCT-based verification, the use of Identify’s auto-interruption mode (±1 cm in translational axes, ±2° in rotational axes) allowed treatment delivery with PTV motion constrained within ±0.02 cm. These results suggest that, due to significant motion in the longitudinal direction, appropriate PTV margins should be considered during treatment planning. The Identify system enhances setup accuracy in lung cancer patients using a surface-guided approach and enables real-time tracking of intra-fractional errors. SGRT, when implemented with systems such as Identify, shows promise as a feasible alternative or complement to conventional IGRT in selected lung cancer cases. Further studies with larger patient cohorts and diverse clinical settings are warranted to validate these findings. Full article
(This article belongs to the Special Issue Current Advances in Lung Cancer Diagnosis and Treatment)
Show Figures

Figure 1

27 pages, 21019 KiB  
Article
A UWB-AOA/IMU Integrated Navigation System for 6-DoF Indoor UAV Localization
by Pengyu Zhao, Hengchuan Zhang, Gang Liu, Xiaowei Cui and Mingquan Lu
Drones 2025, 9(8), 546; https://doi.org/10.3390/drones9080546 - 1 Aug 2025
Viewed by 192
Abstract
With the increasing deployment of unmanned aerial vehicles (UAVs) in indoor environments, the demand for high-precision six-degrees-of-freedom (6-DoF) localization has grown significantly. Ultra-wideband (UWB) technology has emerged as a key enabler for indoor UAV navigation due to its robustness against multipath effects and [...] Read more.
With the increasing deployment of unmanned aerial vehicles (UAVs) in indoor environments, the demand for high-precision six-degrees-of-freedom (6-DoF) localization has grown significantly. Ultra-wideband (UWB) technology has emerged as a key enabler for indoor UAV navigation due to its robustness against multipath effects and high-accuracy ranging capabilities. However, conventional UWB-based systems primarily rely on range measurements, operate at low measurement frequencies, and are incapable of providing attitude information. This paper proposes a tightly coupled error-state extended Kalman filter (TC–ESKF)-based UWB/inertial measurement unit (IMU) fusion framework. To address the challenge of initial state acquisition, a weighted nonlinear least squares (WNLS)-based initialization algorithm is proposed to rapidly estimate the UAV’s initial position and attitude under static conditions. During dynamic navigation, the system integrates time-difference-of-arrival (TDOA) and angle-of-arrival (AOA) measurements obtained from the UWB module to refine the state estimates, thereby enhancing both positioning accuracy and attitude stability. The proposed system is evaluated through simulations and real-world indoor flight experiments. Experimental results show that the proposed algorithm outperforms representative fusion algorithms in 3D positioning and yaw estimation accuracy. Full article
Show Figures

Figure 1

19 pages, 8681 KiB  
Article
Design and Implementation of a Biomimetic Underwater Robot Propulsion System Inspired by Bullfrog Hind Leg Movements
by Yichen Chu, Yahui Wang, Yanhui Fu, Mingxu Ma, Yunan Zhong and Tianbiao Yu
Biomimetics 2025, 10(8), 498; https://doi.org/10.3390/biomimetics10080498 - 30 Jul 2025
Viewed by 332
Abstract
Underwater propulsion systems are the fundamental functional modules of underwater robotics and are crucial in intricate underwater operational scenarios. This paper proposes a biomimetic underwater robot propulsion scheme that is motivated by the hindlimb movements of the bullfrog. A multi-linkage mechanism was developed [...] Read more.
Underwater propulsion systems are the fundamental functional modules of underwater robotics and are crucial in intricate underwater operational scenarios. This paper proposes a biomimetic underwater robot propulsion scheme that is motivated by the hindlimb movements of the bullfrog. A multi-linkage mechanism was developed to replicate the “kicking-and-retracting” motion of the bullfrog by employing motion capture systems to acquire biological data on their hindlimb movements. The FDM 3D printing and PC board engraving techniques were employed to construct the experimental prototype. The prototype’s biomimetic and motion characteristics were validated through motion capture experiments and comparisons with a real bullfrog. The biomimetic bullfrog hindlimb propulsion system was tested with six-degree-of-freedom force experiments to evaluate its propulsion capabilities. The system achieved an average thrust of 2.65 N. The effectiveness of motor drive parameter optimization was validated by voltage comparison experiments, which demonstrated a nonlinear increase in thrust as voltage increased. This design approach, which transforms biological kinematic characteristics into mechanical drive parameters, exhibits excellent feasibility and efficacy, offering a novel solution and quantitative reference for underwater robot design. Full article
Show Figures

Figure 1

31 pages, 11649 KiB  
Article
Development of Shunt Connection Communication and Bimanual Coordination-Based Smart Orchard Robot
by Bin Yan and Xiameng Li
Agronomy 2025, 15(8), 1801; https://doi.org/10.3390/agronomy15081801 - 25 Jul 2025
Viewed by 189
Abstract
This research addresses the enhancement of operational efficiency in apple-picking robots through the design of a bimanual spatial configuration enabling obstacle avoidance in contemporary orchard environments. A parallel coordinated harvesting paradigm for dual-arm systems was introduced, leading to the construction and validation of [...] Read more.
This research addresses the enhancement of operational efficiency in apple-picking robots through the design of a bimanual spatial configuration enabling obstacle avoidance in contemporary orchard environments. A parallel coordinated harvesting paradigm for dual-arm systems was introduced, leading to the construction and validation of a six-degree-of-freedom bimanual apple-harvesting robot. Leveraging the kinematic architecture of the AUBO-i5 manipulator, three spatial layout configurations for dual-arm systems were evaluated, culminating in the adoption of a “workspace-overlapping Type B” arrangement. A functional prototype of the bimanual apple-harvesting system was subsequently fabricated. The study further involved developing control architectures for two end-effector types: a compliant gripper and a vacuum-based suction mechanism, with corresponding operational protocols established. A networked communication framework for parallel arm coordination was implemented via Ethernet switching technology, enabling both independent and synchronized bimanual operation. Additionally, an intersystem communication protocol was formulated to integrate the robotic vision system with the dual-arm control architecture, establishing a modular parallel execution model between visual perception and motion control modules. A coordinated bimanual harvesting strategy was formulated, incorporating real-time trajectory and pose monitoring of the manipulators. Kinematic simulations were executed to validate the feasibility of this strategy. Field evaluations in modern Red Fuji apple orchards assessed multidimensional harvesting performance, revealing 85.6% and 80% success rates for the suction and gripper-based arms, respectively. Single-fruit retrieval averaged 7.5 s per arm, yielding an overall system efficiency of 3.75 s per fruit. These findings advance the technological foundation for intelligent apple-harvesting systems, offering methodologies for the evolution of precision agronomic automation. Full article
(This article belongs to the Special Issue Smart Farming: Advancing Techniques for High-Value Crops)
Show Figures

Figure 1

28 pages, 3228 KiB  
Article
Examination of Eye-Tracking, Head-Gaze, and Controller-Based Ray-Casting in TMT-VR: Performance and Usability Across Adulthood
by Panagiotis Kourtesis, Evgenia Giatzoglou, Panagiotis Vorias, Katerina Alkisti Gounari, Eleni Orfanidou and Chrysanthi Nega
Multimodal Technol. Interact. 2025, 9(8), 76; https://doi.org/10.3390/mti9080076 - 25 Jul 2025
Viewed by 391
Abstract
Virtual reality (VR) can enrich neuropsychological testing, yet the ergonomic trade-offs of its input modes remain under-examined. Seventy-seven healthy volunteers—young (19–29 y) and middle-aged (35–56 y)—completed a VR Trail Making Test with three pointing methods: eye-tracking, head-gaze, and a six-degree-of-freedom hand controller. Completion [...] Read more.
Virtual reality (VR) can enrich neuropsychological testing, yet the ergonomic trade-offs of its input modes remain under-examined. Seventy-seven healthy volunteers—young (19–29 y) and middle-aged (35–56 y)—completed a VR Trail Making Test with three pointing methods: eye-tracking, head-gaze, and a six-degree-of-freedom hand controller. Completion time, spatial accuracy, and error counts for the simple (Trail A) and alternating (Trail B) sequences were analysed in 3 × 2 × 2 mixed-model ANOVAs; post-trial scales captured usability (SUS), user experience (UEQ-S), and acceptability. Age dominated behaviour: younger adults were reliably faster, more precise, and less error-prone. Against this backdrop, input modality mattered. Eye-tracking yielded the best spatial accuracy and shortened Trail A time relative to manual control; head-gaze matched eye-tracking on Trail A speed and became the quickest, least error-prone option on Trail B. Controllers lagged on every metric. Subjective ratings were high across the board, with only a small usability dip in middle-aged low-gamers. Overall, gaze-based ray-casting clearly outperformed manual pointing, but optimal choice depended on task demands: eye-tracking maximised spatial precision, whereas head-gaze offered calibration-free enhanced speed and error-avoidance under heavier cognitive load. TMT-VR appears to be accurate, engaging, and ergonomically adaptable assessment, yet it requires age-specific–stratified norms. Full article
(This article belongs to the Special Issue 3D User Interfaces and Virtual Reality—2nd Edition)
Show Figures

Figure 1

21 pages, 2765 KiB  
Article
Lyapunov-Based Framework for Platform Motion Control of Floating Offshore Wind Turbines
by Mandar Phadnis and Lucy Pao
Energies 2025, 18(15), 3969; https://doi.org/10.3390/en18153969 - 24 Jul 2025
Viewed by 284
Abstract
Floating offshore wind turbines (FOWTs) unlock superior wind resources and reduce operational barriers. The dynamics of FOWT platforms present added engineering challenges and opportunities. While the motion of the floating platform due to wind and wave disturbances can worsen power quality and increase [...] Read more.
Floating offshore wind turbines (FOWTs) unlock superior wind resources and reduce operational barriers. The dynamics of FOWT platforms present added engineering challenges and opportunities. While the motion of the floating platform due to wind and wave disturbances can worsen power quality and increase structural loading, certain movements of the floating platform can be exploited to improve power capture. Consequently, active FOWT platform control methods using conventional and innovative actuation systems are under investigation. This paper develops a novel framework to design nonlinear control laws for six degrees-of-freedom platform motion. The framework uses simplified rigid-body analytical models of the FOWT. Lyapunov’s direct method is used to develop actuator-agnostic unconstrained control laws for platform translational and rotational control. A model based on the NREL-5MW reference turbine on the OC3-Hywind spar-buoy platform is utilized to test the control framework for an ideal actuation scenario. Possible applications using traditional and novel turbine actuators and future research directions are presented. Full article
(This article belongs to the Special Issue Comprehensive Design and Optimization of Wind Turbine)
Show Figures

Figure 1

17 pages, 8082 KiB  
Article
NPS6D100—A 6D Nanopositioning System with Sub-10 nm Performance in a Ø100 mm × 10 mm Workspace
by Steffen Hesse, Alex Huaman, Michael Katzschmann and Ludwig Herzog
Actuators 2025, 14(8), 361; https://doi.org/10.3390/act14080361 - 22 Jul 2025
Viewed by 152
Abstract
This paper presents the development of a compact nanopositioning stage with long-range capabilities and six-degree-of-freedom (DOF) closed-loop control. The system, referred to as NPS6D100, provides Ø100 mm planar and 10 mm vertical travel range while maintaining direct force transfer to the moving platform [...] Read more.
This paper presents the development of a compact nanopositioning stage with long-range capabilities and six-degree-of-freedom (DOF) closed-loop control. The system, referred to as NPS6D100, provides Ø100 mm planar and 10 mm vertical travel range while maintaining direct force transfer to the moving platform (or slider) in all DOFs. Based on an integrated planar direct drive concept, the system is enhanced by precise vertical actuation and full 6D output feedback control. The mechanical structure, drive architecture, guiding, and measurement subsystems are described in detail, along with experimental results that confirm sub-10 nm servo errors under constant setpoint operation and in synchronized multi-axis motion scenarios. With its scalable and low-disturbance design, the NPS6D100 is well suited as a nanopositioning platform for sub-10 nm applications in nanoscience and precision metrology. Full article
(This article belongs to the Special Issue Recent Developments in Precision Actuation Technologies)
Show Figures

Figure 1

27 pages, 16278 KiB  
Article
Optimization of the Archimedean Spiral Hydrokinetic Turbine Design Using Response Surface Methodology
by Juan Rengifo, Laura Velásquez, Edwin Chica and Ainhoa Rubio-Clemente
Sci 2025, 7(3), 100; https://doi.org/10.3390/sci7030100 - 21 Jul 2025
Viewed by 301
Abstract
This research investigates enhancing the performance of an Archimedes screw-type hydrokinetic turbine (ASHT). A 3D transient computational model employing the six degrees of freedom (6-DOF) methodology within the ANSYS Fluent software 2022 R1, was selected for this purpose. A central composite design (CCD) [...] Read more.
This research investigates enhancing the performance of an Archimedes screw-type hydrokinetic turbine (ASHT). A 3D transient computational model employing the six degrees of freedom (6-DOF) methodology within the ANSYS Fluent software 2022 R1, was selected for this purpose. A central composite design (CCD) methodology was applied within the response surface methodology (RSM) to enhance the turbine’s power coefficient (Cp). Key independent factors, including blade length (L), blade inclination angle (γ), and external diameter (De), were systematically varied to determine their optimal values. The optimization process yielded a maximum Cp of 0.337 for L, γ, and De values of 168.921 mm, 51.341°, and 245.645 mm, respectively. Experimental validation was conducted in a hydraulic channel, yielding results that demonstrated a strong correlation with the numerical predictions. This research underscores the importance of geometric design optimization in improving the energy capture efficiency of the ASHT, contributing to its potential viability as a competitive renewable energy solution in the pre-commercial phase of development. Full article
Show Figures

Figure 1

22 pages, 6177 KiB  
Article
Support-Vector-Regression-Based Kinematics Solution and Finite-Time Tracking Control Framework for Uncertain Gough–Stewart Platform
by Xuedong Jing and Wenjia Yu
Electronics 2025, 14(14), 2872; https://doi.org/10.3390/electronics14142872 - 18 Jul 2025
Viewed by 160
Abstract
This paper addresses the trajectory tracking control problem of a six-degree-of-freedom Gough–Stewart Platform (GSP) by proposing a control strategy that combines a sliding mode (SM) controller with a rapid forward kinematics solution algorithm. The study first develops an efficient forward kinematics method that [...] Read more.
This paper addresses the trajectory tracking control problem of a six-degree-of-freedom Gough–Stewart Platform (GSP) by proposing a control strategy that combines a sliding mode (SM) controller with a rapid forward kinematics solution algorithm. The study first develops an efficient forward kinematics method that integrates Support Vector Regression (SVR) with the Levenberg–Marquardt algorithm, effectively resolving issues related to multiple solutions and local optima encountered in traditional iterative approaches. Subsequently, a SM controller based on the GSP’s dynamic model is designed to achieve high-precision trajectory tracking. The proposed control strategy’s robustness and effectiveness are validated through simulation experiments, demonstrating superior performance in the presence of model discrepancies and external disturbances. Comparative analysis with traditional PD controllers and linear SM controllers shows that the proposed method offers significant advantages in both tracking accuracy and control response speed. This research provides a novel solution for high-precision control in GSP applications. Full article
Show Figures

Figure 1

46 pages, 6649 KiB  
Review
Matrix WaveTM System for Mandibulo-Maxillary Fixation—Just Another Variation on the MMF Theme?—Part II: In Context to Self-Made Hybrid Erich Arch Bars and Commercial Hybrid MMF Systems—Literature Review and Analysis of Design Features
by Carl-Peter Cornelius, Paris Georgios Liokatis, Timothy Doerr, Damir Matic, Stefano Fusetti, Michael Rasse, Nils Claudius Gellrich, Max Heiland, Warren Schubert and Daniel Buchbinder
Craniomaxillofac. Trauma Reconstr. 2025, 18(3), 33; https://doi.org/10.3390/cmtr18030033 - 15 Jul 2025
Viewed by 452
Abstract
Study design: Trends in the utilization of Mandibulo-Maxillary Fixation (MMF) are shifting nowadays from tooth-borne devices over specialized screws to hybrid MMF devices. Hybrid MMF devices come in self-made Erich arch bar modifications and commercial hybrid MMF systems (CHMMFSs). Objective: We survey the [...] Read more.
Study design: Trends in the utilization of Mandibulo-Maxillary Fixation (MMF) are shifting nowadays from tooth-borne devices over specialized screws to hybrid MMF devices. Hybrid MMF devices come in self-made Erich arch bar modifications and commercial hybrid MMF systems (CHMMFSs). Objective: We survey the available technical/clinical data. Hypothetically, the risk of tooth root damage by transalveolar screws is diminished by a targeting function of the screw holes/slots. Methods: We utilize a literature review and graphic displays to disclose parallels and dissimilarities in design and functionality with an in-depth look at the targeting properties. Results: Self-made hybrid arch bars have limitations to meet low-risk interradicular screw insertion sites. Technical/clinical information on CHMMFSs is unevenly distributed in favor of the SMARTLock System: positive outcome variables are increased speed of application/removal, the possibility to eliminate wiring and stick injuries and screw fixation with standoff of the embodiment along the attached gingiva. Inferred from the SMARTLock System, all four CHMMFs possess potential to effectively prevent tooth root injuries but are subject to their design features and targeting with the screw-receiving holes. The height profile and geometry shape of a CHMMFS may restrict three-dimensional spatial orientation and reach during placement. To bridge between interradicular spaces and tooth equators, where hooks or tie-up-cleats for intermaxillary cerclages should be ideally positioned under biomechanical aspects, can be problematic. The movability of their screw-receiving holes according to all six degrees of freedom differs. Conclusion: CHMMFSs allow simple immobilization of facial fractures involving dental occlusion. The performance in avoiding tooth root damage is a matter of design subtleties. Full article
Show Figures

Figure 1

15 pages, 19572 KiB  
Article
HELENE: Six-Axis Accessible Open-Source 3D-Printed Robotic Arm for Research and Education
by Felix Herbst, Sven Suppelt, Niklas Schäfer, Romol Chadda and Mario Kupnik
Hardware 2025, 3(3), 7; https://doi.org/10.3390/hardware3030007 - 10 Jul 2025
Viewed by 743
Abstract
Robotic arms are used in a wide range of industrial and medical applications. However, for research and education, users often face a trade-off between costly commercial solutions with no adaptability and open-source alternatives that lack usability and functionality. In education, this problem is [...] Read more.
Robotic arms are used in a wide range of industrial and medical applications. However, for research and education, users often face a trade-off between costly commercial solutions with no adaptability and open-source alternatives that lack usability and functionality. In education, this problem is exacerbated by the prohibitive cost of commercial systems or simplifications that distort learning. Thus, we present HELENE, an open-source robot with six degrees of freedom, closed-loop position control, and robot operating system (ROS) integration. The modular design of the robot, printed on a commercial 3D printer, and its integrated custom electronics allow for easy customization for research purposes. The joints are driven by standard stepper motors with closed-loop position control using absolute encoders. The ROS integration guarantees widespread control options and integration into existing environments. Our prototype, tested in accordance with ISO 9283, has a small positional accuracy error of 8.4 mm and a repeatability error of only 0.87 mm with a load capacity of 500 g at a reach of 432 mm. Ten prototypes were built and used in various research and education applications, demonstrating the versatile applicability of this open-source robot, closing the gap between reliable commercial systems and flexible open-source solutions. Full article
Show Figures

Graphical abstract

16 pages, 3539 KiB  
Article
Aerodynamics Caused by Rolling Rates of a Small-Scale Supersonic Flight Experiment Vehicle with a Cranked-Arrow Main Wing
by Kazuhide Mizobata, Koji Shirakata, Atsuya Honda, Keisuke Shiono, Yukiya Ishigami, Akihiro Nishida and Masaaki Miura
Aerospace 2025, 12(7), 572; https://doi.org/10.3390/aerospace12070572 - 24 Jun 2025
Viewed by 249
Abstract
A small-scale supersonic flight experiment vehicle is being developed at Muroran Institute of Technology as a flying testbed for verification of innovative technologies for high-speed atmospheric flights, which are essential to next-generation aerospace transportation systems. Its baseline configuration M2011 with a cranked-arrow main [...] Read more.
A small-scale supersonic flight experiment vehicle is being developed at Muroran Institute of Technology as a flying testbed for verification of innovative technologies for high-speed atmospheric flights, which are essential to next-generation aerospace transportation systems. Its baseline configuration M2011 with a cranked-arrow main wing with an inboard and outboard leading edge sweepback angle of 66 and 61 degrees and horizontal and vertical tails has been proposed. Its aerodynamics caused by attitude motion are required to be clarified for six-degree-of-freedom flight capability prediction and autonomous guidance and control. This study concentrates on characterization of such aerodynamics caused by rolling rates in the subsonic regime. A mechanism for rolling a wind-tunnel test model at various rolling rates and arbitrary pitch angle is designed and fabricated using a programmable stepping motor and an equatorial mount. A series of subsonic wind-tunnel tests and preliminary CFD analysis are carried out. The resultant static derivatives have sufficiently small scatter and agree quite well with the static wind-tunnel tests in the case of a small pitch angle, whereas the static directional stability deteriorates in the case of large pitch angles and large nose lengths. In addition, the resultant dynamic derivatives agree well with the CFD analysis and the conventional theory in the case of zero pitch angle, whereas the roll damping deteriorates in the case of large pitch angles and proverse yaw takes place in the case of a large nose length. Full article
(This article belongs to the Special Issue Research and Development of Supersonic Aircraft)
Show Figures

Figure 1

10 pages, 752 KiB  
Article
Flexible Syndesmotic Reconstruction with Two Suture Buttons Provides Equal Stability Compared to Syndesmotic Screws: A Biomechanical Study
by Alexander Milstrey, Vivienne Hoell, Ann-Sophie C. Weigel, Jens Wermers, Stella Gartung, Julia Evers, Michael J. Raschke and Sabine Ochman
Bioengineering 2025, 12(7), 685; https://doi.org/10.3390/bioengineering12070685 - 23 Jun 2025
Viewed by 347
Abstract
Background: This study investigated syndesmotic stability after transection and the effects of stabilization using rigid and dynamic reconstruction techniques. Methods: Syndesmotic stability was analyzed using a six-degree-of-freedom robotic arm on 14 human specimens. Stability was analyzed in the neutral position and [...] Read more.
Background: This study investigated syndesmotic stability after transection and the effects of stabilization using rigid and dynamic reconstruction techniques. Methods: Syndesmotic stability was analyzed using a six-degree-of-freedom robotic arm on 14 human specimens. Stability was analyzed in the neutral position and during dorsiflexion and plantar flexion using an external rotation stress test under an axial load of 200 Newtons. The examination was performed on intact and sequentially transected syndesmosis in the following order: (1) anterior inferior tibiofibular ligament (AITFL); (2) interosseous ligament (IOL); and (3) posterior inferior tibiofibular ligament (PITFL). Then, reconstruction was performed using different syndesmotic screw techniques or a dynamic Suture Button system (Arthrex TightRope; n = 7). Results: A syndesmotic transection mainly caused sagittal instability of the fibula. While both static and dynamic reconstruction provided stabilization, screw fixation, particularly with two screws and a plate, demonstrated superior control of the fibular movement, especially in the sagittal and transverse planes, compared to one Suture Button. Conclusions: The results suggest that syndesmotic stabilization with one Suture Button may be insufficient for cases involving three-ligamentous injuries, whereas two Suture Buttons may offer comparable biomechanical stability to syndesmotic screws. Additionally, the study suggests that lateral radiographs may provide additional clinical value in assessing syndesmotic stability. Full article
(This article belongs to the Section Biomechanics and Sports Medicine)
Show Figures

Figure 1

33 pages, 10697 KiB  
Article
Six-Dimensional Spatial Dimension Chain Modeling via Transfer Matrix Method with Coupled Form Error Distributions
by Lu Liu, Xin Jin, Huan Guo and Chaojiang Li
Machines 2025, 13(7), 545; https://doi.org/10.3390/machines13070545 - 23 Jun 2025
Viewed by 268
Abstract
In tolerance design for complex mechanical systems, 3D dimension chain analyses are crucial for assembly accuracy. The current methods (e.g., worst-case analysis, statistical tolerance analysis) face limitations from oversimplified assumptions—treating datum features as ideal geometries while ignoring manufacturing-induced spatial distribution of form errors [...] Read more.
In tolerance design for complex mechanical systems, 3D dimension chain analyses are crucial for assembly accuracy. The current methods (e.g., worst-case analysis, statistical tolerance analysis) face limitations from oversimplified assumptions—treating datum features as ideal geometries while ignoring manufacturing-induced spatial distribution of form errors and failing to characterize 3D coupled error constraints. This study proposes a six-dimensional spatial dimension chain (SDC) model based on transfer matrix theory. The key innovations include (1) a six-dimensional model integrating position and orientation vectors, incorporating geometric error propagation constraints for high-fidelity error prediction and tolerance optimization, (2) the characterization of spatially distributed form errors and 3D coupled errors of spatial dimension chain-based multiple mating-surface constraint (SDC-MMSC) using six-degree-of-freedom (6-DoF) geometric error components, reducing the assembly topology complexity while improving the efficiency, and (3) a 6-DoF error characterization method for non-mating-constrained data, providing the theoretical basis for SDC modeling. The experimental validation on an aero-engine casing assembly shows that the SDC model captures multidimensional closed-loop spatial errors, with absolute errors of max–min closed-loop distances below 9.3 μm and coaxiality prediction errors under 8.3%. The SDC-MMSC method demonstrates superiority, yielding normal vector angular errors <0.008° and envelope surface RMSE values <0.006 mm. This method overcomes traditional simplified assumptions, establishing a high-precision, multidimensional distributed-form-error-driven SDC model for complex mechanical systems. Full article
Show Figures

Figure 1

24 pages, 8549 KiB  
Article
A Novel High-Precision Workpiece Self-Positioning Method for Improving the Convergence Ratio of Optical Components in Magnetorheological Finishing
by Yiang Zhang, Pengxiang Wang, Chaoliang Guan, Meng Liu, Xiaoqiang Peng and Hao Hu
Micromachines 2025, 16(7), 730; https://doi.org/10.3390/mi16070730 - 22 Jun 2025
Viewed by 368
Abstract
Magnetorheological finishing is widely used in the high-precision processing of optical components, but due to the influence of multi-source system errors, the convergence of single-pass magnetorheological finishing (MRF) is limited. Although iterative processing can improve the surface accuracy, repeated tool paths tend to [...] Read more.
Magnetorheological finishing is widely used in the high-precision processing of optical components, but due to the influence of multi-source system errors, the convergence of single-pass magnetorheological finishing (MRF) is limited. Although iterative processing can improve the surface accuracy, repeated tool paths tend to deteriorate mid-spatial frequency textures, and for complex surfaces such as aspheres, traditional manual alignment is time-consuming and lacks repeatability, significantly restricting the processing efficiency. To address these issues, firstly, this study systematically analyzes the effect of six-degree-of-freedom positioning errors on convergence behavior, establishes a positioning error-normal contour error transmission model, and obtains a workpiece positioning error tolerance threshold that ensures that the relative convergence ratio is not less than 80%. Further, based on these thresholds, a hybrid self-positioning method combining machine vision and a probing module is proposed. A composite data acquisition method using both a camera and probe is designed, and a stepwise global optimization model is constructed by integrating a synchronous iterative localization algorithm with the Non-dominated Sorting Genetic Algorithm II (NSGA-II). The experimental results show that, compared with the traditional alignment, the proposed method improves the convergence ratio of flat workpieces by 41.9% and reduces the alignment time by 66.7%. For the curved workpiece, the convergence ratio is improved by 25.7%, with an 80% reduction in the alignment time. The proposed method offers both theoretical and practical support for high-precision, high-efficiency MRF and intelligent optical manufacturing. Full article
(This article belongs to the Special Issue Recent Advances in Micro/Nanofabrication, 2nd Edition)
Show Figures

Figure 1

Back to TopTop